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in the past decade the numerical generation of boundary-conforming curvi-

linear coordinate systems has provided the key to the development of finite dif-

ference solutions of partial differential equations on regions with arbitrarily

shaped boundaries. Although much of the impetus for these developments has come

from fluid dynamics, the techniques are equally applicable to heat and mass

transfer, electromagnetics, solid mechanics, and all other areas involving field

solutions.

This symposium was designed to provide a forum for the presentation and in-

terchange of ideas and results on the numerical generation of such coordinate

systems and their application in the numerical solution of partial differential

equations. A number of specially prepared expository papers was included with

the submitted papers. These expository papers are designed to cover the basic

techniques involved in the numerical generation of curvilinear coordinate

systems and the use thereof in the numerical solution of partial differential

equations. These papers thus can serve to provide an introduction to such

techniques for all concerned with field solutions and also to acquaint users of

such systems with additional techniques.

A boundary-conforming coordinate system is a curvilinear coordinate system

having some coordinate line (surface in 3D) coincident with each segment of the I L
boundary of a region. (Such coordinate systems have been variously termed boun-

dary-fitted, body-fitted, surface-fitted, surface-orientated, surface-conforming,
etc. in the literature.) When partial differential equations are transformed

onto such a coordinate system, finite difference representations can be made

using only neighboring points at coordinate line intersections, without need of

interpolation, regardless of the boundary shape or even its movement. Even with

a moving boundary, all computation thus can always be done on a fixed square

grid in the transformed region. This allows quite general codes to be written

for the numerical solution of partial differential equations on arbitrary -.

regions. Since the coordinate system itself can also be generated numerically,

the complication of boundary shape is thus effectively removed from the problem,

and diverse configurations can be treated by a single code, the boundary shape

being either an item of input or to be determined by the solution in the case of

* moving boundaries.

Boundary conforming coordinate systems are generated numerically by deter-

mining the values of the physical coordinates (cartesian or otherwise) in the

field from the values (and/or angles of intersection) on the boundary. This can

be done in two basic ways: (1) by algebraic interpolation from the boundary
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values, or (2) by solving a set of partial differential equations with the boun-

dary values as boundary conditions therefor. In general, the coordinate system

should have lines concentrated in regions of expected high variation of the phy-

sical solution, but the system should be smooth and the spacing should not

change too rapidly. Orthogonality is not necessary, but the departure therefrom

should not be excessive, although quite large departures can be tolerated. Ul-

timately the coordinate system should be coupled with the physical solution

thereon, so that the coordinate line spacing continually adapts to resolve the

developing variations in the physical solution.

The first seventeen papers of this volume are expository in nature, with

the topics selected to provide an introduction to the various techniques and

considerations involved in the generation and use of boundary-conforming coordi-

nate systems. The general ideas of such coordinate systems and the necessary

transformation relations for partial derivatives, integrals, normal and tangent

vectors, etc. are given in the first paper (Thompson) of this volume. This

paper also introduces various configurations possible for the transformed plane

and discusses the use of branch cuts and points requiring special consideration.

It is possible for poor distribution or orientation of coordinate lines to in-

troduce error into a numerical solution done thereon, and the determination and

control of such error sources is discussed in the second paper (tastin). This

is a particularly important concern since sudden changes in line spacings and

excessive skewness of lines can introduce negative numerical diffusion into a

solution. These first two papers are relevant to the use of boundary-conforming

coordinate systems in general, regardless of the method of generation.

The difference representation of derivatives on general grids is discussed

in the paper of Hyman & Larrouturou. When the transformed partial differential

equations are written in strong conservative form on a curvilinear coordinate

system, i.e., such that the metric coefficients appear inside the derivatives,

it is important that the differencing be done in such a way that a uniform solu-

tion will be preserved. With the metric coefficients inside the derivatives, it

is possible for differences of these coefficients to fail to cancel exactly,

thus introducing spurious source terms which cause the solution to drift away

from the uniform case. This topic is discussed in the paper by Steger, where

some corrective measures are suggested, and in the paper of Gnoffo. In some

cases this problem can cause analytical metric coefficients to give poorer solu-

tions than are obtained with coefficients evaluated from difference expressions,

as noted in the paper of Mastin.
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As noted above, there are two basic approaches to the numerical generation

of boundary-conforming coordinate systems: generation from the solution of

partial differential equations and generation by algebraic interpolation between

boundaries. The first of these includes conformal mapping as well as generation

from the solution of general elliptic, parabolic, and hyperbolic systems. A

general discussion of appropriate partial differential systems is given in the

paper of Warsi, while elliptic systems are specifically covered in the second

paper of Thompson. The use of some hyperbolic systems is 'ncluded in the first

paper of Eiseman, and in the paper of Steger, and parabolic systems are applied

in the paper of Nakamura.

Particular elliptic systems are discussed in the papers of Rubbert & Lee,

Brackbill, Coleman, Sorenson, Thomas, Shieh, Thames, Warsi & Ziebarth,

Klevenhusen, Shubin et al., Saltzman & Brackbill, and Christov. Applications of

* - coordinate systems generated from elliptic systems are included in the papers of

McWhorter, Knight, Haussling, Johnson, and Chen et al. Applications of a hy-

- . perbolic generating system appears in the paper of Steger.

-.. Control of the coordinate line spacing and orientation is exercised through

adjustable terms in the partial differential equations through which it is pos-

sible to cause coordinate lines and/or points to be attracted to other coordi-

nate lines and/or points or to locations in the physical plane. Some specific

procedures for the control of coordinate line spacing are included in the second

paper of Thompson with elliptic generating systems. Some general discussion of

this topic appears in the paper of Warsi, and the determination from boundary

point distribution is discussed in the paper of Thomas.

The generation of coordinate systems by solving partial differential equa-

tions requires numerical solution of difference equations on the field. This

has generally been done for elliptic systems by iterative procedures such as

SOR, ADI, multi-grid techniques, etc. as discussed in the second paper of

Thompson. A singularity solution method is used in the paper of Klevenhusen.

4. :.i. : : The paper by Roache discusses a semidirect marching procedure that is applic- . . -.

able to elliptic systems in some cases. Marching techniques, typically involv-

ing tri-diagonal solutions, are generally applicable to parabolic and hyper-

bolic systems as used in the papers of Nakamura and Steger, respectively.

An extensive discussion of conformal transformations is given in the paper

of Irves, where a number of techniques are covered and a comprehensive list of

references is given. This paper also discusses techniques for exercising some

control of the line spacing through subsequent stretching transformations.

Further discussions and applications of conformal transformations are given in

- -I
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the papers of Anderson et al., Yagla, Jou, Dulikravich, Halsey, and Harrington.

Regions with multiple internal boundaries are treated in the papers of Halsey

and Harrington, as well as in that of Irves.

The other major class of coordinate system generation procedures--algebraic

generation systems--utilizes interpolation formulas to determine the values of

the coordinates at the points in the field. The paper of Smith and that of

Gordon & Thiel provide a general discussion of the techniques involved, and

further discussions are given in the papers of Eisenan and in the paper of

Roberts, as well as in the paper of Manhardt & Baker. The paper of Gordon &

Thiel also provides a general discussion of the theory of the interpolation

techniques involved. Control of the coordinate lines with algebraic generation

systems is accomplished through stretching functions in the interpolation for-

mulas. The paper of Smith discusses interactive control of the coordinate

system using computer graphics.

Although orthogonality is not necessary, certain error terms do vanish for

an orthogonal system as may some terms of transformed differential equations.

Orthogonality, however, places certain constraints on the point distributions.

A comprehensive discussion of the generation of orthogonal coordinate systems is

given in the first paper of Eiseman, which treats both algebraic generating

*systems and systems based on hyperbolic partial differential equations. This

paper also includes some basic theoretical aspects of orthogonal systems, as

does the paper of Warsi. Orthogonal systems generated from hyperbolic systems

* are used in the paper of Steger. Orthogonal systems can also be generated from

elliptic systems by determining the control functions such as to achieve or-

thogonality. This approach is discussed in the papers of Knight and Christov.

In order to adequately resolve solution gradients it is necessary that the

coordinate system be controlled so that coordinate lines are concentrated in

regions of large variations of the solution, but without excessive spacing

changes, skewness, or depletion of lines in other regions. Ultimately the coor-

dinate system should be coupled with the physical solution thereon so that the

coordinate lines continually adapt to follow regions of developing variations

while maintaining smooth coverage of the entire field. This area is now recei-

ving considerable attention, and the papers of Brackbill and Anderson cover some

of the basic ideas involved.

Brackbill implements the adaptive control through terms in the elliptic

generating system, while Anderson gives a procedure based on an analogy with

electrostatic charge attraction which is applicable to any coordinate system.

The adaptive procedure of Brackbill is discussed further and applied in the
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paper of Saltzman & Brackbill, where striking results for multiple shock reflec-

-* tions are given. In the procedure of Anderson, grid points attract or repel

other points in accordance with the deviation of some local error measure from

the average measure over the field. Force couples are also employed to cause

lines of grid points to align with solution phenomena such as shocks. A related

procedure is used in the paper of Gnoffo. Other adaptive control procedures are

discussed in the papers of Dyer et al., Anyiwo, and Ablow.

Related to the subject of coordinate system control is the question of

evaluating the quality of a system. As noted above, rapid changes in spacing A

and excessive skewness can cause errors, as is discussed in the paper of Hastin.

The question of quality assessment is addressed directly in the paper of

Kerlick, where various aspects of the grid are isolated and some specific as-

sessment procedures are developed. The elliptic generation system of Brackbill

(cf. also the paper of Saltzman & Brackbill) includes procedures for balancing

the conflicting requirements of smoothness, avoidance of excessive skewness,

and line concentration. The requirements placed on the coordinate system can be

relaxed somewhat if solution algorithms to be used thereon are "forgiving" as

" noted in the paper of Rubbert & Lee.

" The generation of surface coordinate systems on curved surfaces is

discussed in general in the paper of Warsi, and further discussions are given in

the paper of Warsi & Ziebarth and that of Thomas. Some discussion of this topic

is also included in the second paper of Thompson and in the papers of Eiseman.
'' ';: ;:': surface representation is also discussed in connection with the algebraic gener-

ation system in the papers of Smith and Gordon & Thiel.

The general idea of embedding a coordinate system for a subregion within a

larger system is a powerful tool for the treatment of more complicated config-

urations even in two dimensions, particularly with configurations involving mul-

tiple interior boundaries. Some continuity must be preserved in the coordinate

system at the junctures of the subsystems, certainly in regard to point distri--

bution and preferably also for the slope and the higher derivatives of the coor-

dinate coefficients. The algebraic generation procedures can achieve this by

including derivatives in the interpolation formulas, either directly through

Hermits interpolation or indirectly through the use of intermediate surfaces.

The papers of Smith and Gordon & Thiel, and the second paper of Eiseman, are

relevant to this topic. With elliptic generation systems, derivatives can be

* matched at mesh boundaries by iteratively adjusting the control functions in the

equations as in the paper of Sorenson. Also in this regard, the paper of
Coleman discusses a code applicable to very general two-dimensional
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configurations patched with complete continuity at the junctures. Higher-order

elliptic systems, such as in the paper of Shubin et al., allow additional boun-

dary conditions so that derivatives can be matched. The first paper of Eiseman

discusses the embedding of two-dimensional orthogonal coordinate systems. The

concept of embedding is used with conformal systems in the paper of Halsey.

Complicated three-dimensional configurations are now becoming accessible,

being generally treated by patching together coordinate systems generated sep-

arately for subregions surrounding particular components. This topic is intro-

duced in the paper of Rubbert & Lee, and further discussions are given in the

papers of Roberts and Thomas, as well as in the papers of Manhardt & Baker and

Shubin et al.

The construction of three-dimensional systems by stacking two-dimensional

systems generated on successive surfaces is included in the papers of Warsi and

Thomas, as well as in the second paper of Thompson. An example appears in the V

paper of Chen et al. The construction of three-dimensional systems from an as-

sembly of two-dimensional conformal systemf. is included in the papers of Ives,

Jou, and Dulikravich. Three-dimensional configurations treated directly without

such patching together of subregions or stacking of two-dimension surface

systems are discussed in the papers of Warsi & Ziebarth and Thames.

* As noted in the paper of Ives, combinations of generation techniques should

be considered for general configurations. Thus algebraic stretching can be

applied to a coordinate system generated from partial differential equations in

order to redistribute the coordinate lines. Similarly, an elliptic generation

system could be used to smooth a coordinate system generated algebraically. It

might also be useful to generate an overall grid with one type of generation

system and then generate finer grids within subregions of the larger grid with

another type of generation procedure.

Since the time derivatives can be transformed as well, the computations can

still be done on a fixed square grid in the transformed plane even if the boun-

daries are in motion. The use of such time-dependent systems with a moving free

surface boundary is discussed in the paper of Haussling, in the related paper of

Coleman, and in the paper of Aton & Thomas.

Applications to fluid mechanics are made in a number of the papers. The

paper of McWhorter discusses applications to solid mechanics, specifically the

bending of plates and the torsion in shafts. Heat and mass transfer applica-

tions with combustion are given in the paper of Dwyer et al. Free surface flow

problems are discussed in the papers of Haussling, Coleman, and Aston & Thomas.

The paper of Johnson gives applications to estuarine flows involving branching
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channels, islands, and also free surfaces simulated with depth-averaging.

Complicated wing/body/nacelle configurations of airplanes are treated in

the papers of Rubbert & Lee and Roberts. Wing/wing tip configurations are given

in the paper of Thames. Blade/hub configurations are treated in the papers of

Jou and Dulikravich. Cascade applications are included in the papers of Ives,

Jou, Dulikravich. Other examples are given in the paper of Knight. Applica-

tions to external aerodynamics are discussed in the papers of Steger, Yagla,

Klevenhusen and Gnoffo. Particular considerations related to internal flows are

discussed in the paper of Knight. Other internal flows are treated in the

papers of Anderson et al. and Chen et al.

In conclusion, the areas of most importance for further research are the

analysis and reduction of error introduced by the coordinate system, the auto-

mation of control of coordinate line spacing to achieve both concentration and

smoothness, the dynamic coupling of the coordinate system with the physical so-

lution, and the patching together of regions to represent general configurations

with sufficient continuity. The increasing interest and progress in the gener-

ation and use of numerically generated boundary-fitted coordinate systems are

evidenced by several recent conferences devoted to this topic, and the present

volume should serve as an introduction to the state-of-the-art in this area for

all concerned with the numerical solution of partial differential equations.

Coordinate system generation and use can be expected to evolve at an even more

rapid pace in the coming years, and it is hoped that this present volume will

A provide coverage of the developments thus far from which new directions can be

charted.

, Joe F. Thompson
Mississippi State, MS
May 1982
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ABSTRACT

-The basic ideas of the construction and use of numerically-generated

boundary-fitted coordinate systems for the numerical solution of partial

differential equations are discussed. With such coordinate systems, all

computation can be done on a fixed square grid in the rectangular transformed

region regardless of the shape or movement of the physical boundries. A

number of different types of configurations for the transformed region and

the basic transformation relations from a cartesian system to a general

curvilinear system are given. The material of this paper is applicable to

all types of coordinate system generation. ./.

INTRODUCTION

Numerical solution of partial differential equations requires some

discretization of the field into a collection of points or elemental
volumes (cells). The differential eguations are approximated as a set of'
difference equations on this collection, and this set of algebraic equations

is then solved for the discrete values of the functions.

Now, although difference expressions can be obtained on a random point

distribution, the discretization of the field requires some organization for

the solution thereon to be efficient, i.e., it must be possible to efficiently

identify the points or cells neighboring the computation site. Furthermore,

the discretization must conform to the boundaries of the region in such a

way that boundary conditions can be accurately represented. This organization

is provided by a coordinate system, and the need for alignment with the

boundary is reflected in the choice of cartesian coordinates for rectangular

regions, cylindrical coordinates for circular regions, etc.

Fg 1
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The current interest in numerically-generated boundary-conforming

coordinate systems arises from this need of organization of the discretiza-

tion of the field for general regions. Using such coordinate systems,

numerical solutions of partial differential equations on physical regions of

arbitrary shape can be constructed and codes can be developed that require

only changes in the input to treat different physical configurations and

boundary shapes.

This paper discusses the basic concepts of such coordinate systems, various

configurations of the transformed region, and the transformation relations

needed for the numerical solution of partial differential equations thereon.

Various procedures for generating these coordinate systems and examples of

applications are covered in the following papers of this volume. A general

survey of this area has recently been given by Thompson, et all. In the

following sections, a two-dimensional region will be considered in most

of the discussions for economy of presentation. Generalization to three

dimensions will be evident in most cases and will be mentioned specifically

only when necessary.

BOUNDARY-CONFORMING COORDINATE SYSTEMS

The basic idea of a boundary-conforming curvilinear coordinate system is 1
to have some coordinate line (in 2D, surface in 3D) coincident with each

boundary segment, analogous to the way in which lines of constant radial

coordinate coincide with circles in a cylindrical coordinate system. The other

curvilinear coordinate will vary along the boundary segment and clearly

must do so monotonically, else the same pair of values of the curvilinear

coordinates will occur at two different physical points. (It should be

clear that the curvilinear coordinate that varies along a boundary segment

must have the same direction and range of variation over some opposing segment,

e.g., as the angular variable varies from 0 to 21 over both of two concentric -.

circles in cylindrical coordinates).

With the values of the curvilinear coordinates specified on the boundary,

it then remains to generate values of these coordinates in the field from these

boundary values. There must, of course, be a unique correspondence between

the cartesian (or other basis system) and curvilinear coordinates, i.e., the

mapping of the physical region onto the transformed region must be one-to-one,

so that every point in the physical field corresponds to one, and only one,

point in the transformed field, and vice versa. Coordinate lines of the same

family must not cross, and lines of different families must not cross more

than once.

. ,__ _ _._,__ _ _ _,_X

o m H i



Boundary-value problem - physical region

The generation of the curvilinear coordinate system may be stated as

follows: with the curvilinear coordinates specified on the boundaries, .

e.g., 4(x,y) and n(x,y) specified for (x,y) on a boundary curve r (this

specification being a constant value for either 4 or n on each segment of r,

with a monotonic variation of the other), generate the values, (x,y) and

n(x,y), in the field bounded by r. This is thus a boundary value problem

on the physical field with the curvilinear coordinates (C,n) as the dependent

variables and the cartesian coordinates (x,y) as the independent variables,

with boundary conditions specified on curved boundaries.

Fig. 2.

(In this discussion the transformation is assumed to be from cartesian

coordinates in the physical plane. The transformation can, however, be from

any system of coordinates in the physical plane.)

Boundary value problem - transformed region

The problem may be simplified for computation, however, by first - t" r -

forming so that the physical cartesian coordinates (x,y) become the e,.pendent

variables, with the curvilinear coordinates (C,n) as the independent variables.

Since constant values of one curvilinear coordinate, with monotonic variation

of the other, have been specified on each boundary segmen', it follows that

these boundary segments in the physical field will correspond to vertical or

horizontal lines in the transformed field. Also, since the range of variation

of the curvilinear coordinate varying along a boundary segment has been made

the same over opposing segments, it follows that the transformed field will

be composed of rectangular blocks.

The boundary value problem in the transformed field then involves generating

the values of the physical cartesian coordinates, x(C,n) and y(C,n), in the

field from the specified boundary values of x( ,rn) and y(C,rn) on the rectangu-

lar boundary of the transformed field, which is formed of segments of constant

f or n, i.e., vertical or horizontal lines.

i,
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The problem is thus much more simple in the transformed plane, since the

boundaries there are all rectangular. The computation in the transformed

plane thus is on a square grid regardless of the shape of the physical

boundaries.

With values of the cartesian coordinates known in the field as functions

of the curvilinear coordinates, the network of intersecting lines formed by

contours (surfaces in 3D) on which a curvilinear coordinate is constant, i.e.,

the curvilinear coordinate system, provides the needed organization of the

discretization with conformation to the physical boundary.

Orthogonality at the boundary

It is also possible, of course, to apply Neumann boundary conditions,

rather than Oirichlet, for the cartesian coordinates on the boundaries of the

F transformed region, so that coordinate lines intersect the boundary normally.

This amounts to leaving the points of intersection of the curvilinear coordinate

lines with the physical boundary free to move along that boundary with the

angle of intersection, rather than the location, being specified. This

condition is applied by requiring that the dot product of the tangent to the

intersecting coordinate line with the tangents to the coordinate lines on

the boundary vanish. This condition, together with the ec.'ation defining the

boundary, serves to determine the coordinates of the boundary points in

the course of the generation of the coordinate system. More general

generation procedures can also be formulated which allow specification of both

the coordinates and orthogonality on the physical boundary.

TRANSFORMED REGION CONFIGURATIONS

As noted above, the generation of the curvilinear coordinate system is

done by devising a scheme for determination of the field values of the

c-%rtesil,. coordinates from specified values of these coordinates (and/or

curvilinear coordinate line intersection angles) on the boundary of the

transformed region. Since the boundary of the transformed region is comprised

. 4.



of horizontal and vertical line segments corresponding to segments of the

physical boundary on which a curvilinear coordinate is specified to be constant,

it should be evident that the configuration of the coordinate system depends on

how this boundary correspondence is made.

Some examples of different configurations are given below from which more

complex configurations can be inferred. In these examples only a minimum

number of coordinate lines are shown in the interest of clarity for presenta-

tion. In all of these examples boundary values of the physical cartesian

coordinate (and/or Neumann boundary conditions) are understood to be specified

an all boundaries, both external and internal, of the transformed region

except for segments indicated by dotted lines. These latter segments correspond

to branch cuts in the physical plane as is explained in connection with the

occurrence thereof in the examples given. Such re-entrant boundary segments

always occur in pairs, the members of which are indicated on each of the

configurations shown. Points outside the field across one segment of such a

pair are coincident with points inside the field across the other segment in

the pair. In most cases an example of an actual coordinate system is

given as well, and other examples can be found in the following papers of

this volume. References to the use of various configurations may be found in

Thompson, et al._

Simply-connected regions

It is natural to define the same curvilinear coordinate to be constant on
each member of a pair of generally opposing boundary segments in the physical

plane. Thus, a simply-connected region formed by four curves is logically

treated by transforming to an empty rectangle;

4 3

Fig. 4.

Similarly, a generally L-shaped region could remain L-shaped in the transformed

region.
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The generalization of these ideas to more complicated regions is obvious, the

transformed region being composed of contiguous rectangular blocks.

Note, however, that the physical boundary segment on which a single curvi-

linear coordinate is constant can have slope discontinuities. Therefore,

the L-shaped region above could have been considered to be composed of four

segments instead of six, so that the transformed region becomes a simple

rectangle:

s 4 3

Fig. 6.2

Whether or not the boundary slope discontinuity propagates into the field,

so that the coordinate lines in the field exhibit a slope discontinuity,

depends on how the coordinate system in the field is generated. As is

discussed in a later paper in these proceedings, coordinate systems generated

as the solution of elliptic partial differential equations do not show such

propagation of boundary slope discontinuities into the field.

Also, it is not necessary that boundary slope discontinuities on the

physical boundary correspond to corners on the boundary of the transformed

region, and a counter-example follows next:

• 4 4

X 2

Fig. 7. U

In this case, the segment 1-2 on the physical boundary is a line of constant

n, while the segment 2-3 is a line of constant s.

Since the species of curvilinear coordinate necesa.ily changes at a

corner on the transformed boundary, the identification of a corner with a

r*-M-
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point on a smooth physical boundary may require special treatment of such a

point in the difference representations used in numerical solutions of the

curvilinear coordinate system as discussed later. A point of slope discontin-

uity on the physical boundary also requires special treatment in difference

solutions, since no normal can be defined thereon. This, however, is inherent

in the nature of the physical boundary and is not related to the construction

of the transformed configuration.

Some slightly more complicated examples of the alternatives introduced

above now follow:

S 7

SFig. 8. a
44

X 6

Fig. 9.

Still another alternative in this case would be to collapse the intrusion

* 2-3-4-5 to a slit in the transformed region:

* Fig. 10. t4.-

Here the physical cartesian coordinates are specified and double-valued on

the vertical slit, 2-9-5, in the transformed region. Solution values in a

- difference solution on such a coordinate system would also be double-valued

on the slit, of course.

Multiply-connected regions

With obstacles in the interior of the field, i.e., with interior boundaries,

there are still more alternative configurations in the transformed region.

i .
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One possibility is to maintain the connectivity of the transformed region

the same as that of the physical plane as in the following examples showing

two variations of this approach, using interior slabs and slits, respectively,

in the transformed region:

44

Fig. 11.

Fig. 12.

- Another obvious variation 
would be to have the slit vertical in the latter

case. In the second of these 
configurations, the points 5 and 6 will 

require

" special treatment in difference 
solutions ais discussed later. 

*I.

: The transformed region could, however, be made simply-connected by 
-.

introducing a branch cut in 
the physical region as illustrated 

below:
'2i2

Fig. 13.

Here the 
coincident 

coordinate 
lines 1-2 

and 4-3 form a branch 
cut, which

becomes re-entrant boundaries on the left and right sides of the transformed

Vsregion. 
All derivatives are continuous 

across this cut, 
so that points

outside the right 
side boundary 

in the transformed region 
are the same 

as

corresponding 
points on the 

same horizontal 
line inside 

the left side

. boundary, and vice versa. Boundary values are not specified on the cut. This

. cut is, of course, analogous to the coincident 0 and 2 lines in a cylindrical

' coordinate system.

4 
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This type of configuration is often called an 0-type. Another possible

configuration of this type is as shown below, often called a C-type.

IL2 -ig 14I

Here the two members of the pair of segments forming the branch cut are both

on the same coordinate line, and, consequently, points located below the

segment 1-2 on the left portion of the bottom of the transformed plane coincide

with points above the segment 4-3 located a corresponding distance to the

right of the centerline.

4Regions of higher connectivity than those shown above are treated in a

* similar manner. The connectivity may be maintained as in the following

illustration: 4 -

Fig.-. 15-U

Here one slit is made horizontal and one vertical just for generality of

illustration. Both could, of course, be of the same orientation. Slabs,

rather than slits, could also have been used. The VESCOR Code of Thompson
3

is applicable to two-dimensional regions with any number of interior

obstacles and/or boundary intrusions, which are transformed into slits and/or

slabs using an elliptic generation system.

With the transformed region made simply-connected we haa, using two

branch cuts, a configuration related to the 0-type shown abovE for one
A internal boundary.

i.

Fig. 16.

.1. _ _IIL _J _ _ __ _ .. .... .
-- t'
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Here the pairs 1-2, 8-7 and 3-4, 6-5 are the branch cuts, which form re-entrant

boundaries in the transformed region as shown. In this case points outside

the right side of the transformed region coincide with points inside the left

side, and vice versa. Also, points below the bottom segment 3-4 to the left

of the centerline coincide with points above the bottom segment 6-5 an equal

distance to the right of the centerline. Again, all derivatives are continuous

across both of the cuts. M

There are a number of other possibilities for placement of the two cuts

on the boundary of the transformed region. The TOMCAT Code of Thompson,

et al., is "-pable of treating such configurations with any number of

interior boundaries and any placement of the boundary segments on the

rectangular exterior boundary of the transformed region, using an elliptic

generation system. It Is not necessary to reduce the connectivity of the

region completely; rather, a slit or slab can be used for some of the

interior boundaries, while others are placed on the exterior boundary of

the transformed region.

in more complicated configurations, one type of coordinate system can be

embedded in another. A simple example of this is shown below, where a

cylindrical-type of system surrounding an internal boundary is embedded

in a system of a more rectangular form:

F

4 7ig.

r- - -
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Here points below the segment 11-12 are coincident with points below the

segment 10-9, and vice versa, with similar correspondence for the pair of

segments, 13-14 and 6-5. Points to the left of the segment 8-12 coincide with

points to the right of the segment 8-9 located a corresponding distance from 8.

Similar correspondence holds for the pair, 7-13 & 7-6. Note that here

boundary values are specified on the slit 8-7. The NUMESH code of Coleman
5

is designed to produce embedded systems of this and other types with an

elliptic generation system. This code is also discussed in a later paper

ik of this volume.

An example of a C-type system embedded in another C-type system is

given next:

U JrTT J-- - - - e

--- -- --- - - -- - - .- B

Fig. 1e.

Points below 16-12 coincide with points below 17-11 in this case. Points

to the left of 15-12 are coincident with points to the right of 15-11

'. located a corresponding distance from 15. The slit here is formed of the

segments 8-15 and 9-15. The coincidents points 11 and 12 here must be taken

as a point boundary in the physical plane, i.e., fixed at a specified value.

Examples of this type of embedding of coordinates system are given by

Sorenson elsewhere in this volume, using extensions of the GRAPE code

AamL_
-- - 7.o
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(Sorenson6) based on an elliptic generation system.

An alternative arrangement of the transformed plane that corresponds to

exactly the same coordinate system in the physical plane is as follows:
14a

Fig. 19."-

Here points below 3-4 coincide with points above 6-5 located a corresponding

distance to the right of the centerline. When calculations are made on

or above the segment 12-14 on the larger block, points below this segment

coincide with points below the corresponding segment on the smaller block.

Similarly, when calculations are made on or below the segment 13-11 on the

larger block, points above this segment coincide with points below the

corresponding segment on the smaller block. Finally, points below the

segment 7-8 on the smaller block are coincident with points above the

segment 10-9 located a corresponding distance from the centerline. This

example illustrates that transformed plane configurations using disjoint,

but connected, blocks can be rearranged into a contiguous region which may be

more convenient to use.

A more complicated arrangement of cuts, where the species of coordinate

changes on a continuous line as the cut is crossed, is illustrated below.

The transformed region in this case is composed of three disjoint blocks

connected by the cuts.

K

% -- I I I ! { I t I ,

L " . ,--N

Here points outside one section are coincident with corresponding points

inside the adjacent section.

F
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As a final configuration for consideration in two dimensions, the following

example shows a case with fewer lines on one side of a slab than on the other. 4,
It should be noted that this does not necessitate the use of different

increments of the curvilinear coordinates in the difference expressions,

because these increments always cancel out anyway.

-4

Fig. 21.

SThree-dimensional regions

These general concepts illustrated in these examples extend directly to

three dimensions. Interior boundaries in the transformed region can become

rectangular solids and plates corresponding to the slabs and slits, respectively,

illustrated above for two dimensions. An early example of the use of plates

*, . was given by Thames in Thompson, et al.
8  The use of three-diensional

configurations comprised of contiguous rectangular solids is illustrated by

Coleman in a later paper of this volume. Some three-dimensional regions can

be treated by stacking two-dimensional systems generated on planes or sur-

faces, with corresponding points connected on the successive surface systems.

It is also possible to use branch cuts, as illustrated above for two

dimensions, to bring the interior boundaries in the physical region to the

exterior boundary of the transformed region. The correspondence between the

physical and transformed planes can, however, become much more complicated

in three dimensions, and considerable ingenuity may be required to visualize

this correspondence. For instance, the simple case of polar coordinates

corresponds to a rectangular solid with two opposing sides having the radial

coordinate constant thereon, and twore-entrant sides on which the longitude

is constant at 0 and 2r, respectively (corresponding to the cut). The

remaining two sides correspond to the north and south polar axes, so that an

C axis opens to cover an entire side. There is thus a line, i.e., the axis, in

the physical region that corresponds to an entire side in the transformed

region. An example of another arrangement appears below from Mastin and

Thompson9 , which is comprised of three disjoint blocksconnected by cuts

as shown.

, .... 4 !
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Fig. 22.

SPECIAL GRID POINTS

Several of the configurations discussed above involve boundary points

that differ from the usual point formed simply by the intersection of two

coordinate lines of different species. since these points are specified

boundary points, they require no special treatment in the generation of

the coordinate system with Dirichlet boundary conditions. However, special

treatment is necessary at such points with Neumann boundary conditions and

in the difference representations for a numerical solution to be done on the f

coordinate system. ..

CornersIn the case of a concave (to the field) corner in the transformed plane

corresponding to a point on a smooth physical boundary, e.g., points 1, 2,

3, and 4 in Fig. 7, the situation is as illuotrated below:

Pig. 23.

Here the problem is that the species of coordinate line changes at the point

in question. This case can be treated by considering the dotted lines to

represent a local pair of coordinate lines, so that locally the derivatives

of one species are taken along the line with the closed circles, while those

*of the other species are taken along the line with the open circles.

0 The use of slits in the transformed plane introduces a peculiar point

where two lines of the same species meet, e.g., point 9 it. ig. 10:

J
*4
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Fig. 24.

Again a logical procedure is to use a local coordinate system formed of the

dotted lines, with derivatives of one species being represented locally along

the line with the closed circles and those of the other along the line

with the open circles. This same situation also occurs for configurations

having a boundary segment and a branch cut on the same curvilinear

coordinate line, i.e., on the same side of the transformed region as in the

C-type configuration of Fig. 14.

A convex corner in the transformed region, such as occurs when rectangular

interior boundaries are used therein (points 5, 6, 7, and 8 in Fig. 11)

produces the following configuration:

Fig. 25.

Here again a local coordinate system indicated by the dotted lines can be

used in the same manner as discussed above.

Branch cuts

Points on re-entrant boundaries in the transformed region, i.e., on

branch cuts in the physical region, are not peculiar points in the above

sense. Such points, in fact, differ no more from the other field points

than do the points on the 0 and 27 lines in a cylindrical coordinate system.

Care must be taken, however, to identify the interior points coinciding with

the extensions from such points beyond the field. This correspondence

Mi.. was noted above in each of the configurations shown. There are essentially

three types of pairs of re-entrant boundaries as shown below in the discussion

of derivative correspondence. One exterior point and its corresponding

interior point are shown for each case. The converse of the correspondence

should be evident in each configuration. Note that while in the first and

last cases the coincident points are on the same coordinate line, in the

495
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second case the coincident points are on the same species of line, but

at mirror-image distances from the ends of the re-entrant segments.

For the configuration of Fig. 20, involving a change in the coordinate

species at the cuts, not only must the directions be taken into account as

the cut is crossed but also the coordinate species must be interpreted

differently from that established across the cut in order to remain on the

same sheet as the cut is crossed. For example, points on an n-line belonging

to section 1 but located outside the right side of this region are coincident

with points on a &-line of region 2 at a corresponding distance below the top

of this region.

Derivative correspondence across cuts

Care must be taken at branch cuts to express derivatives of the coordinates

correctly in relation to the particular side of the cut on which the site of

the computation is located. The existence of branch cuts indicates that the

transformed region is multi-sheeted, and computations must remain on the

same sheet as the cut is crossed. As noted above, points outside the

region across a cut are coincident with points inside the region across the

other member of the pair of boundary segments corresponding to the cut in
the transformed region. The positive directions of the curvilinear coordinates L
to be used at these points inside the region across the other member of the

pair in some cases are the same as the defined directions there, but in other

cases are the opposite directions.

For cuts located on opposing sides of the transformed region, the proper

-form is simply a continuation across the cut. Thus in the configuration of

Fig. 13, with a computation site on the right side of the transformed region,
%.e., on the upper side of the cut in the physical plane, we have points
to the right f the site (above the cut in the physical plane) coinciding

with points to the right of the left side of the transformed region

(below the cut in the physical plane) as noted above. When 4-derivatives and

T-derivatives for use to the right of the right side of the transformed

region are calculated to the right of the left side, the positive directions

of 4 and n are to the right and upward, respectively. This is illustrated

below. (In this and the following two figures, the dotted arrows indicate

the proper directions to be used at the interior points coincident with the

required exterior points, while solid arrows indicate the established

directions for the coordinate lines.

!! I
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Fig. 26.

With the two sides of the cut both located on the same coordinate line,

i.e., on the same side of the transformed region as in the configuration of

Fig. 14, however, the situation is not as simple as the above. In this case,

when the computation site is on the left branch of the cut in the transformed

region (on the lower branch in the physical region), the points below this

boundary in the transformed region coincide with points located above the right

branch of the cut (above the cut in the physical region), as has been noted

earlier. The n-derivatives for use at such points below the left branch are

thus calculated at these corresponding points above the right branch. The

positive direction of q for purposes of this calculation of derivatives above

the right branch for use below the left branch must be taken as downward, not

upward. There is a similar reversal in the interpretation of the positive

direction of E when derivatives are calculated above the right branch for use

below the left. These interpretations are illustrated below:

Finally,

Finally, in the configuration of Fig. 17, where the two sides of the cut

face each other across a void, there is really no problem of interpretation

since the directions in the configuration are treated simply as if the void

did not exist. This correspondence is as shown below:

I I

Fig. 28.

In all cases, the interpretation of the positive directions of the

curvilinear coordinates must be such as to preserve the direction in the

physical region as the cut is crossed. Thus in the case of Fig. 20, where the

coordinate species changes at the cut, the situation is more complicated.

Here, for example, a E-derivative for use in region I outside the right side

4--.



18

of that region must be evaluated as a negative n-derivative at a corresponding

point below the top of region 2:

I

Fig. 29.

TRANSFORMATION RELATIONS

Numerical solutions of partial differential equations on regions of

arbitrary shape can be constructed by transforming the equations to the

curvilinear coordinate system. All computation then can be done in the

transformed region, with the curvilinear coordinates as the independent

variables, which is inherently rectangular with a fixed square grid
regardless of the shape or motion of the physical boundary. In this section

the transformation relations from the cartesian system of the physical plane

to a general three-dimensional curvilinear coordinate system are given. In

a numerical solution the curvilinear derivatives in these expressions are

represented by difference expressions along coordinate lines, as diagramed

below:

Fig. 30.

All derivative operations may thus be expressed in terms of points on the

coordinate lines, using the transformation relations, without need of

interpolation. The transformed equations will contain more terms, but the

expression of boundary conditions is greatly simplified.

The general framework discussed in this section is set in standard tensor

notation. The development of many of the relations given is necessarily

omitted in the interest of space, and reference can be made to Eiseman I 0 and

WarsI l for more detail of tensor usage.
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The geometric meaning of some of the metric quantities is worth noting

here, however: the quantity g.j is proportional to the cosine of the

angle between a coordinate line along which the curvilinear coordinate i

varies (the other two coordinates being constant along such a line) and a

coordinate line along which tJ varies. Thus gij vanishes for i # j for an

orthogonal system. The quantity -.. (no summation) is proportional to

the arc length along this coordinate line along which i varies. Then the

arc length along a general curve (not necessarily a coordinate line) is given

by

(ds)
2 

_ Z - d& id
j

i j

The quantity / is the familiar Jacobian of the transformation which measures

the volume of a cell in 3D (area in 2D). Finally, the cell aspect ratio,

(no summation), measures the ratio of the lengths of the cell sides.

Throughout the discussions, " '-line" refers to a line on which the coordinate

&i is constant.

Base vectors, tangents, normals, area, and volume

To establish the terminology, consider the following general element

bounded by six curved sides, each of which lies on a surface on which one
iof the curvilinear coordinates is constant:

, [.,Here the unit tangent vector to the line formed by the intersection of surfaces

.' of constant curvilinear coordinate are indicated, as well as the unit normal

., vectors to such surfaces. The positive direction in each case is in the
direction of increasing coordinate values. Note that the tangent, T( ) is

" tangent to the line of intersection of the surface of constant t2 and that

of constant 43, etc. The normal n (&'} , is perpendicular to the surface of

I -.

: constant tI, etc.

i; Here the repeated index summation convention will not be used, rather all

summations will be explicitly indicated. The values taken by all indices are
~assumed to be 1, 2, 3, of course.

rM
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Base vectors, tangents , and normals. With r the position vector of a

general point (xi, x2 x the unit tangent and normal vectors are given by

2- 3r

Br ar

z
(i
= Br (1

~~n()= j k (2)

'.- x

where the indices (i, j, k) occur in cyclic order in Eq.(2). These unit

vectors have the directions of the covariant and contravariant base vectors

which are defined, respectively, as

ax
(a) = (3)

(a x ak)

= r ax ('
i

4)

where g is. the Jacobian of the transformation,

F - .- (a x a) (5)

and, with (t, m, n) cyclic also,

ax &C ax ax -
Xm n an xm11

L8 &(6)k),. J 3k 3 k

The elements of the metric tensor are defined in terms of the base vectors~~~as i =a" 7

• It is convenient to introduce also the elements of the inverse of the metric

* tensor:

t~
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ii 1 1 I,
= r 9ri = -(gmjgnk - gmkgnj) (8)

g rx rri g jk mn

The arc length along the i line is

ds =(9)

The unit tangent and normal may then be written as

Sa.). ax.
(T = . . (10)

(- = -2

- ' 1r , ii

g gg

so that the unit tangent and normal have the directions of the covariant and

contravariant base vectors, respectively.
is Area. The area of a side of the element lying on a surface of constant

is

dS = d Jda = gg dC (12)

Volume. The volume of the element is given by

ar ar ar i j k (3
dV- (- x -a-)d& d& d = /g d/dd& (13)

1 j k

Divergence, gradient, curl and Laplacian J~
With these relations, the Divergence Theorem, V AdV= " ndS, c,.n

be applied to the element as follows. Thus

A) gdt d& d . Z((A ni i[dS(4 fJA *n(&)dSi))

where the notation (& ) and (Ci) indicatesthe corresponding sides of the

elements that are located at the larger and smaller values of fi, respectively.

:i.4
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Substitution for n and d from Eq.(1l) and (12) then yields

(V * A) rj d dC dO

N JA -a' r 4d~de - JA -a' r 4d~dk)

( ) ()

where (i, j, k) are cyclic.

Divergence. In the limit, this reduces to the general geometrically

conservative expression for the divergence in the curvilinear coordinates:

V A Z (1g A a') 1 E (14)
- - rgia~ -g - 4 j a&'(. (4

The geometrically non-conservative form of the divergence is obtained

from Eq. (14) by expanding the derivative and noting that

(/g a) (15)i a i: (4a i)L = -- 0 (

Thus the non-conservative form of the divergence is

V A a i  A 1V A • -E. a (16)

-34 V- iI aj jiai

Gradient. With At f and A = An - 0, with (t, m, n) cyclic, we have

from Eq. (14) the conservative expression for the gradient:
. -

.(vf). ---- -r L a (17)
ri ax ia&' Li

and from Eq.(16) the corresponding non-conservative form

1 af (18)

,%,

/g 
i -.
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It may be noted from Eq. (18), with f = J, that

-
j  

= (aJ)a =S. - j (19)ax zi -3 1 Ij

which again identifies the contravariant base vectors as normals to the

coordinate surfaces.

Curl. The conservative and non-conservative forms for the curl then

are

1(V x A) =- Ei (4g ai x A) (20)

(V X A) =1 a A - 8 .A
-t i i mi n ni m

and

DA aA(xA),n _m$(VX×A) ! 1(B -~-- - -(21)

g i t at ni

Laplacian. The forms for the Laplacian then are obtained by substituting

A = Vf from Eq.(17) or (18) into Eq.(14) or (16), respectively. Thus the

*conservative form is

SV2f E E- E W :-.- Bj) (22)-

4g i ja' 4 gk a~ kj

With the derivatives expanded the non-conservative form is

SV
2
f- Z il 3

2
f + E (V2&i) af

ki j ati~ iE ati

I: with
vA i a .

---i E E -k a (- ki (23)
4-j k ka&i 4 k

Normal and tangential derivatives, integrals

Normal derivative. From Eq. (11) and (17), the geometrically conservative
iexpression for the normal derivative on a & surface is

(a) (&i n(& ) Vf

- - -

| ,
.":-'
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1 ~( k - (kf) (24)

d 9.gg

while from Eq. (18) the corresponding non-conservative expression is

( f) =- Egi 3f (25)

g

Tangential derivative. The tangential derivative on a & line in

geometrically conservative form is, using Eq.(I0) and (17),
(-f) t i ) t (i ) 1 "xk a_

Vf =z E (0kf) (26)

i 9.9
ar"-- P-i k 2. a~i a

g g

- and in non-conservative form,
(f) ( ) _ 1 3f (27)

g

Line integral. The line integral along an increment of a i line is

= r Tkj--t (28)

*: Surface integral. Returning to the Divergence Theorem, it follows from

Eq. (14) that in the limit the surface integral is expressed in conservative

form, with A replaced by a tensor, as

i k i j a&' jikj

S

and the non-conservative form is

?Tk
E (I T knjdS = Z Z8.ji  (30)
J i j i at

Volume integral. From Eq. (13), the volume integral is simply

* J Tdkjd  = Tkj Ag A 2A3 (31)

V

AV

Iu
r
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Two-dimensional relations

In two dimensions we have, with k the unit vector in the direction of7

invariance and E3~ the curvilinear coordinate in this direction,

metric elements. Then with E Qn t2 and x x1, y x2 for

convenience, we have

11 2 + 2y 2 , x 2+ y 2 g

91 2  9 2 1  x x + y 91 3 g 3 1  92 3  93 2  0

Then

4x~-x~a d 1 1  y,8 2 2 x , 3 3 =4, 1 2 -

a 2 - 1 _xn a13=a831 a 23 832=O0

so that

11 g22  22 911 33 12 21 91

13 31 23 32 - l g = =

The following two-dimensional forms then result:

Divergence. (conservative)

V.-A=-(y A - xA) + (-y A +XAY (32)
/- Il n 2 ~ 1 2)n

(non-conservative)

1 y(,)C x( (A ) + x(A (33

Gradient. (conservative)

4x (y f) -(y f) Y 3a

4 n19
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Sr. f) 
z

, - , ['Xnf) + (xf) (34b)

(non-conservative)

f- (y f y f ) (35a)

f ( + x f n (35b)

e.

Curl. (conservative)

k
V x A- (y + x + C x l (36)

nI

(non-conservative)

k 1 ,,
Vx A =-.. [y(A 2 ) + x(A - Yt(A2n ( n  37)

jplacian. (conservative)

g-v2f =[ y [Hy f) -(yf)n

- x [-Cx f) + (x f)

+ y- C y f) (y E f) n ]

+ x f[(-x f) + (x f) (38)rg n itn

(non-conservative)

V2
f = ![(X 2 + y 2

)f -2(x x + y Y)fn

+ x 2 + y &2)fnn + (V2 c)f + (V2)f (39)

r,- . .T'.

, t ..--- , , m 1
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Normal derivative. (conservative)

f = y Y nf)T (y f)n (40a)

x n[-(x f) + (x&f) n

f() -yt[(yf) -(yCf) n (40b)

+ x [-(x nf) + (x f)n]]

(non-conservative)

1 M [(X 2 + yn
2
)f (x xn + y yn)fn] (41a)

n 1

f [-(x x + y y )f (x 2 + y 
2
)f ] (41b)

n(n) VT 7 CYi n n C Ti

Tangential derivative. (conservative)

1

I[x [(ynf) -(yf)] - y(x f) n(xf) (42b)

-i _ /x +2  
+ 2 TI TI T T

(non-conservative)

f.- f (43a)

F• f (43b)

.. 
.. . ........ .. .
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Line integral.

Tkjdx = Tkj(x A + x An) (44a)
sn

f Tkjdy = Tkj (y + ynAn) (44b)

Surface integral.

E fJ TkjnjdS = [(y Tkl - xnTk2 ) - (YCTkl - x Tk2 )n ]An (45)

J S

Volume integral.

M Tkj dV =Tkj 49 AAn (46)

V

£ Time derivatives

With a moving coordinate system the time derivatives transform as follows:

ax.I f ,I aff axi
( 1 %.r) ,23 - E. (---)(1 , 471)..
XlX 2'X3  C x xj,xk,t

with (i, j, k) cyclic and 2- given by Eq. (17) or (18). Here it must be
a

noted that the partial time derivative on the left is at a fixed point in the

physical region, while that on the right is at a fixed point in the transformed

region. The movement of the coordinate system is accounted for by the time

derivatives of the cartesian coordinates that appear on the right. It is

thus possible to do all computation on a fixed grid in the transformed

region regardless of the movement of the boundaries and the grid points in

the physical region. A number of references to the use of time-dependent

coordinate systems is given in Thompson, et al.1

OXNCLUSICN

The material of this paper is applicable to general boundary-conforming

coordinate systems, regardless of how such systems are generated. The

4,
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configurations and transformation relations given thus can serve as the

basis for the use of any of the systems discussed in this volume. Different

configurations of the transformed region are naturally more appropriate to

different physical problems. The coordinate lines must be concentrated

in regions of large variations in the physical solution to be done on the

coordinate system, and the ultimate goal is to have this need sensed and

fulfilled automatically as a part of the solution, so that the coordinate

systems continuously adjust to adapt to the developing physical solution.

These topics are discussed specifically elsewhere in this volume. Further

discussions of the concepts of tensor and differential geometry as related

. to coordinate system generation have been given by Eiseman I0 and Warsill.

Using the transformation relations given, all derivatives or integrals

in a system of equations to be solved for some physical problem can be

expressed with the curvilinear coordinates as the independent variables.

A numerical solution can then be constructed in which all computation is

done on a fixed square grid in the transformed region regardless of the

, shape or motion of the physical boundaries. Although much of the impetus

for the development of boundary-conforming coordinate systems has come from

fluid mechanics, the techniques are applicable to field solutions in all

areas. A number of such applications are discussed in the papers of this

volume. An extensive survey of coordinate system generation techniques

and the use thereof in numerical solutions of partial differential

equations has recently been given by Thompson, et al. 1
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ERROR INDUCED B OORDINATE SYSTEMS*

C. WAYNE MASTIN
Department of Mathematics and Statistics, Mississippi State University, Drawer
MA, Mississippi State, Mississippi.

- INTRODUCTION

\<The choice of a curvilinear coordinate system can have a substantial effect

on the error in the numerical solution of a partial differential equation. The

truncation error is dependent not only on the higher order derivatives of the

solution and the local grid spacing, but also on the rate-of-change of the grid

spacing and on the departure of the grid from orthogonality.-The effect of a
I

nonuniform grid in one-dimension was analyzed by Kalnay de Rivas 1 That

analysis explained the reason for the poor results obtained by Crowder and -

Dalton2 when the grid spacing changed suddenly. The coordinate system influ-

ences the smoothness as well as the accuracy of the numerical solution. This

fact is evident by recalling the general principal that the smoothness of the

solution of a partial differential equation depends on the smoothness of the

coefficients.

The coefficients of the equation, in terms of curvilinear coordinates, depend

on the derivatives of the functions defining the coordinate system. Examples

where lack of smoothness can be traced to the coordinate system appear in U-t.0
3 4 5papers,by Shang , Dwyer, Kee, and Sanders and McCrory and Orszag

C This report will analyze the local truncation error in the approximation of

first and second order derivatives on a curvilinear grid. Standard second order

central differences have been used. An analogous development could be carried

out using one-sided or higher order difference approximations. While only two-

dimensional grids are considered most results can be extended in an obvious
manner to three dimensions. f -

DERIVATIVE APPROXIMATIONS
The traditional approach in deriving difference equations on a curvilinear

*coordinate system is by applying the chain rule. The derivatives of a function

f in terms of the computational En - variables are related to the derivatives

with respect to the physical xy - variables by the following equations.

Sponsored by NASA Langley Research Center under Grant No. NSG 1577.
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f xf x + y fy (1)

f = xE fx + yt fy + x 2fxx + 2xEy fxy + y fyy (2)

f n x~nfx + Yn fY + xxf + (xCyn + xnY)fxy + YEYnfyy (3)

Analogous equations hold for f and f giving a total of 5 equations from which
n nn

one can derive expressions for the derivatives of f with respect to x and y in

terms of derivatives of f, x, and y with respect to the computational variables

E and n. The derivatives of f with respect to the computational variables can

now be approximated using differences on a uniform rectangular grid. The der-

ivatives of x and y may be computed exactly or approximated, depending on

whether the coordinate system is defined analytically or numerically. Since

the error analysis is essentially the same in both cases, the subscripts and

n may denote either derivatives of differences except where specifically noted.

Suppose a square mesh of unit width is constructed on the computational

region. When first order derivatives of f are approximated by central differ-

ences, the principal part of the local truncation error for f is given by

jig f"

This derivative can be expanded in terms of physical derivatives. If all third

order derivatives are assumed to be small and all other terms retained, we

arrive at the following expression for the difference approximation of f

f xf + y f + Ix x f + 1(x y + y x )fy+ Il f (4)E x E E& x 2yE&& )&Exy 2-yE&& yy 4

In this equation, and the second order difference approximations to follow, the

subscript on the left denotes a difference rather than a derivative. Thus, it

* is easily shown that the use of (1) in deriving difference approximations re- -.

* sults in a truncation error which is O(h), where h is the local grid spacing,

provided the following condition is satisfied.

h 
2

3-= o(1)

where

x..°

O = x~y nY . ,
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Note that the validity of this result depends on the first and second order

derivatives of x and y being O(h) and the third order derivatives being O(h
2).

This restriction does not apply when differences of x and y are used.

A similar expansion for the second order difference approximations f and

f&n can be derived by considering equation (2) and the principal truncation

error. Again neglecting terms with third or higher derivatives, we arrive at

S + 2+ )f + (lx y + 2x y )fxy

1 ly2 2 )f (5)

1 n2 x 1 2 1 2
f n x nfx + Enfy + (xxn + vX)f + (x yn + n C + 2xn y + 2'Yrv  fxy

+ (Y Y + ;-Y V Y)fyy" (6)

These same relations hold whether derivatives or differences are used provided

the following approximation for the Laplacian is understood in (6).

v2x(En) = k{x(& + 1, n + 1) + x(E + 1, n - 1) + x(C - , n + I)

+ x(C - 1, n - 1) - 4x(C,n)] *,.

The approximations (5) and (6) presume that third and fourth order derivatives

of x and y are of order O(h2 ) and 0(h3), respectively. If differences are used

(5) holds without restrictions while certain third order differences must be

,' O(h2) in (6). These approximations imply that the use of (1), (2), and (3) inl
deriving second order derivative approximations results in a truncation error

4-of 0(0).A From the above analysis, it is observed that unless care is exercised in

selecting the coordinate system, the usual difference methods for first order

partial differential equations will be only first order accurate and those for

:4 second order equations will be inconsistent. However, the truncation error for
first and second order derivatives can be increased to O(h2 ) and O(h), respec-

tively, if the second order derivatives of x and y are assumed to be O(h 2).

This effectively limits the rate of change in coordinate line spacing and the

curvature of coordinate lines. Alternately, equations (4), (5), and (6) can be

used to derive difference approximations for the derivatives of f with the same
accuracy. It also follows that truncation errors of 0(h2) and O(h) are the best
that can be achieved for first and second order derivatives using only a nine

. I

-' % .*
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point difference molecule on an arbitrary grid.

The major factor in the selection of a curvilinear coordinate system is the

shape of the physical region. Based on our analysis, other properties would be
desireable. From equation (5) one would certainly desire the condition

xE 2 + yE 2 < 4(x 2 + y 2)

which has a simple geometric interpretation when differences are assumed. This

means that the angle formed by connecting the successive points

(x( - I, n), y(E - I, n))
(x(&,n), Y(&,n))

WE( + 1, 9), yAt + 1. 0))

is greater than 90 degrees. This condition could be checked by inspection of

the grid and would most likely be avoided by using a smooth coordinate system
and clustering grid points near re-entrant boundary points of the physical

region. A more restrictive upper bound on the second order derivatives may be
more difficult to enforce. For example, if we consider the simple exponential

mapping

x = e,

then

x x & V

The grid spacing with this one-dimensional mapping increases by a factor of e

at each step. Such rapid expansion of grid spacing should only be used in
regions where it is know that the second order partial derivatives of the solu-

tion will be relatively small.
We will now mention briefly some similar results which are valid for other

commonly used difference approximations. When solving second order equations,
terms of the following type are often encountered.

(ufx)x , (ufx, (ufy)x , (ufy)
x x x y y x y y

Each of these can be expressed in terms of computational derivatives by formulas

)£
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like

y y y y yy
(uf~) JI(C uf -S(i uf) -(&uf)

The second order differences needed to form the appropriate difference equation

can be expanded by a Taylor series to arrive at formulas similar to (5) and (6).

It also follows that the difference approximations of the four second order

derivatives may be inconsistent but will be O(h) whenever the second order

derivatives of x and y are O(h2).

Another type of differencing is frequently encountered when solving conser-

vation law equations of the type

f+ gy= s.

The divergence form of the equation is retained in the computational region

when it is written as
4i

(fY - gx n) + (gx - fy ) Js.

However, when the computational derivatives are replaced by differences with

respect to and n, a truncation error analysis reveals the following approxi-

mation.

+ gY U{(fyn " gx){ + (gx{ - fy{)n]fxn

J** Z* Z**: + ~(I - L-)fx + (I -M J g - -x" -y + Oh

where

SJ*. (xy ) - (xy )

J** a (yx )n - (YXn)

Z* - (xx&) n -(xx)

Z** a (yy ) - (YYE)n

This expansion is primarily of interest when the coordinate derivatives are

x1

. 2,.

Z~



36

computed numerically, for if the actual derivatives of x and y are inserted,

then J = J* = J** and Z* Z** = 0. It is clear that the difference between

J and J* (or J**) may be considerable since their evaluation requires different

sets of grid points. One only needs to compare values at a point on a =

constant coordinate line where there is a large jump in spacing of the C -

constant lines.

NONORTHOGONALITY

The degree to which nonorthogonality increases the local truncation error is

determined by the value of the Jacobian of the mapping. When the derivatives

of f with respect to & and n are approximated by the differences in (1) and the

corresponding equation for f., the principal truncation error for fx is given

by

TX - (yf -yf)' T~x  6J j-f{ - ~nnn .

* ,In order to isolate the effect nf nortorthogonality, it will be assumed that the

local coordinate system is simply a sheared rectangular coordinate system with

1uniform spacing of h in the &-direction and k in the n-direction. Let * and
e denote the angles of inclination of the n = constant and & constant coordi-

nate lines. Under these assumptions it is clear that

6[h 2 sin e(cos -+ sin f
6sin(e- a a

k2 sin (cos e 1-+ sin e 3f]
ax ay

Therefore, the factor which causes an increase in truncation error due to

nonorthogonoality is I/sin(e-*). This is exactly the factor by which the

Jacobian is decreased by the shearing of the coordinate lines. Another obser-

vation is worth noting. If 9, w * /2, then ITxl - a. This is to be expected

since one cannot accurately measure the rate of change of f in the x-direction

if there is practically no change in x along either coordinate line. The same

development carries over to second order derivatives. In that case, the non-

orthogonality introduces a factor of [sln(e'-) 2 into the truncation error.

In conclusion, a slight degree of nonorthogonality has a negligible effect on

truncation error. The rate of increase in truncation error does, however, In-

crease with the degree of nonorthogonality.

o-
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EXAMPLES

There is, at present, no completely satisfactory method for estimating the

truncation error in the finite difference solution of an arbitrary partial dif-

ferentia' equation. The estimates used here were calculated from the numerical

solution with the third and fourth order derivatives approximated by the stand-

ard five-point difference formulas. Consequently, these truncation error esti-

mates often exhibit large point-to-point variations due to the inherent insta-

bility in the numerical approximation of higher order derivatives. An alternate

method of analyzing truncation error would be to solve the problem on a course

-and a fine grid. However, this would require considerably more work unless one

were using a multi-grid algorithm. It should also be emphasized that the local

truncation error does not necessarily represent the actual error in the numeri-

cal solution. It will, at best, distinguish regions where the error is larger.

The first example is the numerical solution of Laplace's equation for poten-

tial flow about a circular cylinder. The results obtained using the three grids

in Figure 1 illustrate the effect of the grid on the accuracy and smoothness of

the numerical solution and on the values of the truncation error estimates. The

uniform grid (A) gave a smooth approximation of the solution with the maximum

absolute values of the error and truncation error estimates occurring at the

leading edge as indicated in Figures 2 and 3. Moving grid points into the

region near the leading edge, as in grid (B), results in a reduction in both

actual and truncation error. Further distortion, as with grid (C), improves

accuracy but at the cost of smoothness in the numerical solution. The trunca-

tion error was not plotted for this case since the spike in the graph that oc-

curred with grid (B) extended far beyond the bounds of Figure 3 in the case of

grid (C). Even though the estimates were of doubtful accuracy, the computed

_ truncation error did perform as anticipated in the above analysis. For this

example, the smoothness of the numerical solution must be balanced with accuracy

since partial derivatives have to be computed to arrive at values for the pres-

sure and velocity components.

The next example demonstrates the impact of the solution on truncation error

as well as grid effects. The stream function - vorticity equations for steady-

state viscous flow about a circular cylinder were solved on the two grids in-

dicated in Figure 4. At a Reynold's number of 20, the boundary layer is suf-

ficiently thin so as to produce a large radial variation in vorticity between

the forward stagnation point and the point of separation. The choice of a grid

can have a measurable influence on the numerical solution as depicted in Figure
6

5. When compared with the values in Dennis and Chang6 , grid (B) gives more

.47
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accurate vorticity values on the forward part of the cylinder. However, the

truncation error estimates for both grids were quitelarge as can be seen in
Figure 6. The larger values with grid (B) are a result of the grid points being

closer to the surface. When interpolated at common points, both grids gave

essentially the same truncation error estimate. It therefore appears that the

expected decrease in truncation error resulting from a finer grid is nullified

by a more rapid expansion of grid line spacing. Note that changes in grid spac-
ing would have a major influence on the truncation error since the second order

derivatives of the vorticity are very large near the surface. In fact, any

further contraction of grid lines near the surface resulted in a loss of accu-

racy and much larger truncation error estimates. When compared with previous

numerical and experimental results, grid (B) proved to possess a near optimal 3

distribution of circular coordinate lines for this problem. No results are
presented for values on the aft portion of the cylinder since neither grid could

adequately model the vortex at the rear of the cylinder.

No smoothing has been used in the computation of truncation error estimates

so that the extreme values of the estimates are illustrated. Nonphysical oscil-
lations in numerical solutions, like those encountered in problems with high

Reynold's numbers or shocks, would need to be eliminated by smoothing before

truncation error estimates are calculated.

B A .1_

GRID (A)
A GRID (8)
X GRID (C)

.10,

.06 -

.02

0. .
.

C

Fig. 1. Quadrants from three grids Fig. 2. Absolute value of error in
with different angular distribution of surface potential measured from leading
grid points, edge.

. ' - .. . ..
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-06
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Fig. 3. Absolute value of truncation Fig. 4. Two grids with different radial
error estimate at one grid point off distribution of grid points.
the cylinder.
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.. (A1.0
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'1. .1
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1. . .1 .2 .3 .4 .5

0. 0.1 0.2 0.3 0.4 0.5 . .5

Fig. 5. Comparison of surface vorticity Fig. 6. Norm of truncation error
on forward part of cylinder measured estimate for the stream function and
from leading edge. vorticity equations calculated one

grid point off the cylinder.

CONCLUSIONS

These examples illustrate the two fundamental sources of truncation error in

the numerical solution of partial differential equations on curvilinear coordi-

nate systems. The first is the grid spacing and changes in grid spacing which

is measured by the first and second order derivatives (or differences) of the

. 11
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functions defining the coordinate system. The second source is the higher order

derivatives of the solution itself. Large third and fourth order derivatives

of the solution must be offset by a fine mesh if accurate results are expected.

While the grid effects can be computed precisely, the values of the solution

derivatives must be approximated from the numerical solution. Conventional

wisdom might cause one to be skeptical of truncation error estimates based on

the numerical approximation of higher order derivatives, however, this proce-
dure was successfully used by Pierson and Kutler7 in a one-dimensional grid

generation algorithm. There is still a great need for further work on the ac-

- 2curate estimation of local truncation error and its use in multi-dimensional

grid generation algorithms.
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R1. INTRODUCTION

) This paper examines in detail the analytical aspects of three distinct

methods of coordinate generation based on partial differential equations,

in either two or three dimensions. The first method is based on the Gauss

;i- ,: ° equations of a surface under the constraint of the Beltrami's second order
equations. These equations have been structured in such a way that an

automatic connection is established between the succeeding generated surfaces.

The second method is a re-examination of those equations which are based

on the inhomogeneous Laplace equations. This analysis reveals a new form

for the terms which play a role in the concentration of coordinate lines

and in the adaptive coordinate system generation. The third method pertains

to a set of equations in the metric coefficients which is obtained by setting

the Riemann's curvature tensor to zero. j-.....

The problem of generating spatial coordinates by numerical methods is a

problem of much interest in practically all branches of engineering and

physics. At present a number of techniques are under active development for

the generation of two and three-dimensional coordinates in the regions

between two or a number of arbitrary shaped bodies. Among these efforts

two easily discernable groups can be formed, i) the methods based on

elliptic PDE's, and (ii) algebraic methods. In the first group, a set of

inhomoqeneoue Laplace equations is taken as the basic generating system.

These equations are then inverted and solved for the Cartesian coordinates.

*profeasor

___, --- __ -. __________________m -m V
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Some very useful results based on this line of approach started with the
1 2work of Winslow have been obtained by Thompson, et al. (TTM method),

3 4 5 6
Steger, et al.3 , Yu , Graves , and Thomas6 . For an extensive bibliography

refer to Thompson, et al. 7  In the second group of methods, the grid points

in space are generated by interpolating and blending functions starting

from the given boundary data. This line of approach has been followed by
8 9 10Eiseman , Smith, et al. , Erickson , and others.

In this paper we consider only the analytical aspects of the differential

equation's approach to coordinate generation. The main effort here is

- to present only those results which are of permanent interest to the workers

in the field of coordinate generation. The proposed equations in any one

of the groups have not been arbitrarily selected to generate some sort of a

coordinates. These equations are in fact those which every numerically

* or analytically generated coordinates must satisfy. The reader will

find that some large portions of sections 3 and 5 have new results and

are based on the work by Warsi 1 1 2
. In sections 3 and 5 a number of

*exact solutions have been obtained which can be used to provide a testing

ground for different numerical schemes.

12. NOTATION AND BASIC FORMULAS

In this paper any general curvilinear coordinate system will be denoted

by a superscript index notation, such as x . However, when an expression

has been expanded out in full and there is no need for an index notation then

we shall use the symbols

1 2 3x - , x = , x =C .

The rectangular Cartesian coordinates (x, y, z) which determine the position

vector r, i.e.,

r - r(x,y,z)

will be denoted by the subscripted variable xi, where x, - x, x2 -y

x -aZ.
3

Two similar indices, one appearing as a subscript and the other as a

superscript will always imply summation over the range of index values; e.g.,
A1 2 3

AiBi Aljn + 32j + 3j 2 3
In an Euclidean space (E or E3 ), the covariant base vectors a1 are given

by

V.6

,4 , . " "* ,,•V . . .* *-*
... , : • , , . ' -,,
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Dr
a. = , (1i)

,I ax

so that

a1  r, a2 =r a a3  r, , (lb)

where a variable subscript will denote a partial derivative. Using the

Riemannian metric, the formula for the length element ds is given by

2
(ds) . g. dx dx_

where, because of the Euclidean nature of the space the metric coefficients

are given by

ar Dr
= a.a . = -- -- (2a)

, .vtgij 
i .

ax x

The coefficients g.. - *.. are the covariant components of the metric tensor.

he contravariant components g are related with gij through the equation

Uming~i 61)w ein h ~ (2b)

where 61 (the Kronecker deltas) are the mixed components of the metric tensor.

using (2b) we define the contravariant base vectors as

, i ij
,, a - a (20

The quantities g and g defin I as

g = det(gij) , (3a)

•~~ " e gij
g - det(g) , (3b)

are related as

gg,. (4)

For a three-dimensional space

2 )2 2
g - g11g22g33 4 2g1 2g13g2 3 - (g2 3 ) 911 - (g1 3) g22 - (g12) g3 3. (5)

, 7
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Introducing the quantities,

G = g22g3 3 - (923)
2

G2 = g11g33 - (g13

G G3 = 91922 - (g12)
2

(6)

G 4  913923 - g1 2g33 '

G 5 = 1223 - gl3g22G6 = g1 2g1 3 - g23gll

we have, on solving Eqs. (2b),

11 22 33
g = GI/g , =G 2/g , g = G3/g , (7a)

12 13 23
g = G4/g , g = G5/g , g = G6/g (7b)

The space Christoffel symbols of the first and second kind respectively
are given by.:

a-i- + _____ ag i.
= ax ax axk aa

£ i gkMrij ij,k] (8b)

Using (Sb), we have

3a
a . (8c)

In the case of a two-dimensional surface embedded in a three-dimensional

space, we shall use the Greek indices a, 8, etc. (with the exception of v)

with the stipulation that they assume only two values. Thus the surface

Christoffel symbols of the first and second kind are respectively given by

Sag 6  a9 6tB,6J - 7-1 - + -x8 O-9
2 ax 0 ax a ax (9a)

-''-
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T = g [aQ ] , (9b)

where for the purpose of clarification we have used the symbol T (upsilon)

to denote the surface Christoffel symbols of the second kind in (9b) and

not by r as in (8b).

In the process of formulation of a 3D coordinate generation problem, it

is helpful to imagine the coordinates of a point in space as the intersection

of three distinct surfaces on each of which one coordinate is held fixed.
1 2 3

Using the convention of a right-handed coordinate system x , x , x or

,n, t, we introduce the notation M as a surface on which the coordinate

x - const., such that

23v = 1 implies that (x ,x3 ) are in the surface,

v = 2 implies that (x3 , x ) are in the surface,

1 2
v (3 implies that Nx ) are in the surface.

V -Thus, the unit normal vector on the surface ( is

n = (rr,)/ r xr (10)

where

v 1: , -3 (surface x const.)

2
v - 2 a - 3 , 1 (surface x n =const.) , (11)

v 3: - , 2 (surfacex 3  const.)

All other quantities and formulas which appear in the rest of the paper have
12 13

been defined where they first appear. Refer also to Warsi and Eisenhart

§3. GENERATING DIFFERENTIAL EQUATIONS BASED ON GAUSS EQUATIONS
11

In this section our aim in to develop a method for the generation of

3D coordinates wherein a serJes of surfaces are generated on each of which

two previously designated coordinates vary while the third coordinate remains

fixed. This method must also be structured in such a way that the variation

(
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of the third coordinate from one generated surface to the next is fully

reflected in the system of generating equations. With this aim, we start
13,14frm the equations of Gauss which for a surface x) - const., are given by

r T  r + b nv) (12)
..00 as -6 axB

where the variations of a, $ and the range of 6 with v follows the scheme in

(11). The quantities b a are the coefficients of the second fundamental

form of the surface. Since on the surface xV = const., the vector n (v) is

orthogonal to the surface vectors r, hence

s n -r(V) r (13)

To fix ideas, we envisage a surface which is formed of the coordinate lines

F , n and on which 4 - const. Dropping the index v, Eq. (12) yields the

three equations

r( T T 6 r + Sn ,(14a)t"

rn T 2r6  + Tn (14b)

8

r T22 r + Un (14c)
-nn 22-6 -

where the index 6 now varies from 1 to 2, and

S - bll T b1 2 r 22 • (15)

Here n is orthogonal to both r and r , and the coefficients of the first

fundamental form of the surface are gill 91 2 ' and g 2 2 ; each evaluated at

- const. Obviously

• 2 2 2 2 ~ 2 (16)1' .l " & +y +Z, g 12 =- x x n+y y,+z~szT, '922 ',xn+Ynl+z n  (6

If Eqs. (14) are considered as the first order partial differential

equations in r and r then we must also consider the Weingarten equations

| -n

n -b 8 g Oyr(17.)

I

*1t*

,-, ~~ ..- i,.-,-
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n -b) BgOY r (17b))

If now gill' g12 ' g2 2  bill1 b12 ' b 2 2 are arbitrarily prescribed then the set of

Eqs. (14) and (17), which represent fifteen scalar equations for the nine

scalars (r, , r , n), form an overdetermined system. Consequently one

has to impose the compatability requirements
V

( CrO) Y (r ay)

for all values of a, B, y from 1 to 2. This operation leads to the Mainardi-

Codazzi equations and the theorema egregium of Gauss which are higher order

equations and are not very suitable for the purpose of numerical solution.

We therefore return to the Gauss equations (14) and ask the question: Is

it possible to develop a method which centers around the Gauss equations and

is simple to implement numerically? The answer is in affirmative if we

manipulate Eqs. (14) as follows. I
Multiplying Eq. (14a) by g2 2 ' Eq. (14b) by -2g1 2 and Eq. (14c) by gll

and adding the three equations, we get

jr- -[(A2 &)r + (A2n)] G3

+(g22 $  212T l U+ -2 1 T+ 1 Un , (18)

where & is the second order differential operator,

,- g2 2  - 2g12  + , + 11.

and A2 is the second order differential operator of Beltrami. For any surface

x - const., (refer to the scheme in (11)),

+ (-- (g { a -gas gaB ))

VV

+a(---gua -g ~ (19,)

V

. In particular for the surface 4 - const. we drop the enclosed superscript and

write

IR
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A2  (9 2{ -L9 1 2 n
3 3

+ 3 (g a g }1 2 a (19b)/G G3  11 -g2

It is easy to show by using the definitions of T W that

1 1 1 1 4A2  = 3(2g 1 2 T 1 2 - g2 2T1 1 - g1 1T2 2) (20a)

1 2 2 2 I
2 3 (2g12T 12 - g 2 2T1 1 - g11 T2 2) . (20b)

The system of Eqs. (18) is still untamed and needs suitable constraints.

We must also somehow modify the terms S, T, U so as to bring the variation

of r with respect to C, as was noted in the opening paragraph of this section.

To achieve this objective we consider the Eqs. (8c) which for the surface

- conat. are

1 2 3= r +1 r + , (21a)Iill.n 11.11

S1 2 3
r 1 r + r r + , (21b)r g n 1 2 -t 1 2 .n r 1 2 -

1 2 3
nn r22 + r22r + r2 2 r (21c)

A where all the derivatives with respect to C are assumed to have been evaluated

at - const. Taking the dot product of Eqs. (21) with n and comparing with

Eqs. (13), we find that

b1  -s -xr 3

l1 8 11

b 2  T - xr32  (22)

b - U 
I Ar 2 ,

where

',\,

-- *%. S., .,.. i rl, n , m im m
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=n-r Xx + 'f +Zz(3

X= (y 2 Y,,z //v'-

Z = (x~ &n~ xn)/ 3'

Thus, by using the forms in (22) we have established a connection with the

coordinate C which changes from one surface to the next. We now rewrite

Eq. (18) as

4~ + [(AC)r +C (A OnrIG3  flR, (25)

where

3 3 3
R xt r 2g1 2 r1  + g22r11  (26a)

Note that

12 RG(k + k (26b)

13.1 Fundamental generating system of equations

We now impose the following differential constraints on the coordinates

& Cand n:

A2 & 0 (27a)

6n 0  (27b)

and take then as the fundamental generating equations for the coordinates in

a surface. It must be noted that 42 is not a 2D Laplace operator except

when the surface degenerates into a plane having no dependence on z.

it is a well known result in differential geometry that the isothermic

coordinates in a surface satisfy Eqs. (27) identically. The isothermic

coordinates & and ni are those orthogonal coordinates in a surface which yield

92 g 11 ' The situation here is parallel to the choice of the Laplace

equations V2C= 0, -~ 0 for the generation of plane curvilinear coordinates.

Tom
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(e.g., the TTM method 2 which are also satisfied identically by the

conformal coordinates in a plane. This does not mean that the Laplace

equations are suitable only for the generation of conformal coordinates.

In fact, as is evidenced by the available body of numerical results, the

Laplace equations are capable of generating very general coordinates in

arbitrary domains. Therefore, there looks to be no apparent reason why

Eqs. (27) should not form the basic generating system for general coordinates

in a surface. The analytical solutions given in this paper and the numerical
15results given in Warsi and Ziebarth support this contention.

Having chosen Eqs. (27) as the generating system, the equation for the

determination of the Cartesian coordinates, viz., Eq. (25), becomes

r -nR. (28)

* - -The three scalar equations in expanded form are

g 2 2 x - 2g 1 2 x g x - XR , (29a)

g2 2 y - 2g1 2Yn g1ly - YR , (29b)

S
2

1 2 E ZR (29c)

where X, Y, Z, and R have been defined in Eqs. (24) and (26). It must be

noted that by cyclic permutations, equations similar to Eqs. (29) can be

written for the surfaces n - const. and & - const. However, only one set,

e.g., Eqs. (29), is sufficient provided that we are able to take care of the

derivatives r appearing in R.

The set of Eqs. (29) form a consistent set of equations for the deter-

mination of x, y, z under the prescribed boundary conditions.* For an

analytical understanding of these equations we open the differentiations of
3 3 3the metric coefficients in the formulae for r r2and r Thus

3
r 11 + By& + yz , (30a)

r 3 c OM y +yz~ (30b)r12 + BY n + ET

*Refer to coment (i) at the end of the paper.
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+.

3r O + 8y +YZ (30c)

22 nn nn nn

where

a (Gsx + G x + G x )/g

5 $~ 6 nl 3 r~~

8 = (G5Y& + G6y71 + G3y¢)/g

y - (GsZE + G6 z 1 + G3 z )/g

Substituting Eqs. (30) in (26) and after arranging the terms we can rewrite

Eqs. (29) as a quasilinear system,

a~x

ij

and on a, 0 from 1 to 2. The coefficients A depend on the metric coefficients

gill g1 2' 92 2 and on those geometric quantities which depend only on the first

partial derivatives. For example

11 11 K) ,
- g2 2 (l-ax) , A1 2  gl2C1-cXX) , etc., etc.

Equations (31) are three equations in three unknowns with two independent

variables. Refer to Petrovsky16 for the classifications of such equations.

§3.2 Coordinate redistribution (concentration)

Before discussing the basic solution algorithm for the set of Eqs. (29)
it is important to study the effect of a coordinate transformation which. produces a nonuniform distribution of coordinates. Again using indexed I.

quantities, let x be another coordinate system defined as

., (x , x 2 ) , 1, 2,

with

det (a 0ax6

Using xL to mean either x, y, or z, we have

-4'4

. . ... ... . . . .... _______...___ ,I' : .,, ,.... . .... .. ...... ....... ...... . -p -,<- , -, -. .
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a ax = 1, 2, 3 (32a)

a2 x.. a 2xi as6 arty ax i  a2 7
S+ -(32b)

axa ax aRy a x8 4 a ax ax8 (3

Also,

.gd ,, e ai ax 8  (32c)

axc ax

Now, Eqs. (29) can be written in a compact form as

a2x9 xa8 x Xi (33)
a B~x G3~

where

• X, x X X Y , X3 "Z,

and

11 12 22
g 9 22/G , g = -g 1 2 /G 3 , g = gll/G3 . (34)

On coordinate transformation we have

G3  =R /I , - ' (35)

where

1 2 1 2S ax ax  ax ax-
1 2 1ai ag2  a2 as "

Thus Eq. (33) becomes
2
ixa pa y R i R9+g pY ax - Xi(36)

as~i Ct 39 lae E

where

Py -x x$ a 2 ty (37)
JA a ai 0 axlaxo

.I

- -'2'

.. .L, - .. ' ,

. . ., . ,: , ... r I . ,

. . , ... . . , P-.
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Using equations similar to (34) in the new coordinate system, Eq. (36) yields

the equations

£y - x , (38b) I
Lz - ZR , (38c)

where

= g 2  g~- 29 2~ + gl a -- + D -+ Q5 , (39)

- - 1 - 1 - 1 4a

P g 22Pll - 2g12 P12 + g1 1P2 2  (40a)

4. - - 2 - 2 - 2 4bQ g2 2P11  2g12 P1 2 + g1lP 22  (40b)-a-- -- --

and X, Y, Z, and R have exactly the same expressions as in (24) and (26a)

in the new coordinate system.

The structure of the terms pY is quite revealing particularly in those .

situations when it is desired to redistribute an already existing coordinate .,
system x so as to achieve a desired concentration or expansion of the

coordinates xa. Though still a forcing function behavior for P7 has to

be prescribed, the user is at least aware of its structure, that is, it must

be composed of the product of two first partial derivatives and a second

partial derivative. These considerations may be important in the adaptive

coordinate systems. In other cases PY may be prescribed arbitrarily. One
PC

such case has been treated numerically in Ref. 15. (Refer also to 13.)

93.3 Morphology of A Solution Algorithm

The discussion that follows pertains to the case when it is desired to

generate the 3D curvilinear coordinates between two artibrary shaped smooth

surfaces. As is shown in Fig. 1, let the surface coordinates of the inner

body n -B and of the outer body n - n. be the same coordinates. Because

of the right-handedness of the coordinate triple ( , , ), the ordered pair

(t,4) is taken as a positive ordered pair on both the surfaces. Since both

the surfaces n - and n -n. are known either analytically or numerically,

so that

,,.-.-t NL';'
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n B - _( );n n. r -r.(tC) (41)

and hence the needed partial derivatives with respect to and Care directly

available at the surfaces.

-:j.

Figure 1. Selection of coordinates on the inner and outer boundaries.

For the computation of r in the field one must first note that the
coordinate C may not, in general, satisfy the Beltrami's equation A (2) C .
Consequently, r must satisfy the equation

(2 ()(2) (2) (2)
(2) ~ (2)r G (k + k )n£ + 2 2 2~ C 2 1 2 -

From this equation we devise a weighted integral formula

r, . ~ n( + f (n)(rCC).]dc. (42a)

where

G 2 (2 ) (~2 ) (2) +2g13 r 933

*and 91 G2 D G2

f (42c)-

Reern o 1 na ) -1 fl (.)n 'f V 0 'f 2 (n) - 1. 2c

Referin toFig. 2(a), we now solve Eqs. (29) or (38) for each C =const.,
by prescribing the values of X, y and z on the lover curve C 1and the upper
curve C 2which represent the curves on B and I respectively. In Fig. 2(b) C 3and C 4 are the cut lines on which periodic boundary condition, are to be imposed.
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C

' g I

IS) (bi

Figure 2.(a) Topology of the given surfaces. (b) Surface to be generated.

13.4 Exact solutions

The following two examples demonstrate that the proposed set of generating

equations (27) or equivalently the set of equations (9) or (38) are consistent

and provide nontrivial solutions.

Example 1: Isothermic coordinates on a unit sphere.

Let the surface coordinates of a unit sphere be denoted as C, C, where

the order 1 ,1 forms a right-handed system. Since our objective is to

provide isothermic coordinates which are orthogonal, we assume

x - 4(4) , y f(4)cos 4 , a - f(4)sin 4 , (43a)

so that

2 2f + 02 1. (43b)

Calculating the metric coefficients and the surface Chrietoffel symbols

based on the assumed form (43a). we find that the equations A2k " 0 and
(2)
A2- 0 are satisfied provided that

f 2 -42 + f,2. (43c)

/i

'-_,,,,,,. *.;5 -. <2 , " "'U o. -
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Eliminating i between (43b,c), we get

f12 . (1-f 2)f 2,

which on integration yields

2e l.e
2 C

f ( 2- ) - ( 4 3 d ) -

le l+e

It can be verified that when the solution (43d) is used in (43a) then the

resulting metric coefficients g1 1 and g33 are equal. Thus the coordinates

, are isothermic. The relations between the standard spherical polar

coordinates e, and the coordinates &,C are

e
-6 , n= intan 2

Refer also to §5.1.1.

Example 2: 3D coordinates between a prolate ellipsoid and a sphere.

We now consider the case of coordinate generation between an inner body

n n which is a prolate ellipsoid and an outer body n = n. which is a
B

sphere. The coordinates which vary on these two surfaces are 6 and . A

curve C1 on the inner surface designated as C =C 0 is

x -Tcosh n cos 0 y -sinh N sin 0 cos 6, z -isinh sin C0 sin 6.

(44a)

Similarly the curve C2 corresponding to 4 0 on the outer surface is

x = e cos 0 y " e sin 0 cos ,z - e sin 0 sin • (44b)

In order to provide the solution of the present problem with coordinate

contraction, we consider Eqs. (38) and assume

- 6(C) , - r(n) + (45)

where - 0 corresponds to C - 0 and n n T B corresponds to n - Ti3 . Thus

(0) = 0, n(%) - 0. Under the transformation (45), the only nonzero

components of PY are P1 and P2  Writing
Va 11 22"

we have 1 1 ld), 2 1 d$ (46)

All " Z 22 e d
id

'- '( -' i0-

' "' , ' , ., " L : ii iiii III
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Based on the forms of the boundary conditions (44a) and (44b) we assume

the following forms for x, y, z for 0:.

x = f(n)cos 0 , y = yln)sin 0 cos z (n)sin 0 sin (47)

The boundary conditions for f and 0 are*
n.:

f(%) =Tcosh n , f(l.) = e , ) =Tsinh B *(1;) = e (48)

Using the expressions in (47) we calculate the various partial derivatives,

metric coefficients, and all other data as needed for the Eqs. (38). Onsi2 0 2 '
substitution we get an equation containing sin C and cos 0* Equating to

zero the coefficients of sin 2  0 and cos2 C we obtain

; .,,f -- 8 '

- + $ , (49)f' e .

. 0' (50)

where a prime denotes differentiation with respect to n. On direct integra-V tions of Eqs. (49) and (50) under the boundary conditions (48), we get

4 f(n) Ae +

= De

where

no. ni.
A =-[(e -:cosh n )sinh %1/1e -Tsinh

B - (n- LnTsinh nl/(n - .-

C =i[e n(cosh nB - sinh nB)1/(e -Tsinh ni 

D =Tsinh rB

As an application, we take

=at , n(-n) - b( T )x

*T and are the parameters of the ellipsoid.

.44

II
• . .1

...'. . .. . _ . __i, . _ _
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where a, b and K are constants. Thus

By taking a value of K slightly greater than one (K= 1.05) we can have

sufficient contraction in the ;-coordinate near the inner surface. For the

chosen problem since the dependence on C is simple, we find that the generated

coordinates between a prolate ellipsoid and a sphere are

x - (Ae B n ( ) 
+ Cicos , y - De Bn()sin 4 cos , z = De Bn()sin ; sin

This example shows that the chosen generating system of equations (38)

are capable of providing non-isothermic coordinates between a prolate

ellipsoid and a sphere.

54. GENERATING DIFFERENTIAL EQUATIONS BASED ON LAPLACE EQUATIONS

For the purpose of coordinate generation in either two or three dimensions

it has become quite popular, particularly after the publication of the TTM

method2 , to adopt a system of inhomogeneous Laplace' equations as the

generating system. The inhomogeneous terms are completely arbitrary and

seemingly there is no guidance from the analytical side as to how they

should be chosen. Because of this and due to other basic reasons it is

important to reconsider the formulation of the problem of coordinate

generation based on Laplace' system of equations from an analytical point

of view. The conclusions drawn from these considerations are that the set

of Laplace equations

2 1V x . 0 , i - 1, 2, 3 (51)

are essentially the basis of the TTM method rather than the set of inhomo-

geneous equations

2± i- -1 2 -3
V2 i 

= PiC x , x3) , i = 1, 2, 3 , (52)

where Pi are the specified functions. The reason for this conclusion
i -1is that a coordinate transformation from x to any other system i , both

satisfying the same boundary conditions, automatically gives rise to the set

of equations (52) from (51). Thus as soon as the solution of the system of

equations (51) under the constraints of a body conforming boundary conditions

has been obtained a transformation

A4

--. ,.'
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X R (x 1  x 2 , x 3 )

can redistribute these coordinates in any desired manner.

To formulate the above noted ideas analytically, we consider the formula

for the Laplacian of a scalar * in the curvilinear coordinate system,
12'1 3

which is

V - giJ( 3 2 0 - rr. r (53)
ax ax j axr

If 0 xm is any curvilinear coordinate, then from (53) we obtain

Vx = 9j m " (54)

x a , where xm is any of the rectangular Cartesian coordinate, x, x,

Sy, X3 - z, then since V 2x = 0, we obtain using (53),
,j x2 2 x, x3 r)a m , he since)

Sxaxgij U + ( 2xr) = 0(55)
3. iax j  xr

Taking (51) as the basic generating system, we get from (55),

a-i - = 0. (56)axiDx j

Using the formulae stated in §2, we getDx = 0, or

Dx = 0 , (57)

Dy - , (58)

• '., ., Dz - 0 ( 59)i

where the operator Dis given by

D-Ga +Ga + +2G4 n + 2Ga + 2G a n . (60)

L . - iIl , t2. 1,GX

IL• .
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In two dimensions* g 3 3  1 1, 0= 0, so that Dbecomes

D- 9228C - 2g1 2 a + g 11a~ (61)

Let Ri be another coordinate system which satisfies the same body con-

forming boundary conditions as the system x , and let

-i 1 2 2, 33

x = x , i ,1, 2, 3 

with

det( -) P 0
axi

Then an analysis similar to §3.2 shows that

ax ax -i
m mx

a2X ax 2 k 9 ax 2t j .
m m axc 3R a X!k2x1, @2in g L.

xiaxj akR ax
i axj  al axiax2

Using the last expression and the transformation law

ij rn axi axgj , g r n

9 9 aR a!R

in Eq. (56) we get

a X ax
gl + -r 0 (62) f

aikaRl +a!P

where

k ax xxi j a 2R£
3x ax x (63)

rn ax a~n axix 6

and is symmetric in the lower two indices. If now in Eq. (55) we replace
i -i gi ~iX by x by §l and introduce

*Refer to comment (ii) at the end of the paper.
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2 r .JMn-r

r

then it amounts to the same thing as taking the non-homogeneous Laplace

equations (52) as the generating system. Thus we reach the conclusion that

essentially Eqs. (51) are the basic generating equations and that any redis-

tribution of the solution of Eqs. (51) gives rise to Eqs. (62).

Transferring the second term of Eq. (62) to the right hand side and using

the formulae developed in §2 w'-ich are applicable to all coordinate systems,

we obtain

Dx - -(GP 1 1 + G2 P2 2 + G3 P3 3 + 2G4 P 2 + 2G P +2G 6 P 2 3 ) (64)

where x = x, y, or z, and D is the same operator as (60) in the new coordinate
m 7,17

system. In two dimensions, Eq. (64) gives rise to the familiar forms

11 - 1 2 - 2 - 2

5x = -(g22Pll - 2g 1 2 P1 2 +glP 22 )x - (g22 P1l - 2g1 2P12 + gllP2 2 )x '

(65a) .

1 - 1 - 1 2 - 2 2
Dy - -(g 2 2 P 1 1  

2 g 1 2 P 12 g11P22 )YC - (g2 2 P1l - 2g12P1 2 + g11P22 )y •-

(65b)

It must be noted that the preceding analysis guides one to a proper

selection of the quantities Pt  for concentrating the coordinate lines in• rn

the desired regions. This selection, though still arbitrary, at least
.1 suggests that the chosen P should be something like a product of two first;: "rn

and one second partial derivatives. This idea is important in the adaptive

coordinate systems. Furthermore, the preceding analysis also exposes for the
I

first time the existence of the cross derivative quantities P (r # n),' rn "

which do not appear if one starts from the Eqs. (52) and which may be important

in non-orthogonal coordinates. For example, in two dimensions the quantities

P are

P , . Ir, + 21-2-, + )2 nn

P 1 , ( t Z ) + 2 Z n n n + ( n Z n n)

Refer to comment (iii) at the end of the paper.

"IS

., . ?
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P 1 2C + 2C-n-Z, + (ii-) 2-
22 2nnn nn

2 2- 2-
P22 n + 2C;-n fl+ n; n22 nn n n

1 - - -

P CZ-tC + (t-n- + rn-&-)~ + rn-C
12 n ~ n n Cn + nnn

= 1 ~nC n, nn+ nzCn ni +r nZ Yfl

If & ~ and ni n(n), then writing

dn
dZ d;

we get

P11 1 dA P1 2 0, P2 1 0

P2 1 dO P1 0 P2 0
22 0d 2 1

which are exactly the same as have been used in an earlier paper. 17In this

cuse, writing for brevity

1 22

Eqs. (65) simply become

fDx - '22 4 t 11Qxj;) (66a)

Dy - (g22 Py& +. g11 Qy;) .(66b)

These equations do not contain the cross derivative terms P1 P2beas
12F P12 beas

& and ni have been chosen to be functions of & and n respectively.

A

I d -. d. - ... ...



63

54.1 Case of orthogonal coordinates

in general, for the generation of orthogonal coordinates it is not
necessary that the coordinate functions should also satisfy the Laplace

equations in the xyz-space. In this section after summarizing the basic

generating equations for the orthogonal coordinates we have studied the

effect of constraining the coordinate functions to be simultaneously harmonic.

The orthogonality conditions are

gij - 0 for i j. (67)

Also, for orthogonal coordinates Eqs. (54) simply become

Shh

2 1 a hh23
h h

S--x,0, - 1 , (13 , (68)

g 2

aC hh
j 3

where

v-a + +3a h / g_ hh 422  h /g2  h lh hxx yy 3z 1 1 9.

Proceeding directly from Eq. (55) and using eqs. (67) and (68) we obtain

w m 0 , m - 1, 2, 3 (69)

h h (hh ahlh2 a 3 a +-a 13 a + 1( 2 a
3E hia 2 h3  ac

Note that the operator and the Laplacian operator 72 are related as

h h h Vh 2 42

for a scalar *.

..
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Equations (69) are those fundamental equations which every orthogonal

coordinate system must satisfy. A program of calculation using Eqs. (67) and

(69) along with the definitions of g11 , g22 and g3 3 can be developed.

4.1.1 Case of orthogonal coordinates using the Laplace equations

Case I: 3D coordinates.

If the generating system of equations is taken as

2 2 2
= 0 ,Vn 0 ,V = 0, (70)

then from Eqs. (68) we find that

hI = f2 (QOf 3(Q,n) , h2 - f1 (n,)f 3 (C,n) , 3 = f1 (n,4)f 2 (C,C) , (71)

where fl, f2' f3 are arbitrary functions of their arguments. Also the

generating system (69) for the Cartesian coordinates becomes

a 2 x a2x a2x 

g22g33 ae + gllg3 3  a2 2 g ---- = 0 , 1 3

. which because of (71) can also be written as

S2m 2 m 21 2,n m

f( n ) - + f &'0 + f3  n)- = 0 m = 1, 2, 3 (73)1: a&2 2  gn 2  3 ac 2  ..

Case II: 2D coordinates.

For the case of 2D orthogonal coordinates the equations

2 2
V = 0 , 0, (74)

with the use of Eqs. (68) yield

g22  1 ag 1 ,

where a is a constant. The case a - 1 gives the corresponding isothermic

coordinates which are conformal. However, by a straight forward coordinate

transformation of the isothermic coordinates &,n to another coordinates

,rn we can have a coordinate distribution in which g2 2  gl For, let

'-o"

lava-..

* .--- ' = *( , ) , n 
=

n n ,



65

be an arbitrary orthogonal transformation. Using the chain rule of differ-

entiation, we get

2i-2x -2 + -2&-

CZxx + -nxx + Z(x) nnl x ~ nx x

etc., etc.,

which when used in Eqs. (74) along with the orthogonality condition

x n XX + yny 0

and the formulae

2- 1 a

n -a g4 /g (75b)
11 22'

' - - )2 - 2 1x2 - 2 1 .,.

)+ (& y (n) + ;y g gglg2 2

yield the equations

2e9+/- ) 0, (76a)S22 11 ii 11 22

2- a -
/g 0. (76b)

* A study of Eqs. (76) suggests that if F is only a function of F, and

n is only a function of r, e.g.,

1 ) - v ld ,(nZ )) d Z , n "A

then Eqq. (76a,b) are identically satisfied by taking

%F*/2 4z v .G (76c)

Thus

- 4)

t,-,, m " . , •' '.*, ,, .' ' ,
/ 4 " '
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gtl - ()V2 (n)22, (76d)

and so the coordinates ,n are orthogonal but not conformal.
An important result from the preceding analysis is that if the orthogonal

coordinates are generated through the solution of the Laplace equations (74)

then there exists an infinity of transformations M = -(a). n r(n) in
which the ratio g 1 1 /g 2 is a product of a function of E and a function of .

This result is not in general true for coordinates not satisfying the Laplace

equations.

5. GENERATING DIFFERENTIAL EQUATIONS BASED ON THE RIEMANN TENSOR
In any given space there are endless possibilities for the introduction

of coordinate curves. Each chosen set of curves determines its own metric .,

components. For example, in a Cartesian plane besides introducing rectangular

Cartesian coordinates x, y, we also have endless possibilities for introducing

either orthogonal or nonorthogonal coordinate curves. However, as is well
known, there is a basic differential constraint on the variations of gj ls

irrespective of the coordinate system. Since the curvature of an Euclidean
two-dimensional plane is identically zero, the basic differential constraint

on the gij's is

( - a 2 3 r32 0 (77)
(G3) R1212 a an g ) 

-1g, 2

where C,n are any arbitrary coordinate curves in the plane. Thus no matter
which coordinate system is introduced in a plane, the corresponding matrics

isigii must satisfy Eq. (77). Equation (77) has also been used as the basic .

generating equation for the generation of orthogonal coordinates in a plane
In general, the Riemann curvature tensor R defined as, 1213

rjnp
2 2 2 32g

rnp82g 32gn 32grn g

R IgrP+ -gi 71krjnp 2 axjxn ,xr;,,p ,,S3xx T5ra~n

Sts ([Jn,s] [rp,t) - [jp,s][rn,t)) (78)

defines the components of the curvature tensor of any general space. If the
space is N-dimensional, then the number of components Rjnp are given by

N2 (N 21)
*1-

pj
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Thus for N - 2 there is one distinct surviving component stated in Eq. (77).

However, for N = 3, it has six distinct components I
R121 2 ' R1 31 3' R2 323 , R12 1 3' R1 2 32 , R13 23

If the 3D-space is Euclidean, then its cuzature is zero, so that the six

equations

R1212 -0 1313 0 R2323 0

(79)
R12 1 3  0, 0232 o, R323 0

determine the differential constraints for the six metric coefficients g in

any coordinate system introduced in an Euclidean space. These equations in

, - the expanded form are as follows:
2 2 2
9ll a 9 1 2 _ g22 to

2 -y- 2 - + 2g ([22,sJtll,t" - (12,s1112,tI) - 0

2 2 2 (80a)

2gl l  23 13 32933 t
1 3 - - 2 - + 21 s([33,s)l(l,tJ - [13,sJ(13,t]) - 02 7& -a 2 t

(Sob)

22 223 _2933

.... . . 2 g23 + + 2gts([33,s[22,tJ - [23#s][23,t]) 0
R2323 a'2 an 32 (80 )

2 2 2 2J911 92l 212 g213 2923 t
" anl - 12 - + - + 2gts( 2 3 s 1 [llt - 112,s][13,t]) - 0,

R1213 =3n3 ~a a3 a 2 g

(8od)

2 a2 2 2M';. 2922 9212 2923 9213 t
it I R. .2 4 + - + 2t([22 ,s[3,t - [23,s][12,t]) - 0,

(80e)

a 33+ + 2gt(33, 9]12,t] - [23,s]113,tJ) - ,
13 23 a n 3C C

(0Of)

where (ij,kI are the Christoffel symbols of the first kind defined in (Ba).

Equations (80) are those consistent set of partial differential equations

which must always be satisfied by the metric coefficients 1m In the 3D case

Eqs. (80) are six equations in six unknowns and, therefore, they form a closed

system of equations. In contrast, for the 2D case there is only one equation - .

(Eq. (77)) and three unknowns gll' g12' 922 and therefore sm constraints

*-* - -.%...

, ,. ..- .... .... ........... ., _-- - .- , A •
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are needed to turn Eq. (77) (such as orthogonality18 ) into a solvable

equation. This author is not aware of any numerical solution of the complete

set of equations (80), though there are some possibilities of developing

solution algorithms using Eqs. (80) as the core equations. For example,

in the problem of obtaining the 3D coordinates for the configuration of

Fig. 1, one can judiciously choose gll' g1 3 , and g33 based on the given bound-

ary data for the whole field and then solve Eqs. (80) for the remaining

ccfficients g2 2 ' g2 3 ' and g12" It should also be noted that in any physical

problem, e.g., the Navier-Stokes problem, one only needs the metric coeffi-

cients and their derivatives (Christoffel symbols), which become available

after solving Eqs. (80). Nevertheless, for graphical and other purposes,

one also needs the functions x(&,n,0) etc.

To obtain the Cartesian coordinates on the basis of the available gis,

K we introduce the unit base vectors X. as

a /vi~ _ , no smon i. (81)

Let the components of Xi along the rectangular Cartesian axes be denoted as-. 7
ui, vw, so that

i 

W,
where

&I

u3 - x~/l 3  , 2vI  , w I = jj ,

nowing ui, vi, wl, it is possible to evaluate the Cartesian coordinates

through the lne integrals

/09 It y Pr* ~~~ ~ ~ 9 w z ~ +X~g 2 dg+~/3 ~ (83)

KoThe determination of ui , v, wi isa ieparate proble m which we now

consider. First of all usinrC (81) in Eq. (8c), we get a system of first

order partial differential equations

A .

P. -4
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gL 2
___ 11' 1 '2"- - ( -- ) r.. + A2( -- ) r.ax] Igi . gii z

g 3 3 
% 
, ~ 3g..

3 i ii()+ X_ (---) ri (84)"
Sg ij 2gii ax

where, as before, there is no sum on the repeated index i. Equations (84)

form a system of 27 first order PDE's in nine independent variables ui ,

- Vi, wi. This system of equations is overdetermined and thus its solvability

should depend on certain compatibility conditions. According to a theorem
19

on the overdetermined system of equations , if the compatibility conditions

hold then the solution of Eqs. (84) exists and is unique. The conditions

2 2
___ _. = .-. (85)

for all values of i, m, and j are the compatibility conditions. To prove (85)

4 we use Eq. (8c), which on cross differentiation yields

2 2A

twhere R " t2

.i~ case R .." 0with the Riemann's tensor Rij. Evidently in our present case R 0,

since the space is Euclidean. Inserting (81) in (86) we find that Eq. (85)

are identically satisfied.

It is interesting to note that for a two-dimensional curvilinear coordinate

system there is no need to solve the system of equations such as (84). In

this case the single differential equation with G3 g r 
:3 9

=:i 2  .- r2

11 n1 1  1

Consequently

~. -- --u - Cox a, v, -sin a, u 2 -cos(-@) ,v 2 - -in(-),

,%.
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where a is the angle made by the tanget to the coordinate line n - const. in

a clockwise sense with the x-axis, and

cos e g 1 2 /'g 11 1g 2 2

is known.

§5.1 Case of orthogonal coordinates

We again return to the case of 3D orthogonal coordinates. Refer also to

§4.1. Under the constraint of orthogonality.

g 2 " gl3" = - 0 , [12,3] - (13,2] - [23,1] - 0

(87)
r" 3 r2 r1 -
1 r'2 =r1 3  23 - 0,g- g11g2 293 3

the set of equations (80) reduce somewhat. They are

(1.. 2 + a 1 a 1 1 g 1 1 3922an+ + n 23 l~2 ¢ 8;, 0 , (88a)

an '-- an 2g '
2

3 ,--- ac--~ a;Ba

vrll22'9122 11 22

a 1 ag33 _ I ag 11 1 agll ag33 0 (88b)
3( 393 + a-)-+-0- (88-)

ac 3 g 2 !~ 3  an an

1 33 _______ + 1 22 + 1 922 3933

an~ an
rg23 22 33

= a g22 233 a(o

a 922 1 a22 1 Iq22 1 3q933 1 ll a22 (88)

3" 92 - -3C- 33 a 2qa at

a 2933 1 ag33. 3 1 ag 1 ag33. 1 ag22 833

'- " l n 
+ 933 on 29 2 2 aC an8

which are the Lame's equations.

AL;;. ./ ,. ... , : ./," ...BM-
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15.1.1 The case of isotheuic coordinates.

Isothermic coordinates* in a surface embedded in a 3D Euclidean space

are those coordinates in which the metric coefficients gll and 933 in the sur-

face n = const. are equal. That is, the element of length ds on n - const. is
- given by

(ds) 2 Rd 2 + )2
n-const. = gll [(d1 2 + 1dl2

where 4,C are chosen to be the surface coordinates. Setting

933 = ll' and g22 ' F(n)

in Eqs. (88), we obtain the basic equations for g11, which are

a- 1 g 1 1 ll 1 12 =0 (89a)
'1 + 0 +

9 11

11 _0l (89b)

a j 0(9)

:; ~11 gl

It gi In (89d)ll

It can easily be verified that the only solution of Eqs. (89c,d) is

91, " {a+P(1j) ( ') a - const. (90)

Thus from (89b)
a?2

F(n) d-) (91)4q

Substituting (90) and (91) in Eq. (89a), the differential equation for

'Refer to the comment (iv) at the end of the paper.

* ',. ' ":,. '
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f( , ) becomes

a af aiaf
-C-- f -T-- + 2f =0 .(92)

In Kreyszig1 4 we have the result that if in a portion of a surface

isothermic coordirtes can be introduced then that portion of the surface can

conformally be mapped onto a plane. Thus in effect the solution of Eq. (92)

-provides that mapping function which conformally maps a surface onto a plane.

As a verification of the above conclusion, we verify that the function

42

f = 4e (93)

(l+e

is a solution of Eq. (92). This function is related with the isothermic

coordinates on a sphere. Using the parametric equationsof a sphere

x [a+P(n)] cos 0, y = [a+P(n)]sin 6 sin 0, z = [a+P(n)]sin 6 cos 0

and writing

-=* , = in tan

where 0 < < 2n and 0 < e < v, we obtain

4(a+P) 2e2
g3 3 m g1 1  (l+e2 C) 2

Thus the equations
2r..

X (a+P)(-
; +e 2C

y 2 (a+P)e sin+e 2; '(94)

2(a+P)eccos

1+e 2C

represent a sphere of radius a+P(n) in terms of the isothermic coordinates

&,C in the surface. Since P(n) is an arbitrary function of n, we have the

capability of prescribing a suitable function P(Yj) to achieve any sort o'
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contraction or expansion in the field. it looks that the representation (94)1

should prove useful in the computational problems associated with a sphere.

Cmment Mi:

As a further justification for the consistency of the set of Eqs. (29) it

has been-shown below that these equations can be combined to obtain the equation

for a surface z =z(x,y) in the well known form

Oxx -2zxy +Yyy 2HM

where

2H k 1+k = 2 2/ ~ + x

(l~q2 /.i 8 =pqJ/i M y _ (l+p2 )/4i

G= 911 92 2 - (g 12) ,X = -p/IVM , Y =-q/M , Z = l/vii

Ai (x,x) -X) A (l2 -XYG A (~) 1Y)

where -, i(y), yy =(lYG ,

A1 a,b) 92 2 a Cb g 1 2 (a b )+aQ + g 1 1 ab

Calculating z~,z~ z from z,, Z., substituting these expressions in
W f nn

Eq. (29c) while using the equations in (ii) and Eqs. (29a,b) we recover

T Eq. Mi given above.
6 11

We now compare the equations obtained by Thomas with those of Warsi

Thomas' equations in the present notation are

kx+2G3H/rM - 0, ky + Oq lM-0, where G 3= (y -xy)2 14 Mii

which are exactly the same as Eqs. (29a,b) of this paper. It must, however,
6

be pointed out that the derivation of Eqs. (iii) involves four 3tepa:

(a) orthogonality of 4 with (. *n, (b) vanishing of the curvature of the

c-lines, Wc elimination of an arbitrary parameter (which my be zero),

Md prescription of z~x,y) for the surface to be generated.

6 
t7
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Comment UL) -

In two dimensions another differential system is provided by a first order
20

Beltrami equation , which in the complex form is

-H(gzi)fz a 0 M i

* where

f = f(z,s)

a = x + iy , 2 = x- iy , i - .

Writing

f(z,z) . Y(xy) + in(xy) 1'H(a,;) P i(x,y) + iv(x,y) , (ii)

we obtain the following two real equations fram (i):

-x O 4x , (iii)

ny -aX + y (iv)
y I y

*where

- xIld 2  2 2 '2 2 2
11-0 + v2]/A , I -2v/A y ((11+p) + v/A, A l-(u + v

Note that
0 B2.

a + y 2(2-4)/h

A quasiconformal mapping becomes conformal when H 0, or equivalently

a 1 B - 0. The resulting- equations are then the Cauchy-Plimann

equations

* C- "C. n

and then f(s) is an analytic function in the domain D.

Uspoationa (iL) and (iv) can be Inverted so that .only the partial

derivatives of x and y appear. Thus

21,

* ] .A

N -mmmmmm ~ m mmmmmmm * ,*mm
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xn . Ox -Q4f(v)

Y,y mxt - Oyt (vi)

par Eqs. (v) and NOi it is important to wrt a. 0, y in terms of the metric
7,1

coefficients, which are 12

A-4rI/[2rf + (911 + 2*

12+r-( + 92)// 2

coy 911+ 922 ((gl+ 22) -4( +8 0 )) %1/2/9

oment (iii):

As is expected. Eq. (82) can be reduced to the form

by using the formula

Dax

in the expression fo over, for gaining a now insight into the
ax ax

structure of the redistribution termn it looks profitable to keep the form

Generation of isothermic coordinates can also be achieved by the method
4.1 -2detailed in Rf. 14. Tet x and x be some sort of coordinates introduced

in a portion of the surface (for example from the subroutine developed by
21 1 2Craidon ).* and let x , x be the desired isothersic coordinates. Then

x i , x ixl~x2)

because of xi being isothermic, we have v, *.

922 911
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Using the transformation law for the covariant and the contravariant metric

tensor components we get

ax 1  ik ax 2  i

_. = 4i

2 - 1a- = -gij jk ax (ii)

where

I jk 1e

ell 0 , e 22  0 e 1 2  + e 2 1  -

From Eqs. (i) and (ii) we find the second order differential equations

.1j

-~ji axv 0~=

*• where k = 1, 2. Note that in the Eqs. i) - (iii) the indices range over the

*values 1, 2.

Equations (iii) provide two linear uncoupled equations for the deter-
Sii ~ij

mination of the isothermic coordinates, since the values 4 of g are

known a' priori.

CONCLUSIONS

Three distinct methods of numerical coordinate generation based on PDE's -

have been analyzed in detail. In the two newly proposed methods, viz., the

methods discussed in M13 and 5, some useful results have been obtained by

looking at the generating system of equations as a system of forcing differ-

fential relations among the metric coefficients gij" For example, in the

method of 13 and gij's are forced to satisfy Eqs. (27) (refer also to their

forms in Eqs. (20)). In the method of §5, the gjj's naturally satisfy Eqs. (80)

since the space is intrinsically Euclidean. In the Tr method discussed in

14 the generating Laplace or Poisson equations also amount to specifying a set

* of differential constraints on the gij's.

In the process of obtaining the above noted results a number of other '

results and equations have been obtained which should be satisfied by all

to..,

i'tj
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coordinate systems. For example, the orthogonal coordinates in an Euclidean

space must satisfy Eqs. (69), (88), and the nonorthogonal coordinates must

satisfy Eqs. (80), no matter which method is used to generate them. In

effect all these results provide enough material for proposing more efficient

calculation algorithms for the coordinate generation on a computer.
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ELLIPTIC GRID GENERATION

JOB F. THOMPSON
Department of Aerospace Engineering, Mississippi State University,
P. 0. Drawer A, Mississippi State, Mississippi 39762

ABSTRACT

Various types of generating systems for boundary-conforming coordinate

-systems based on the numerical solution of systems of elliptic partial

differential equations are discussed. Particular emphasis is given to the

- , determination of functions in these equations which control the distribution

* .of the curvilinear coordinate lines in the field.

INTRODUCTION

In general, the generation of a boundary-conforming coordinate system is

accomplished by a determination of the values of the curvilinear coordinates

in a region from specified values (and/or slopes of the coordinate lines)

on the boundary of the region. one coordinate will be constant on each
segment of the physical boundary curve (surface in 3D), while the other varies

• monotonically along the segment.

The equivalent problem in the transformed region is the determination of

*values of the physical (cartesian or other) coordinates in the interior of

the transformed region from specified values on the boundary of the transformed

region, as discussed in the first paper of this volume. This is a more

reasonable problem for computation, since the boundary of the transformed

region is comprised of horizontal and vertical segments, so that this region

is composed of rectangular blocks which are contiguous, at least in the

sense of being joined by re-entrant boundaries (branch cuts).

Now the generation of field values of a function from boundary values can

be done in various ways, e.g., by interpolation between the boundaries, etc.,

and several methods are discussed elsewhere in this volume. The solution of

such a boundary-value problem, however, is a classic problem of partial

differential equations, so that it is logical to take the coordinates to

be solutions of a system of partial differential equations. If the coordinate

points (and/or slopes) are specified on the entire closed boundary of the

region, the choice of equations must be elliptic, while if the specification

is on only a portion of the boundary the choice would be hyperbolic. This

latter case would occur, for instance, when an inner boundary of a region is

1S @LANK

-flu- ..-K -. " "

.......• .. . . . 7.- , . . .. . . ..



80

5specified, but a surrounding outer boundary is arbitrary. The present

discussion, however, treats the general case of a completely specified

boundary, which requires an elliptic partial differential system.

ELLIPTIC GENERATION SYSTEMS

4The extremum principles, i.e., that extrema of solutions cannot occur

within the field, exhibited by some elliptic systems, can serve to guarantee

a one-to-one mapping between the physical and transformed regions. Thus,

since the variation of the curvilinear coordinate along a physical boundary

segment must be monotonic, and is over the same range over facing boundary

segments, it clearly follows that the extrema of the curvilinear coordinates

must occur on the boundaries of the physical field and not in the interior.

(Note that it is the extremum principles of the partial differential system

in the physical plane, i.e., with the curvilinear coordinates as the dependent

variables, that is relevant since it is the curvilinear coordinates, not the

cartesian coordinates, that must be constant or monotonic on the boundaries.)

Another important property in regard to coordinate system generation is

the inherent smoothness that prevails in the solutions of elliptic systems.

Furthermore, boundary slope discontinuities are not propagated into the

field. There are then a number of advantages to using a system of elliptic

partial differential equations as a means of coordinate system generation.

The historical progress of the choice of elliptic systems for this purpose

* has been traced in Thompson, et al. 1  Consequently, in the interest of space,

references to all earlier work will not be made here. Numerous examples of

the generation and application of coordinate systems generated from elliptic

partial differential equations are covered in the above reference, as well as

in other papers in the present volume.

Laplace system. The most simple elliptic partial differential system,

and one that does exhibit an extremum principle and considerable smoothness,

is the Laplace system

92C - 0 (Ia)

72n - 0 (lb)

This generation system guarantees a one-to-one mapping, c.f., Mastin &

Thompson 2 , for boundary-conforming curvilinear coordinate systems on general

closed boundaries.

'lx
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With this generating system the coordinate lines will tend to be equally

spaced in the absence of boundary curvature because of the strong smoothing

effect of the Laplacians, but will become more closely spaced over convex

boundaries and less so over concave boundaries as is illustratel below:

Fig. 1

In the first case shown here, we have nxx > 0 because of the convex (to the

interior) curvature of the lines of constant n (n-lines). Therefore, by

Fig. la, it follows that nyy < 0, and hence the spacing between the n-lines

must increase with y. The n-lines thus will tend to be more closely spaced

over such a convex boundary segment. For concave segments, illustrated in

Fig. lb, we have nxx < 0, so that n must be positive, and hence the spacing
yy

* of the n-lines must decrease outward from this boundary.

Poisson system

Control of the coordinate line distribution in the field can be exercised

by generalizing the elliptic generating system to Poisson equations:

V2 t .P (2a)

n "(2b)

This system still possesses an extremum principle if the inhomogeneous functions

do not change sign in the field. It should be noted, however, that the presence

of an extremum principle is a sufficient, but not necessary, condition for a

one-to-one mapping, so that some latitude can be taken in the form of the

inhamogeneous functions. This system is the basis of the TCMCAT code of - -

* Thompson, et al.
3

Effect of control functions. Since a negative value of the control function

would tend to make nyy more negative, it follows that negative values of Q will

tend to cause the coordinate line spacing in the cases shown above to increase

more rapidly outward from the boundary. Generalizing, negative values of the

control function Q will cause the n-lines to tend to move toward lines with

lower values of n, while negative values of P will cause C-lines to tend to

soVe toward lines having lower values of C. These effects are illustrated

below for an n-line boundary.

"- . . . .. " ,

. I 
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Fig. 2.
Note that since the boundary values are fixed, the t-lines cannot change the

intersection with the boundary. The effect of the control function P at

the boundary in this case is thus to change the angle of intersection,

causing the C-lines to rotate toward lines with lower values of . These

effects are illustrated in the following figures:

~~Here the &-lines are radial and the n-lines are circumferential. In the +'

~left illustration the control function Q is locally non-zero near a portion
Sof the inner budrwhile in the rih iueP isloaynn-e .

in general, a negative value of the Laplacian of one of the curvilinear

coordinates causes the lines on which that coordinate is constant to move

toward lines having lower values of that coordinate. For coordinate lines

intersecting a boundary, this has the effect of causing such lines to rotate

-. toward lines having lower values of this coordinate while maintaining fixed
intersections with the boundary. Positive values of the Laplacian naturally -;

retsult in the opposite effect, i.e., displacement toward lines having higher

values of the coordinate.

Effect of boundary point distribution. Because of the strong smoothing

tendencies that are inherent in the Laplacian operator, in the absence of the

; ' control functions, i.e., with P - Q a 0, the coordinate lines will tend to be

~generally equally spaced far from the boundaries regardless of the boundary
• . point distribution. For example, the simple case of a coordinate system

"'comprised of horizontal and vertical lines in a rectangular region cannot be

obtained as a soluton of Eq. (2) with P -Q -0 unless the boundary points

,J' .Fi". -3. '..1 ..;,.

-"er th i-in ar rda and th n-lin, s are c r In the

letilsrtoh oto ucinQi oal o-eona oto
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are equally spaced. This is easily seen since with vertical C-lines we have

0 - 0. If these lines are not equally spaced then Cxx cannot vanish, and

hence the Laplacian cannot be zero.

Thus, if the coordinate lines in the interior of the region are to have

the same general spacing as the point distributions on the boundaries which

these lines connect, it is necessary to evaluate the control functions to be

compatible with the boundary point distribution. Continuing the simple

example of the rectangular field with horizontal and vertical coordinate lines,

since Cyy - =xx - 0, Eq.(2) reduce to
yy xxy

where P and Q cannot vanish if the point distribution is not uniform on the

horizontal and vertical boundaries, respectively. These effects are illustrated

in the figures below. Here the control functions are zero in the left figure.

Fig. 4.
Note that although the spacing is not uniform on the semi-circular outer

boundary in this figure, the angular spacing is essentially uniform away

from this boundary. By contrast non-zero control functions in the right

- figure, evaluated from the boundary point distribution, cause the field

spacing to feilow that on the boundary. This evaluation of the control

functions from the boundary point distribution is discussed more fully in

a later section.

General Poisson system

Generalizing the Poisson system of Eq.(2) to three-dimensions, we have,

* "with the cartesian and curvilinear coordinates denoted, respectively, as

xi and Ci,

axk

7$ 4n
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where i, j, and k all range over 1-3. In the transformed plane, this system

becomes, using Eq.(23) of the first paper in this volume,

3 3 "j 2 xk pi axk
E ( E g + P | - 0 (4)

i-1 j-1 a i a& at

where

g.- 1*(gkltn 9kngLm) (5)

with (i, k, 9) and (j, m, n) cyclic and

g r .r . (6)

He iteerg [ Ir (r x r ))2 (7)_ " _2 . 3

Here r is the general position vector in cartesian coordinates. .'
i aNote that if P is not a function of the coordinate derivatives, -

the system is linear in the physical region, cf. Eq.(2), but quasi'.inear

in the transformed region, cf. Eq.M(4. The equations are thus more complicated J "

in general in the transformed region, but this is overshadowed by the great

simplification in the boundary conditions that arises from the fact of the

rectangular boundaries in the transformed region.

Alternate form. Eq. (4) can be made to reduce to a particularly simple

form in one dimension by taking Pi to be of the form-I.

- i= giiPi (8)

(No swuation is implied here. All suuations are explicitly indicated

throughout this paper.) Eq. (1 then becomes 9

3 3 i j ( 2 ' x k

i-l j.1 at a 4 ij

This form becomes particularly simple in one dimension, since then we have

• -P (10)
x

which can be integrated analytically if P is a function only of to give

- ,.-. .. ... .-

* ':Y -4U'' ~
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x(0 =x + a exp[- P(")d4"ldc' (11)

0 0

with a = (x,),. In general, the function Pi may depend on the same variables

as did P1 in its original definition. The magnitude of the function F" should

be some orders of magnitude smaller than that of the function Pi because of the

multiplication of the former by gi, which is a measure of the ratio of the

arc length of a cell side to the cell volume.

Vector form. In vector form, Eq. (9) can be written as

3 3 .

EE giJ(r + 6.Pr .) 0 (12)
i=l j=l ij -t

In two dimensions we have, with k the unit vector in the direction of invariance

and 6 the curvilinear coordinate in this direction,

r =k and r -r =r *r =0
-3 - 3 - ~3

Then Eq.(12) reduces to the following, with P E P1 and Q - P2 , for a two-

dimensional plane surface: T

fr 2 (r + Pr) -2(r -n r) En+ Ir C2 (r nn r) = 0 (13)

A, Other systems

Two other forms of elliptic system that have been considered in the

literature are Eq.(2) with the control functions taken of the forms

* 4
,P 9 Godunov & Prokopov (14)

and
i 1 (p =- VD VC Winslow (15)

This latter choice puts Eq. (2) in the form of a diffusion equation with a

variable diffusitivity:

V - (DVC) =0 (16)

in which the "diffusitivity," 0, becomes the control function.

Elsewhere in this volume Brackbill discusses elliptic generating systems

developed from a variational approach based on minimizing the integral of

' . . . T _ --j4- - - - .i ... ' :. ' :.;

.4 "' ,:
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+ (Vn) 2 ] + X v(w4g) + X (V E V2 

over the field. The Euler equations for this functional provide the elliptic

partial differential system for ( and n, which consists of two quasilinear

equations in all six second derivatives, with coefficients that are quadratic

functions of the first derivatives. The term involving w causes the mesh to

adjust so that the product, wg, is more nearly constant over the mesh. The

last term in the functional serves to minimize the departure from orthogonality,

while the first term, which contributes the Laplacian to the Euler equations,

regulates the smoothness. Larger values of ), and A give added weight tov 0
the corresponding features in the solution. The non-negative weight function,

w(x,y), may be taken to be a measure of some physical solution variation or

magnitude, or may measure the truncation error in some manner. Obviously,
the mesh will tend to be fine where this function is large.

Systems for curved surfaces

A two-dimensional coordinate system can be generated on a curved surface,

but the curvature of the surface must be taken into account.

Pig. 5. J

Two approaches are discussed below. The first requires specification of the

surface while the second determines the surface along with the coordinate

system thereon using information from specified bounding surfaces intersected

'by the surface in question.
6

.1Specified surfaces (Thomas ). Consider for definiteness a surface of

constant ( and assume, for the moment, that the coordinate lines emanating

from this surface are normal to the surface, i.e., -r r. r , 0.

Then Eq.(12) reduces to the following on the surface:

q (r + Pr) + g 22(r + .r) + g 3 3 (r + Rr) + 2g 1 2 r 0 (17)

I-'_

, ~.. ' ..
--.. . V.

II +++:+ ,+-+.++ -.
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Let the c-surface be specified by z f f(x,y). Then on the surface

z . f x t+ fy (18a)

z - f x n+ f y (18b)

and

Z f x + fy + f X2 + f Y + 2f xy(18c)

X y 4 xx C yy n

zn =x + f ynn+f xx + f yy +f x y y (l8e)

z x & y yEn+ xxx~xn +yy yn +fxy (X n +x 1e

Now eliminating R between the x and z components of Eq. (17) we have

11 2233 12
ft g (x t + PXC) + g2 (x nn+ QAn) +g qXC + 2g &

S g 11(z + Pz)+ g2 2 (z +Qz ) + g3 3 z + 2g1 2 z(19)
z CC ~ nn 1

Eliminating R? between the y and z components yields a similar equation with x

replaced by y.

In order to treat the ;-derivatives, assume for the moment that the

curvature of the coordinate lines crossing the surface vanishes thereon. Now

the principal curvature of a line is given by

dT

where T is the tangent to the line, s is arc length along the line, and N is

a unit vector normal to T, called the principal normal to the line. TheI> tangent to a c-line is given by T - r /Ir 1, and the arc length is ds

r r (r -r )r1 d cc-
IT!= (20)

C C

The vanishing of the curvature of the C-lines crossing the surface is then

expressed by

ir I r~ (r~ r )r, 0 (1

* - -(21)
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which yields

x -

(22)

y~c z

* Also from the orthogonality conditions for the tC-line crossing the

surface, i.e., r~ r. r.. r.- 0, we have

* (23)

.~~( -=- (cz -x z

where J -xy Then, using Eq.(18), it follows that

x

(24)

z y

N~ow substitution of Eq. (22) causes the second C-derlvaties in Eq. (19)

to cancel. Then we have, using Eq. (18) for the derivatives of z in this

equation and the analogous equation for y,

Dx + J = 0

2 (25)
*Dy + J f YG -0

whe~reIDX~ Ir 12(X~ +Px + r 12 (X + Qx -2(r r r)xc (26a)

Dy Er 2( + Py + * Qy ) - 2(er), (26b)

G -[ (l+f 2 Cfl+*f 2 )f -2f f f 2 ( 2 (27)
y Vx x y xyx Y. )Y (

(T
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Note that all the derivatives of f, and hence G, can be evaluated from the

defining functlon f(x,y) of the surface. Note also that, again using Eq.(18)

for the z derivatives, we have

j1 2 
=(14-f x2 )xn2 + 1fy2 )yn2 + fx y (28a)

2 2 2 2
"r 12 = (1+f x + (1+f )y 2 + 2ffxyy (28b)

T" r = (1+f2 )X x + (1+f2 )y y +f fxy + xy (28c)

nr x n y C T x y ET T

Eq. (25) can thus be used to generate a two-dimensional coordinate system

on a specified curved surface. These equations are applicable to a surface

specified by the equation z = f(x,y). Analogous equations can, of course,

be inferred for other surfaces. The assumptions made in obtaining these

equations all relate to the behavior of the coordinate lines crossing the

surface, i.e., that these lines are normal to the surface and have vanishing

curvature at the surface. The curvature of the surface is taken account of
.." through the terms involving the function G, without which Eq.(25) reduce to

the plane two-dimensional equation (13).

A three-dimensional coordinate system can be constructed by connecting

corresponding points on a sequence of surfaces on which two-dimensional

systems have been generated by Eq. (25), but the equation of each surface

would have to be specified, of course. The resulting three-dimensional system

will not necessarily actually have the coordinate lines crossing the surfaces

normally with vanishing curvature, however, since the successive surfaces

* are specified independently.

Gaussian surfaces. Another approach to the generation of three-dimensional

coordinate systems by generating two-dimensional systems on surfaces is given

by Warsi elsewhere in this volume, using the Gaussian equations for a surface.

In contrast to the development of Eq. (25), here the surface is not specified.

Therefore, three coupled two-dimensional equations result on the surface of

constant &,

Dx - XR= 0 (29a)

Dy -YR 0 (29b)

Dz - ZR 0 (29c)

.'.'

_7 MA
* * .-. f
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where D is again defined by Eq. (26), and (X, Y, Z) are the caponents of the

normal to the surface,

x - Or z - ynz )/W (30a)

Y - (K Z - x Z )/Vli C30b)
n ~ n

z = (x&y - xy )// 3  (30c)

3 3 3
R = (Xx + Yy + ZzC) (g1 1r22 - 2g1 2 r12 + g2 2 '1l (31)

and r are the space Christoffel symbols:
jk

1 1 3 L _ (32)
Jk i-i x k  ax ax

In this procedure the C-derivatives, rather than the equation of the
surface, must be specified. This can be done evaluating these derivatives on

specified bounding surfaces intersecting the surface in question at its

edges, and interpolating these boundary values onto the surface for use in

Eq. (31). Again three-dimensional coordinate systems can be constructed by

* connecting corresponding points on the successive surfaces.

CONTROL FUNCTIONS
iAs discussed above, negative values of the control function P will

i
cause the i coordinate lines to concentrate toward lines with lower values

i
of i. Several approaches to the determination of the control functions are

discussed below.

Attraction to coordinate lines/points

This effect was utilized in the TOMCAT Code of Thompson, at al. 3 to

achieve attraction of coordinate lines to other coordinate lines and/or

points by taking the form of the control functions to be, in 2D,
*n

P(K,n) - - E aisign([ - i)exp(-ciI&-&ij)
iinl (33)

- I bi slgn(t - i)e p{-i!(d -[( )2 + (i - ni) 12)

"W1

~"v-



91

and an analogous form for Q(C,n) with C and n interchanged. (Here the

subscripts identify particular &-coordinate lines and are not to be confused

with the superscripts used to refer to the curvilinear coordinates in general.)

In this form, the control functions are functions only of the curvilinear

coordinates.

In the P function, the effect of the amplitude ai is to attract &-coordinate

lines toward the Ci-line, while the effect of the amplitude bi is to attract

C-lines toward the single point ( i' ni ) . Note that this attraction to a

point is actually attraction of C-lines to a point on another E-line, and

as such acts normal to the -line through the point. There is no attraction

-. of n-lines to this point via the P function. In each case the range of the

attraction effect is determined by the decay factors, c. and d.. With the2. 1

inclusion of the sign changing function, the attraction occurs on both sides

of the C-line or the (ii i) point, as the case may be. Without this function,

attraction occurs only on the side toward increasing C, with repulsion occurring

on the other side. A negative amplitude simply reverses all of the above-

described effects, i.e., attraction becomes repulsion and vice versa. The

effect of the Q function on n-lines follows analogously.

"in the case of a boundary that is an n-line, positive amplitudes in the

Q function will cause n-lines off the boundary to move closer to the* j boundary, assuming that n increases off the boundary. The effect of the P

function will be to alter the angle at which the -lines intersect the boundary,

since the points on the boundary are fixed, with the C-lines tending to lean

in the direction of decreasing C. These effects are evident in Figures 2 and

3 above. Further examples are given below.

Fig. 6. 40
%IMP-
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i.

Fig. 7.

The first two figures show the result of attraction to the two circled points

in comparison with the case with no control function. The other figure

illustrates strong attraction to the coordinate line coincident with the

inner boundary and the branch cut in this C-type system. If the boundary

is such that n decreases off the boundary, then the amplitudes in the Q

function must be negative to achieve attraction to the boundary. In any

case, the amplitudes a. cause the effects to occur all along the boundary

(as in the last figure above), while the effects of the amplitudes bi occur

only near selected points on the boundary (cf. Fig. 3 above.)

Effect of cuts. In configurations involving branch cuts, the attraction

lines and/or points in this type of evaluation of the control functions should -

be considered to exist on all sheets. In the O-type configuration shown in

Fig. 13 (cf. also Fig. 26) of the first paper of this volume, where the two

sides of the cut are on opposite sides of the transformed region, the control

function P for attraction to the &.-line would strictly involve an infinite

summation over k, with &i replaced by &i + kA& where AC is the jump in & at

the cut. Thus &. in Eq.(33) would be replaced by &. + kA and the right
1 i

side would be summed from k = -® to + -. However, because of the exponential

decay the terms usually decrease rapidly as k increases, so that only two

terms in the k summation really need be included. Note that since there is no

jump in n across the cut in this configuration, the evaluation of Q is

affected by this cut only through the replacement of i as above in the term for

the point attraction, with summation over k of only this part of the right side.

For the C-type configuration of Fig. 14 (cf. also Fig. 27) of the first

paper, with the two sides of the cut on the same side uf the transformed region,

n is reflected in the cut, so that in the evaluation of the control function Q,

two terms should appear for each i, in the second of which n would be replaced

by -n + 2n where n is the value of n on the cut. Again, however, the con-

tribution of the second term may be small because of the exponential decay.

1

.\

• " ' -. " .. . .• :- " , " " ' :
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Here the evaluation of the control function P is affected by the cut only

through the point attraction part, with ni replaced as above.

The third type of cut illustrated in the first paper, Fig. 18 (cf. also

Fig. 28), for which the two sides of the cut face across a void of the

transformed region, is the most simple since here the jump in n across the void

is simply to be removed from the distance to the attraction line by replacing

ni with n - An in both the control functions. There is no additional susa-

tion in this case.

The case in Fig. 20 of the first paper, where the coordinate species changes

sign at the cut, requires individual attention at each cut. For example, the

contribution to the control functions in region 1 at a point (F,n) from an

attraction site ( ini) in region 2 would be evaluated using distances of

- + (max - ni) and (h - &1,in place of i and ni. respectively.

Attraction to lines/points in s aace

If the attraction line and/or the attraction points are in the field,

rather than on a boundary, then the above attraction is not a fixed line
or pointin space, since the attraction line or points are themselves deter-

mined bythe solution of the generation system and hence are free to move.

It is, of course, also possible to take the control functions to be functions

of x and y, instead of and n, and thus achieve attraction to fixed lines

and/or points in the physical field. This case becomes somewhat more compli- J
cated, since it must be ensured that coordinate lines are not attracted

7parallel to themselves. The following development is from Thompson

Recall that in the above discussion, n-lines are attracted to other n-lines,
and C-lines are attracted to other E-lines. It is unreasonable, of course, to

attempt to attract n-lines to -lines, since that would have the effect of

collapsing the coordinate system. When, however, the attraction is to be to

certain fixed lines in the physical region, defined by curves y = f(x), care .

must be exercised to avoid attempting to attract coordinate lines to specified

curves that cut the coordinate lines at large angles. Thus, in the figure

below,

g ' ; -" " Z f W "

F ig.. S.- :

'*'
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it is unreasonable to attract &-lines to the curve f(x), while it is natural

to attract the n-lines to f(x).

However, in the general situation, the specified line f(x) will not

necessarily be aligned with either a & or n line along its entire length.

Since it is unreasonable to attract a line tangentially to itself, some

provision is necessary to decrease the attraction to zero as the angle between

the coordinate line and the given line f(x) approaches 90. This can be

accomplished by multiplying the attraction function by the cosine of the

angle between the coordinate line and the line f(x). It is also necessary

to change the sign on the attraction function on either side of the line f(x).

This can be done by multiplying by the sine of the angle between the line f(x)

and the vector to the point on the coordinate line.

These two purposes can be accomplished as follows. Let a general point

on the &-line be located by the vector R(x,y), and let the attraction line

y - f(x) be specified by the collection of points S(xiyi), i - 1, 2, -- , n.

Let the unit tangent to the attraction line be t(xi.,y i ), and the unit tangent* I, 1
to a C-line be T ) . Then with k the unit vector normal to the two dimensional

plane, and with reference to the following figure,

'S-

- Fig. 9.

the control functions P(x,y) and Q(x,y) may logically be taken as

n(t x (R
(R - 2]P( ,,Y E a i (t i * T IR S I Ol e -,IlR -S %1 (34)

The equation for Q simply has 4 replaced by n in the above. These functions

depend on x and y through both R and T or T , and thus must be recalcu-

lated at each point as the iterative solution proceeds. This form of

coordinate control will therefore be more expensive to implement than that

based on attraction to other coordinate lines.

There is no real distinction between "line" and "point" attraction with

this type of attraction. "Line" attraction here is simply attraction to a

group of points that form a line, f(x). If line attraction in specified, then

ieyv



the tangent to the line f x) in computed from the adjacent points on the line.

If point attraction is specified, then the "tangent" must be input for each

point. The tangents to the coordinate lines are computed from relations given

in the first paper of this volume,

MC 1
T -- Cix + jy ) (35a)

* - ,r9 2 2  -

CT U.
2  

xj~ + JY) (35b)

Effect of cuts. The presence of branch cuts introduces no complication

with this type of attraction since the distances involved are in terms of the

cartesian coordinates, rather than the curvilinear coordinates. This form

of attraction makes the control functions dependent on both the curvilinear

* and cartesian coordinates, and thus attraction to space lines and/or points

involves more complicated equations in the transformed region than does

Aattraction to other coordinate lines and/or points, since for the former

the coefficients of the first derivatives are functions of the dependent

variables.

Determination from related systems

If the cartesian coordinates were known in the field, i.e., the coordinate

system had already been generated, the control functions used could obviously

be determined at each point by substituting these known values in the

generation system equations and solving algebraically for the control functions.

2more important, control functions for use in a general came night be detrmined

from a more simple case of related geometry. The effect of the control

would be qualitatively the same in the more general case.
Thus, the control functions for a case of a rectangular physical region

with coordinate lines parallel to the sides are given by one-dimeansonal

equations as in Sq. (10) which are, with C-lines parallel to the y-axis and

-lines parallel to the x-axis,

x y'

for use in Sq. (13). The effect of the use of these control functions,

evaluated from arc lengths along the boundaries, in related, but more general,

regions would be qualitatively the same.

!11C
,4,.
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Similarly, for an annular physical region bounded by two concentric

circles, a solution of Eq. (13) of the form x - r(n)cos@(O), y = r(n)sine(c)

exists for the control functions given by

P r' _ r (37)
" ' r r'

which may be verified by direct substitution. If the control functions

determined by substituting desired radial and angular point distributions in

Eq. (37) are used in a more general case with opposing n-line boundaries, the

kline spacing will be qualitatively the same as these point distributions.

This topic is treated in more general form in the next section.

Results of the two applications discussed above are shown in the following
figures, the first of which illustrates the application of the one-dimensional

evaluation from arc length along the boundary of a simply-connected region,

while in the second the evaluation is from Eq. (37) using concentric circles

of diameters equal to the maximum chord of the true inner and outer boundaries.

Another approach would be to use a different generation procedure, e.g.,

algebraic, to generate a preliminary coordinate system for the same configura-

tion from which to determine the control functions by substitution in Eq. (13).

(The control functions could be smoothed before use in the elliptic generation

system if desired.) In this way some of the advantageous features of other

generation systems could be employed, while using the inherent smoothness

of the elliptic systems to produce a final system without slope discontinuities

4in the coordinate lines.

Determination from boundary point distributions

The more general question of the determination of the control functions

so as to reflect the boundary point distributions directly in the spacing of

the coordinate lines in the field for general regions is still under study.

A reasonable approach in some cases is that of Thomas 6, which is outlined

below and discussed at greater length by Thomas elsewhere in this volume.

, ,. : . " , , ' .": ".. . "* . " ;.
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Determination from edge distributions. The projection of the two-

dimensional vector equation (13) in the direction tangent to a line of constant

At, n is obtained by taking the dot product with r If, for the moment, the

coordinate lines are assumed to be orthogonal on this n-line, so that r- r
_n

vanishes thereon, this projection will be

2 2 2In (rr + PIrI) + I (r (r = 0 (38)

Then, solving for the control function P, we have

r *r r *r
_ _ _E l -nn (39)

Now the derivative of arc length along the n-line is

: In) = (40)

so that the first term in this expression for P is

_(hi

' _ = -4 (41)

* and is thus related to the rate of change of the arc length spacing along the

nl-line. This term can be evaluated from the point distribution, r(4), along

the n-line.

In regard to the other term in P, the principal curvature of the t-lines

crossing the n-line is given by Eq. (20) with replaced by n. Then, under

the assumption that he coordinate lines are orthogonal on the n-line so that

rr * r

r_ = 0and N =Fr we have for this curvature

C .j~- (42). ir~Ilrnl 41. .. 1-

Thus the other term in the expression above for P is the product of the arc

length spacing, s ( n) - Ir 1, along the n-line with the local curvature C(M

of the 4-lines crossing the n-line. Since this term involves n-derivatives,

. it cannot be evaluated from the point distribution on the n-line. The

distribution of the local curvature of the &-lines must be specified along

the n-line, either by direct specification or by interpolation between points

where a specified 9-line is available, e.g., boundary lines on the ends of the

aJ

*: n-line.

_1A.
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We thus have a procedure for evaluating the control function P along an

n-line if the point distribution thereon is specified and if the distribution

of local curvature of the 4-lines crossing this n-line is also specified,

either directly or by interpolation between known &-lines:

_8(n)

p s)( ((43)

using Eq.( 4 1) and (42) above. (Recall that this evaluation is made under the

assumption that the coordinate lines are orthogonal on the n-line.)

A similar equation can be obtained for the evaluation of the control

function Q along a (-line:

- .l!- s()C(n) (44)- (() n
aM

where now the arc length is along the (-line and the curvature is that of the

n-lines crossing this line:

s (  r • r
nn _n _nn (45)

(ln) r u.r 1)
s"( Ir jl.l

C (46)

If the control functions are evaluated in this manner along pairs of

facing boundaries in the transformed region, values for these functions in

the interior can be obtained by interpolation between the corresponding

facing boundaries, i.e., interpolation for P between n-line boundaries

and for between (-line boundaries as illustrated below. -.

Note that although orthogonality at the boundaries was assumed in the

development of the above relations for the control functions thereon, there

has be n no enforcement of this condition. Therefore, the resulting coordinate

system will not necessarily be orthogonal anywhere. Control functions

determined in this manner will, however, serve to project the influence of

'4
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the boundary point distributions into the field, so that the line spacing

in the field will generally follow that on the boundaries.

Determination from surface distributions

These ideas may be extended to three dimensions, with the control functions

first being determined from the point distribution on the edges of a surface

on which a curvilinear coordinate is constant in the manner discussed above

for the two-dimensional case. These edge values are then interpolated onto

the surface, and a two-dimensional solution is done for the coordinate system

on the surface as discussed above. Then the new control functions are

determined from the resulting point distribution on the surface. When this

has been done for all the boundary surfaces, the surface control functions are

interpolated into the interior of the three-dimensional region.

The surface solution requires a version of the two-dimensional equations

that takes into account the curvature of the surface, such as Eq. (25) given

above. As in the two-dimensional case, the control function P for use in

Eq. (25) can be determined from the projection of Eq. (17) along a coordinate

line of constant n, with the mamentary assumption that the coordinate lines

are orthogonal on this line. Thus dotting rC into Eq. (17), and taking

r 0, as well as the previously assumed condition of rE" r. -0, we have

r& - . (47)

But by Eq. (21) we have

r -- --r4r, r r o
-~~Irr ~ -'

so that the expressions for the control function&, P and Q, reduce to the
expressions obtained in the two-dimensional case, Bq. (43) and (44).

With the points known on a C-surface, values of the control function

.4 thereon can be determined by forming the projection of Eq. (17) along lines

t of constant C and along lines of constant n on this surface, again assuming
A

that the ;-lines emanating from the surface are normal thereto. Thus, dotting

r and r into sq.(17), we have
kv, n

.4,

A Iw
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lr 12  "" ( 21. (r r (r r ,) lr12(r. r)

1119 I
2 (r. r )(r -r ) Ir 12 (r r

_ _ n_ n_ _ --

(48)

which can be solved for P and Q on the a-surface.
In like manner, values of the control functions P and R can be determined

on an n-surface from a point distribution thereon, and the functions Q and R
can be determined on a &-surface. The function P in the interior of the three-

dimensional region then is determined by interpolation of the values on

facing n-surfaces. The functions - and R in the interior are determined in

a similar manner using & and r. surfaces and C and n surfaces, respectively.

C/4,,
Fig. 12.

Automatic determination

Another approach to the determination of the control functions is to

interatively adjust their values until some desired specification is

achieved. Thus in Sorenson8 , in two dimensions, the control functions P and Q
of Eq. (2) are iteratively adjusted to achieve a specified spacing of the first

coordinate line from the boundary and a specified angle of intersection at

the boundary. Here the control functions are taken to be of the form

P(Q,n) p( )exp(-an) + r()exp(-c(max - n)] (49a)

Q(C,Y) q( )exp(-bn) + s(4)exp(-d(n-ax  n)] (49b)

With the desired intersection angle at the boundary and the spacing of

the first line off the boundary specified at each boundary point

-JI
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Fig. 13.

(and with a priori choices for the decay factors), the code determines the

values of the functions of in the control functions automatically as

follows: specification of the intersection angle and first line spacing at

the boundary points determines x and y at each boundary point, values of x

,* and y being known from the boundary point distribution. Since x,, and y

can then be determined at each boundary point, and x& and y, are known

from the boundary point distribution, it remains only to determine x and~nn
y at each boundary point in order to evaluate the functions of & in (4)nn
at each boundary point. With assumed values for these functions, the

system of Eq. (2) is solved on the field. Values of x and yq at each

boundary point are then determined from this solution on the field, and new

values of the functions of F are calculated at each boundary point. This

process is repeated until convergence. This procedure is utilized in the

GRAPE code and its extensions which is discussed by Sorenson elsewhere in

* this volume.

NUMERICAL SOLUTION

The elliptic generating system of equations can be solved numerically

in a variety of ways. The first step is generally to replace the derivatives

with difference expressions, and second-order central differences are most

widely used. (There have been some solutions using first-order, directed

one-sided differences for the first derivatives, keyed to the sign of the

control functions.) The representation of difference expressions across

branch cuts is discussed in the first paper of this volume. The solution is

thus cast on the square grid of the rectangular transformed region. Values

of the cartesian coordinates (or other basis system) and/or the coordinate

line slopes are specified on the boundary of the transformed region, except on

the re-entrant portion corresponding to the branch cuts. The non-linear

difference equations can then be solved by iteration.

iterative solutions

The most simple and tne -,sies iterative procedure to apply in general

configurations is point SOR (cf. Thompson3). The convergence for Eq. (12)

,'o
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has been found to be rapid and dependable for a wide variety of configurations

using overrelaxation. The optimum acceleration parameters and the convergence

rate decrease as the control functions increase in magnitude. Some considera-

tion has been given to the calculation of a field of locally-optium accelera-

tion parameters (cf. Thompson3), but the predicted values generally tend to
A *be too high, and the desired increases in convergence rate were not obtained.

Since the equations are nonlinear, it is necessary that the initial guess lie

in a neighborhood of the solution. A logical and versatile procedure is to

use linear interpolation between closest facing boundary segments for the

initial guess as illustrated below.

Fig. 14. ......

The generating system has also been solved using SLO-iteration as in
• Sorensons, ADZ iteration (cf. Ghia, et al. 9 ) , the strongly-implicit procedure

SIP (Ghia & Ghia
10), and by multi-grid procedures as in Camarero and Younia

11 . U

!Problems

Since the coordinate lines tend to concentrate near a convex boundary,

very sharp convex corners may cause problems with the convergence of iterative

solutions of the generation equations. These equations are nonlinear, and

therefore convergence of an iterative procedure requires that the initial

guess be within some neighborhood of the solution. With control functions

designed to cause attraction to the boundary, it is possible for the coordinate

lines to overlap a very sharp convex corner during the course of the iteration

even though a solution with no overlap exists.

Fig. 15.
This problem may be handled by first converging the solution with the

coordinate lines artificially locked off the corner. Thus, if newly

calculated values of the cartesian coordinates at a point during the

iteration would cause this point to move farther from its present location

* ',. A
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than the distance to the adjacent point on the curvilinear coordinate line

to the corner, then these new values are replaced by the average of the

coordinates of the old point and the adjacent point. After convergence.

this lock is removed and final convergence to the solution is obtained. Note

that this problem does not arise when the curvilinear coordinate line

emanating from the corner is the same as that on the boundary, as in the

C-type configuration of Fig. 14 of the first paper of this volume,

Fig. 16.I

since then the lines do not wrap around the corner.

With very large cell aspect ratio, e.g., for gll >> g22 ' the generation

equation is dominated by the term containing the second derivative along

the curvilinear coordinate line on which the shorter arc length lies. This

causes the cartesian coordinates to tend strongly toward averages of adjacent

points on this line during the course of the iteration. Therefore, whenC-type cnfiguraionon.

strong control functions are used to attract coordinate lines to the boundary in
"J , a C-type configuration,

Fig. 17.

the points on the line 1 - 2 are very slow to move from the initial guess

during the iteration. Convergence in such a case is very slow, and it is

expedient to artificially fix the points on such a line as if it were a

boundary. This will cause the coordinate lines crossing this line to have

discontinuous slopes at this line, but since the spacing along these crossing

lines is very small, the error thus incurred in difference solutions on the

coordinate system is small.

CONCLUSION

The generation of boundary-conforming coordinate systems through numerical

solution of elliptic partial differential equations has great versatility and

is capable of treating a wide range of configurations without requiring

special adaptation. This type of generation system provides smooth coordinate [

ad.
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systems and does not propagate boundary slope discontinuities into the field.

The coordinate line distribution can be controlled through functions in the

elliptic equations, and effective means for the evaluation of such functions

have been developed. The control functions can be automatically determined

to control both the line spacing off a boundary and the angle of intersection

of the lines with the boundary. These generating systems can be quickly and

effectively applied in the numerical solution of partial differential

equations for physical problems. The necessary transformation relations

therefor are given in the first paper of this volume, where various possible

- configurations of the transformed plane and the treatment of branch cuts

and other special points are also discussed. As noted at the beginning,

further discussions and applications of elliptic generation systems appear

in other papers of this volume. Further development is needed particularly

f in three dimensions and in improvement of the automation of the determination
of the control functions, especially for more complicated configurations.
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ABSTRACT

This paper treats conformal mapping as it relates to the generation of grids

to be used for flow simulation. Classical and contemporary mapping methods are
" discussed and compared in some detail. Numerous suggestions are included to

help the reader avoid common pitfalls, and the mapping methods believed most

promising are identified. _ _ *

INTRODUCTION
* ,,Conformal mapping is a versatile component of the spectrum of grid generation

techniques, yet its use is sometimes avoided by investigators who feel uneasy F

about its implementation due to unfamiliarity. The object of this paper is to

rput conformal mapping into perspective, to discuss alternate implementations,

and to induce the reader to use conformal mapping, when appropriate, as one

component of a grid generation process.

Although this paper discusses the generation of grids using conformal mapping

techniques, the grids themselves are not restricted to being conformal or

orthogonal. Algebraic techniques are considered for the latter stages of a
Amapping sequence, and elliptic techniques are considered for "filling-in" the

interior of a grid once the boundary correspondences have been obtained through

a mapping sequence. The emphasis is on grids on a surface, rather than through-

out a volume, since a conformal mapping is basically a surface-to-surface -

correspondence.

This paper starts with a discussion of the basic differences between

algebraic, orthogonal, and conformal coordinate system. Some implications of

these differences are considered as they relate to flow simulation and design

considerations. A brief review of complex variable notation and various types

* of conformal mappings Is followed by a discussion of the problem of multiple

valuedness, which can be the most troublesome aspect of conformal mapping from

*a computer implementation viewpoint. Various mapping techniques in current use

are reviewed and techniques useful for creating new conformal mappings are out-

lined. The generation of a grid, once the mapping is known, is discussed.
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Suitable reference material is listed by problem type and packaged computa-

tional tools are described. The closing remarks highlight techniques that are

believed to be the most promising in this evolving field.

COORDINATE TRANSFORMATIONS

This section illustrates some of the differences between general, independ-

ent algebraic, orthogonal, and conformal coordinate systems.

A general two-dimensional transformation between (x,y) physical coordinates

and (,n) computational coordinates (where (&,i) are taken to be orthogonal

throughout this paper) can be written as

y( ,n)
Y x( ;,n)

or in differential form in terms of a Jacobian matrix as

[dx1  [a b ] [df
[ = [ •1 (1) ..
dy" c d [dnJ

where, from the chain rule, the four independent parameters a, b, c, and d are

given by4
ax

b L

c d

Here dx and dy are components of a differential vector dZ in the physical plane,

while d& and dn are orthogonal (perpendicular) components of a differential

vector dC in a computational plane. For a general algebraic transformation, dx

and dy are not orthogonal, and their magnitudes need not be equal when the

magnitudes of d& and dn are equal. An elliptic technique as in Ref. [1], for

example, falls into the above class if orthogonality is not enforced.

A less general algebraic transformation (referred to as an independent

algebraic transformation) composed of independent transformations in each direc-

tion can be written as

dv [o dg 
()

1 dx]. [h__ _0]__

'iir__ _ _
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where h and g are two independent parameters. For this transformation, dx and

dy are orthogonal but their magnitudes are not equal when the magnitudes of d&

and dn are equal.

An orthogonal differential coordinate transformation can be written in a

similar manner as

rdxl h 01 [cose -sinl Id
Idy 0 g [sin9 cosGJ dn

where h, g, and e are three independent parameters, G is the angle between the

dx and d& directions, and dx is orthogonal to dy.

A conformal differential coordinate transformation can be written as

dx h 0] [cos -sin] [d1 (4)

dy] [0 [sinO cos6J dn

where h and 0 are two independent parameters. For this transformation, dx and

dy are orthogonal and their magnitudes are equal when the magnitudes of

S. . dE and dn are equal. Thus the magnification h (called the metric or mapping

modulus) between the (x,y) and (,n) planes is not a function of direction; it

is Just a function of location. A conformal transformation is also angle pre-

serving in a local sense, so that if two differential vectors meet at the angle . -..

a in the (&,n) plane, they also meet at the angle a in the (x,y) plane.

FLOW SIMULATION IMLICATIONS

A grid can affect the storage and speed of a flow simulation. This section

touches on some of the aspects of this dependence of a flow simulation on the

grid.

The computer storage required for a grid was once an important consideration

for flow simalation. For a finite difference solution, the independent para-

meters in the differential coordinate transforms above were usually stored (for

an orthogonal grid) or regenerated as required (for a grid constructed using

only two independent algebraic stretchings). For a limited set of flow

problems, which fortunately includes two-dimensional transonic potential flow,

it turns out that a conformal mapping requires the storage of only the metric,

h,at each grid point in addition to the potential, #. The x and y physical

plane coordinates and the parameter 0 in Eq. (4) are not needed throughout the

grid in this case, due to the way the gradient operator transform under a

conformal mapping, so only two quantities need be stored for each grid point.

V
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This is one reason why conformal grids were popular in the early days of com-

puters for finite difference solutions using a velocity potential. Purely

algebraic grids were also popular as they could be regenerated as required, so

that only the potential need be stored at each grid point. The rapidly declin-

ing cost of computer memory has made storage requirements a minor issue* at

many installations for two-dimensional and axisymmetric inviscid flow problems;

in fact, a modern finite volume technique may routinely store twenty to thirty

quantities at each grid point. The storage requirements of a grid system

therefore need not be a deciding factor in the choice of a grid system.

The computer time required by a flow algorithm depends on the nature of the

* grid system. For example, when a conformal grid (or an orthogonal grid using

a conformal step followed by independent algebraic stretchings) is used, a

byproduct is the solution for the two-dimensional incompressible flow as dis-

cussed later. This incompressible solution may often be used with a compressi-

bility transformation as an accurate first guess for an iterative solution of

the compressible problem, reducing the computer time needed to converge the ./"

iterative process. In addition, a suitable conformal mapping often automati-

cally provides a two-dimensional concentration of the mesh in regions of high I'

gradient (because the mapping modulus is independent of direction for a con-

formal mapping), without simultaneously producing a one-dimensional concentra-

tion where not needed. This allows the use of fewer grid points, which results

in faster calculations.

DESIGN IMPLICATIONS

A number of modern aerodynamic design methods, Refs. (2,3], wherein the

pressure is specified and the body shape giving this pressure is calculated,

use conformal transformation techniques. The computer programs required for
such a conformal mapping based aerodynamic design process are minor variations

of the conformal mapping programs required to generate an orthogonal grid.

For self-consistency, one might as well use the same routines for both. This

may prove to be a significant Justification for conformal grid generation.

COMPLEX VARIABLE NOTATION

Complex variable notation allows us to write the differential conformal

transformation, Eq. (4), in a compact form as

* In some computing installations, the charging algorithm recognizes this fact
so that the charge for a calculation only depends on the CPU time and not on
the product of CPU time and storage.

AN
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*.dx + idy - he (dE+idn)

or dZ - H d4

or Z -/P d J
or Z - F(;)

where Z - x + iy

and H - he1i

and C - & + in

Thus given the relation Z = F() we can easily calculate the mapping modulus as

4, h = | = fF'()l. Complex notation greatly simplifies the use of conformal

transformation techniques, and is well supported* on most modern computing

systems.

CONJDRHAL MAPPING

PJ Conformal mapping provides a surface correspondence that is not limited to

planar surfaces. Conformal mappings from non-planar surfaces, such as from

spheres or general cylindrical surfaces, to a plane have been employed by
'if! cartographers under the title of projections. We now will discuss some charac-

teristics of these different types of mappings, starting with some 
simple planar

mappings.

* Planar mappings, relating points in two different planes, are the most

famil.ar. An important planar mapping is the bilinear transform given by

(Z-a) (c-a) (;-A) (C-A) (5)

where the points Z a, b, and c correspond to the points - A, B, and C

respectively. It can be shown that Eq. (5) transforms circles or straight lines

In the Z plane to circles or straight lines in the C plane. A region at

infinity can be treated as a point in this equation. This mapping illustrates

that one may specify the correspondence of only three specific points between

planes (i.e., one may assign a, b, c and A, B, C in an arbitrary manner). The

bilinear transformation is often used after another conformal mapping step to

produce a canonical (or standardized) contour for the next step.

* A breakup into real and imaginary parts, and then using real arithmetic only,

can produce a two to one speed improvement on IBM systems. This means that
inner loops for heavily used routines should be considered for such a breakup.

_ %
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Often a contour is conformally mapped onto a unit circle and then the con-

formal transformation
- tn( )

- in(reie ) (6)

- tnr + ie

is applied, followed by the independent algebraic transformation

R trR-e -r
(7)

e e

to map the interior of the unit circle to the interior of the rectangle given

by

0 1 e i 2w .,

A uniform grid in this rectangle plane may then be constructed and mapped back

to the physical plane where the resulting grid will be orthogonal.

A simple conformal mapping to map a general axisymmetric cylindrical surface

onto a plane has been variously reported in the literature and is well recog-

nized overseas, Refs. [4, 5, 6, 7, 8, 9], but evidently not at present in the

United States. This mapping is given by

dZ - rd , (8)

where

dZ ds + ird8 , d A + idn , and
1

2 2
a - arc length along cylinder in axial direction J(I + ( L) ] dx. ,a

The modulus of this transformation is simply r, the radius in the cylindrical

coordinate system (x,r,e) describing the physical surface. For a constant

radius axisymtric cylinder, the radius r drops out of the flow equations and

one can think of simply unwrapping the cylinder, but in fact one is implicitly

performing a conformal mapping. For an axisymetric conical surface, the above

relation becomes

Z= (9)

21. <. ,.• .- ;_L A
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where * is the angle between the axis and the cone surface. One obvious use

of cylindrical mappings is in the generation of grids for quasi three-dimensional

blade-to-blade flow simulations for axial, mixed (meaning both significant

radial and axial flow components), and centrifugal flow turbomachines. For

= r/2, Eq. (9) reduces to Eq. (6) which has been used in Ref. (101 to map a

* centrifugal impeller with near log-spiral blades onto a two-dimensional cascade

of blades.

The requirements for constructing a useful geographical or astronomical map

-'? (i.e: local angles are preserved and the local scale factor does not depend

on orientation) are identical to the definition of a conformal mapping. Thus,

the mappings developed by cartographers to represent a spherical surface by a

planar map apply directly. Among such maps are stereographic and Mercator

*projections, and a more general projection used for star maps, Ref. [9).

Stereographic projections, invented by the Greek astronomer Ptolemy as cited

* in Ref. [11], were used to develop grid systems for the computation of super-

j sonic flow over conical bodies, Ref. [121, and more general bodies, Ref. [13].

A spiral groove spherical bearing lubrication study, Ref. [14], also used

S' stereographic projection. Stereographic projections have been known for 18

centuries; the recent innovation was in how to use them for flow calculations.

RIEMANN SHEET DETERMINATION ...

The bane of conformal mapping is the possibility of getting on the wrong

Riemann sheet, or equivalently, choosing an inappropriate root. Development

of conformal mapping computer programs would be substantially easier were it

not for the multivalued nature of many mappings. This section discusses

techniques that have proven useful for determining the appropriate root.

To illustrate the problem, consider the mapping

z = k (10a)

where k is a real nuber. We can express t in polar coordinates as

"*re ,
( + 2fn )  (lOb)

where n is any integer, since

Se12wn -1

Then kike ik2irn

1 iZ-rekek
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For a square root transformation k = 1/2, and the e
ik 2

i
n 

term is I if n is even

and -1 if n is odd so that there are two different solutions for Z for the same

C (while there is only one value of C for each value of Z). This multivalued-

ness can be visualized in terms of Riemann sheets, with each different value of

lying on a different sheet as illustrated in Fig. 1. For k - 1/3, there are

three values of Z for each value of ;. For irrational values of k, there are

an infinite number of values of Z for each value of C.

pp,

Z plane plane
FIGURE 1. RIEMANN SHEETS

A computer implementation of Z =1/2 using the CSQRT complex square root

FORTRAN function will return only the - ot having a positive real part; the

other root will be the negative of this root. It is up to the investigator to

provide program logic to choose which of these two roots is appropriate.

For k = 1/2, which is rather comn, physical reasoning can often be used

to select the appropriate value of Z. In particular, mappings using the

principle of :eflection (covered later) produce quadratic equations with two

roots which aie image points with respect to a circle. In this case one may

choose the root either inside or outside the circle based on physical reasoning.

For the square root transformation, as often used in airfoil or wing grid

generation, or the transformation,

Z ,, Z + ec I )

(11)1
p2
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which also has two roots and is often used for inlet grid generation, the root

selection is rather simple. Referring to Figs. 2 and 3, the initial value at

"A" is the root with a negative real value, and as one traverses the airfoil in

a clockwise direction and the inlet in a counterclockwise direction, the root

to the right of, and (of those remaining, if any) nearest to, the previous root

is chosen. This simple algorithm has worked well for a large variety of airfoil

and inlet grid calculations.

Z plane Z plane A

A

plane plane
SA B

FIGURE 2. AIRFOIL MAPPING FIGURE 3. NACELLE MAPPING

For a transformation inolvtng an irrational power of k near (but not

.* exactly) 1/2, there are many values of Z that lie near each other and the

selection is less obvious. The von Karman-Trefftz transformation, Ref. [15],

given by

---- = []k (12)

which transforms an airfoil in the Z plane into a near circle in the plane,

is one such case. When k y , the trailing edge is cusped and Eq. (12)

becomes the Joukowski transformation. f
One technique to deal with the root problem is that of "tracking", where one

chooses the value of n such that (0+27rn) in Eq. (lOb) is closest to the value

of (e+2wn) for a nearby point. The value of 0 is obtained from the real and

imaginary parts of r using the FORTRAN ATAN2 function, which returns a value

of e between -w and it. In ctl 1s manner one "tracks" the argument (0+2n) con-

tinuously along a curve and chooses n to make this argument continuous. There

remains the problem of how to choose the root for the initial point. This may

often be accomplished from knowledge of the behavior of the transformation at

the point in the mapped plane which corresponds to the far field in the physical

plane.

7
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Another method of root selection is to introduce a "branch cut" based on

physical reasoning, and then preassign n on each side of the cut. The choice

of root for a reflection mapping as described earlier is equivalent to using a

circle for the cut. For many problems the cut may be taken as a straight line

and is chosen so as to not cross the boundary being mapped. Some mappings may
require more than one cut, as illustrated in Refs. [161 and (171. Using a

branch cut can be considered as a static technique to preassign n on a global

basis, while tracking is a dynamic technique to determine n on a local basis.

It is not unusual, for complicated mappings, to occasionally encounter root

selection errors in a conformal mapping program which had been thought to be

resistant to such effects. This usually happens when attempting to map a

geometry significantly different from, but still in the same class as, the

geometry used to develop the program. For simple mappings (i.e: those quoted

so far in this discussion with the possible exception of Eq. (12)) root selec- .0

tion problems are not expected if the above techniques have been carefully

implemented. In any case, an error is easily detected by defining a uniform

grid in the rectangular computational plane and mapping this grid back to the

physical plane where it is plotted. If the physical plane grid is continuous,

does not overlap, and does not exhibit open sections or jumps, the roots have

probably been selected correctly. It is important to visually inspect the grid

created for each new geometry before it is used for a flow calculation if there

is any doubt on this point.

CLASSICAL MAPPING

The classical technique of mapping consists of mapping a contour (an airfoil,

a cascade, an inlet, etc.) to a near-circle by a single transformation or a

sequence of simple transformations. The near-circle is then mapped to a circle

by a near-circle to circle transformation, such as proposed by Theodorsen and

Garrick, Ref. (181.

The curve to near-circle transformation(s) often require a substantial level

of ingenuity and luck, and even then can fall prey to root selection errors.

In simple cases, such as for an isolated airfoil or an inlet, the near-circle

is actually near to being a circle. For other cases (inlet with centerbody far

inside or far outside, turbine cascade, small gap/chord compressor cascade), the

near-circle may not even resemble a circle. When this happens, the investigator

must either find a better mapping to a near-circle (which may not be easy in

practice, even after many years of experience), or change to a nonclassical

technique such as discussed later in the section on one-step mappings.

*.. .. 7 f,
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SEQUENTIAL MAPPINGS

For a complicated mapping of the form Z - f(), roots are often more easily

selected and the mapping is more easily created, if the process is broken up

into an equivalent sequence of simpler mappings. For instance, the von Karman-

Trefftz transformation of Eq. (12) can be restated as the sequence

Z-AZ- , (13a)

k n = , (13b)

r a-bn .a (13c)

The bilinear transformations, Eqs. (13a) and (13c) require no root selection,

while Eq. (13b) requires keeping track of only a single angle. Other schemes
kmay require the separate tracking of the angles related to both the (Z-A) and

the (Z-B)k term.

The logarithmic transformation, Eq. (6), and its inverse

e "ez (14)

are the key elements of conformal mappings for a cascade of airfoils, such as

Z; ::occur in trbomachinery. For this case, there are an infinite number of

identical airfoils in the Z plane, all of which map onto the same contour in

the plane. When mapping from the C plane to the Z plane, the correct root

is the one that "tracks" a nearby point; the other roots will be different by

an integral multiple of 2w in the vertical (or imaginary axis) direction. Most

of the cascade mappings which the author has seen, Refs. [19]. [20], [211 and

(221, can be restated as a simple sequence* with Eq. (14) (possibly combined

with a bilinear transformation) as the first element.

As a general principle, it is highly recommended for mappings of the form

Z - f(r) that a complicated mapping be restated as a sequence of simpler map-

pings for actual implementation in a computer program.

NEAR-CIRCLE TO CIRCLE MAPPING

If an orthogonal grid is desired, the mapping of a near-circle to a circle

is often chosen as one-step of the mapping process. Although there are now a

plethora of ways to accomplish this mapping**, the classical techniq.ae is that

of using the Theodorsen-Garrick transformation, Ref. (18], given by

, * The author has not yet been successful in breaking up the Garrick transform,
- Ref. (23], into a simple form.

** Including panel techniques, Schwartz-Christoffel techniques, and elliptic

techniques with orthogonal boundary control.
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J=N

E(a +ib W

z J- J J
- (15a)

. ,or, in its derivative form by

2(a +ib )c
dZ . e J- (15b)dC

What is frequently not appreciated is that when Eqs. (15a, 15b) are implemented

in the required iterative manner (see Ref. (18 or 24] for details), the itera-

tion may not necessarily converge unless the near-circle is sufficiently "near"

to being a circle. In particular, there is a requirement on the maximum value*

allowed for dO ! for the mapping in Eq. (15a), where r and 0 are the polar 4
*I dG

coordinates describing the near-circle. For the vast majority of airfoils, the

classical von Karman-Trefftz transformation produces a near-circle that meets

the above requirement. For turbine cascades, on the other hand, the above

requirement is usually not met. It is possible to underrelax the iteration,

but the required underrelaxation parameter may need to be quite small for

Eq. (15a) to ensure convergence, resulting in unrealistic computation time

requirements. The form given by Eq. (15b) is much less sensitive, and with an

underrelaxation factor of .5 has conver ed even for a case where r was a

multiple-valued function of 0, so that was infinite: Obviously, the

convergence criterion for Eq. (15b) is substantially different than that

derived for Eq. (15a) in Ref. [25]. In short, if one uses the derivative form,

the chances for success are much higher. Of course, the derivative form

requires the integration of a complex function, but an excellent technique

using a spline exists as discussed later. Both of the above forms can employ

fast Fourier techniques, as in Refs. (24, 261, to efficiently evaluate the f''

series ,(aj+ibj) 1 at evenly spaced increments on the unit circle in the C

plane and thus keep the required computing time modest.

ONE-STEP MAPPINGS

A one-step mapping maps a contour onto a canonical shape, such as a circle

or the real axis, in a single step. Such transformations are usually given in

derivative form, namely -f().
dZ

• For a relaxation parameter of unity, this maximum value is .2955.
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The classic Scharz-Christoffel transformation for a polygon with N straight

sides takes the form

dZ j-N k
dZ= j1 ('b (l )

while for a polygon with curved sides, Davis, Ref. [27], uses a differential

form of the product term in Eq. (16) so that

/i
1. tn( -b) dB

dZ = e7 (17)
dz

where 8 is an angle related variable. Davis employs a composite integration

formula to resolve the curvature effects. Equation (16), as used by Skulsky,

Ref. [281, can be considered a subset of the Davis technique. The Davis tech-

nique has been successfully employed in Refs. [121, [291, and [30] to map a

wide range of complicated configurations.

An alternative is to use the form

J-N
,' ~(a.+ib.) j ""

'dc g(c)e 
"  (18)

where g( ) is chosen to resolve angles or general behavior*, while the expo-

nential term accomts for the curvature. This form can take advantage of fast

Fourier techniques to evaluate the coefficients a and bI.

One example of such a mapping is given by

J-N
k _ F(aj+ib i)C - j  

f .
9 ]k

which is used in Ref. (261 to map an airfoil in the Z plane to a circle in the

Splane. Another mapping of this type is given by

* The g(;) function is easily constructed using the Schwarz-Christoffel tech-

nique, as illustrated in Kober, Nehari, or Hilne-Thomson, Refs. (311, (321

or [331.

1 *,. - ,.- *.**,
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J-N

dZ e -. 0  (20)
dc (l-iO) (C+l) 2 (-el)

where

R0 - 1 + 2 A,-,

and

C . nose radius
inlet interior radius

This mapping was developed by the author to map the region exterior to a semi-

infinite inlet and above the centerline to the interior of a circle as illu-

strated in Fig. 4. A similar form, suggested by Jameson, Ref. [34], given by

J-N

2 F(a +ib )c.
dZ eJ-O . J= , (21).- - -d- .t+1)3(1_ ;) ;

was used to map an inlet and centerline to a half circle as illustrated in

Fig. 5.

mM

zPbMi z -b rb

A- -- B .A-----

FIGURE 4. INLET TO CIRCLE MAPPING FIGURE 5.
INLET TO HALF CIRCLE NAPPING

The latter mapping did not adequately resolve the exterior inlet contour far

downstream (but was good otherwise), while a mapping based on Eq. (20) ade-

$quately resolved the inlet in all areas. The reason is that the evenly spaced

point distribution (as required by fast Fourier techniques) on the ; plane

circle is too sparse when transformed back to the Z plane to accurately repre-

sent the nacelle far downstream for Eq. (21). This example illustrates the

need to choose the correct canonical domain. Of course, the two canonical

domains are related in a simple quadratic manner through the transformation

2
1 V I " |€ , (22)
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which transforms a unit circle in the Z plane to a unit upper half circle (and

to the real axis from -1. to 1.) in the 4 plane as illustrated in Fig. 6.

I

Zpbns rpIUII

A A ,

FIGURE 6.
, CIRCLE TO HALF CIRCLE MAPPING

The one-step mapping of Eq. (18) is far simpler to program* than the con-

ventional classic technique described earlier, converges stably and rapidly,

and is easy to modify later for a new class of geometries. If one wishes to

use fast Fourier techniques for conformal mapping, Eq. (18) is recommended as

*r the method of choice rather than using a sequence resulting in a near-circle

4 followed by a derivative transform like Eq. (15b), especially since Eqs. (18)

and (15b) differ only by a very few lines of computer code.
It is recommanded that one should not expect the Fourier series in Eqs. (15a),

(15b), or (18) to resolve a slope discontinuity by the sheer brute force of a

large number of Fourier terms. One might "get away" with doing so for small

* . discontinuities in slope (e.g ., 5 degrees) where a high accuracy near the dis-

continuity is not required, but for larger slope discontinuities the accuracy

and convergence of the transformation will suffer. It is easy to remve such

slope discontinuities using the hinle point transformations covered next or by

incorporating slope discontinuities into the g(c) term in Eq. (18) so that the

Fourier series only has to resolve a function with a continuous derivative.

HINGE POINT TRANSFORMATIONS

At the other extreme from one-step mappings, the hinge point transformations

due to oretti and Hall, Refs. [17] and [35], break the problem up into a

large number of sequential applications of a single mapping. For problem with

a plane of symmetry, Moretti applied a von Karan-Trefftz transformation to each

pair of slope discontinuities in turn, to produce a smooth near-circle. Hall

* Note that the computer program in Ref. [26] can be easily modified to imple-
ment a mapping using Eq. (18), instead of using Eq. (19) for the airfoil.

I "1
.*....2*'.
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repeatedly applied the transformation Z (c-to)k (Eq. (lOa)), where c0 and k

have been chosen to remove the left-most remaining slope discontinuity at each

stage, to produce a smooth near half plane. Once a near-circle or near half

plane is obtained, a non-conformal shearing or a conformal mapping can be used

to produce a canonical domain.

MULTIPLE BODIES

Techniques to map multiple bodies can be classified as simultaneous, sequen-

tial, iterative, and periodic. This section discusses these techniques.

A simultaneous multiple body mapping maps two or more bodies simultaneously

to near-canonical or canonical domains. The single mapping

TTT=NZ--ZTL1 (23)

J- NJ k-l N1

taken from Ref. (24] simultaneously maps N airfoils to N near-circles. The

Garrick transformation in Ref. [36] simultaneously maps two concentric near-

circles to two concentric circles.

A sequential multiple body mapping maps two contours to canonical contours "

by first mapping one contour to a canonical contour, then mapping the second

contour to a canonical contour while preserving the nature of the first

canonical contour. Two examples of this are given in Ref. [24], where trans-

formations are given to map an airfoil to a near-circle (or to map a near-circle

to a circle) while keeping a nearby circle a circle. Another example is illu-

strated in Pig. 7, where a centerbody is mapped onto the real axis using a

technique similar to that in Ref. 137], and then a nearby inlet is mapped to a

circle, using the Eq. (20), while keeping the real axis a straight line.

0, 3,

ksWsmAtp " M'

FIGURE 7. IULET/CENTERBODY TO
CIR( LE MAPPING SEQUENCE

1L " : .'.$
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After doing a number of problems both simultaneously and sequentially, the

author has found that a sequential multiple body technique usually works better

in practice than a simultaneous technique since the branch cuts required to

resolve the root selection problem are simpler. This more than balances the

increase in computer time* required for a sequential approach.

An iterative technique to map multiple contours to canonical contours has

recently been developed by Halsey, Ref. (38]. In this technique each contour

is individually mapped to a circle in sequence, with no special constraints

on holding the other contour shapes. By repeatedly cycling through all the

contours one at a time, the contours are all mapped to circles to engineering

accuracy. That this process converges is not particularly surprising; what

is surprising is that only about five cycles through all the contours are

required to achieve four digit accuracy for practical cases.

A periodic mapping maps a finite or infinite number of identical (but other-

wise displaced or rotated) contours onto overlayed (but otherwise identical)

contours on different Riemann sheets. As an example, the logarithmic trans-

formation of Eq. (6), when appropriately scaled, maps a cascade of airfoils in

4 the w plane onto a single (highly distorted) airfoil-like contour in the c

plane. The transformation Z - C (which is a subset of Eq. (10a)), where N is

an integer, maps a region with N angular periodic boundaries in the Z plane onto

a region with one periodic boundary in the 4 plane. By these means, a periodic

configuration can be reduced to a form wherein the periodicity condition reduces

essentially to a continuity condition (except for circulation-type terms

associated with branch cuts).

. CREATING NEW MAPPINGS

This section includes a discussion of a few general techniques that can be

used to create new conformal mappings, and some restrictions to keep in mind

while doing so.

The first step when considering the development of a new mapping is to --

verify that the desired mapping has not already been created. The boot by

* Kober, Ref. (311, includes an extensive survey of mappings developed up to the

mid 1940's, and should be reviewed first. The reference aterial in Table 1,
included later in this paper, can be consulted by topic. If none of the above

include the desired mapping, a careful literature search may be warranted. Only

when the investigator is reasonably sure of not "reinventing the wheel" should

a new mapping be attempted.

* A 2-body sequential approach may typically require twice the computer time of
a simultaneous approach.

-e4

W.1
ampF*t I~ L ' 1 . ,*•!



TI

124

If the complex potential w for the two-dimensional incompressible flow over

(or through) a body is known, i.e., if

i - +it - f(z)

is known, then the mapping from the Z plane to the w plane (with coordinates

(#.*)) is known. Thus,knowing the incompressible flow is equivalent to knowing

the mapping from the Z plane to a rectangle in the w plane, and vice versa.

This principle can be used to construct conformal mappings. In particular, a

"panel method" potential flow program can be used to construct a conformal

mapping, Ref. [391.

Another technique for the creation of new mappings can be summarized by the

description "guess and plot." Using this technique a function having appro-

priate zeroes, poles, and singularities is guessed*, and its effect is deter-

mined by plotting a transformed contour or a transformed grid. About one third

of the functions this author has guessed over the years have had the appropriate

action, indicating that this technique is more viable than might be thought at

first glance. 1*

Since a conformal mapping is simply a functional relationship, if one knows

Z= f(W) ,
and

then one has
Z =- l(O)

In short, if one knows how to map two different contours to the same contour,

then one can cap one of these contours onto the other, Refs. [311 and (40].

Put another way, a conformal mapping of a conformal mappirg is a conformal

mapping. One then begins to think in terms of building up a sequence of map-

pings, with each step bringing a contour closer to a canonical contour such as

a unit circle. Thus by combining known mappings in a new sequence, one can

construct new mapping.

In generating an orthogonal grid with conformal mapping, there are two

processes involved. The first process is to conformally map the desired con-

tour (i.e: an airfoil, or inlet, etc. ... ) to a rectangle (or equivalently

to a circle or half plane). The cumputing time required for this step is often

* These singularities, poles, and zeroes are placed at points on the contour " .
where the slope is discontinuous, and when necessary (e.g., near regions of
high convex curvature of the contour), inside the contour along a line join-
ing the local contour point of maximum curvature and its center of curvature.
How far along this line depends on the total slope change nearby, and the
singularity powers also depend on these slope changes.

1
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nearly linearly* proportional to L, the number of input points. The second

process is classically to map an orthogonal rectangular grid in the mapped

plane back to the physical plane. This involves a computing time proportional

to MxN, the total number of grid points. It is common for MxN to be substan-

tially larger than L. This implies that the forward transformations can be

somewhat inefficient (i.e., implicit) but the inverse transformations should

be efficient (i.e., explicit), if possible. This should be kept in mind when

creating mappings that are to be used to transform a grid back to the physical

-. plane.

When creating new mappings, one principle to be followed is "do not create

- singularities** within the flow field"; however, singularities are often neces-

sary and completely acceptable within a body, on a bounding surface, or at

images of "infinity." An example of creating a singularity within the flow

field is shown in Fig. 8, taken from Ref. (19). Figure 9 from this same

reference shows a grid system with the same number of grid points which is

* better suited for flow computations. The above principle was used in Ref. [24]

to determine some mapping parameters that were otherwise undetermined. With
3'

another choice of parameters, the mappings therein looked something like those

* in Fig. 10 rather than like those in Fig. 11 where the parameters were chosen

to obey this principle.

FIGURE 8. GRID SYSTEM WITH FIGURE 9. GRID SYSTEM WITOU
SINGULARITY IN FLOW FIELD SINGULARITY IN FLOW FIELD

* Actually the operation count goes as LxZn 2 L, as dictated by using fast Fourier
techniques for Eqs. (15a), (15b), or (18).
** A singularity occurs when d - 0 or infinity.dC

, 
. 1.
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.
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FIGURE 10. INCORRECT CHOICE OF FIGURE 11. CORRECT CHOICE OF

MAPPING CONSTANTS MAPPING CONSTANTS

REFLECTION PRINCIPLE a

It is possible to map a contour to a desired shape while simultaneously

keeping a nearby straight line straight by using a reflection principle. If

the relation

f(Z) = g(0

conformally maps a contour from the Z plane to the plane in a desirable

manner, then the relations

f(z).?(Z) - g(o')(i) (24a) " -

and

f(Z) = (24b)

(z) ( )

where the superscript "-" denotes the complex conjugate operator, will both

have a "similar"* effect but will preserve the shape of the real axis. A

proof of the real axis shape preservation is outlined in Appendix A. Examples

involving mappings symmetric with respect to a line appear in Refs. [161 and

[17]. An extension of the above concept allows the construction of mappings

which preserve a circle by utilizing operators involving image points with

respect to circles rather than the complex conjugate operator. Examples of

circle preserving mappings are contained in Refs. (24] and [361. The question

of whether to use the product mapping, Eq. (24a), or the ratio mapping,

Eq. (24b), can be resolved by simply programming both and then choosing the

one which produces the most desirable effect.

* "Similar" is taken here to mean not identical, but generally of the same

nature.

"M * -- .. ",4 %. ,4 4 4



127

CALCULATING THE GRID

Recently, Sockol and Adamczyk in Refs. [39] and [41] have observed that the

generation of an orthogonal grid can be broken down into two independent steps,

namely;

1) calculation of the boundary point correspondence between the

physical and computational planes by means of conformal mapping

or some other orthogonality preserving technique, and

2) the generation of a grid given this boundary point correspondence.

This observation is to conformal grid generation as the finite volume (or

finite element) technique is to flow calculations; it breaks the grid genera-

tion problem up into two nearby independent steps just as the finite volume

technique breaks a flow simulation up into two nearby independent steps

(namely the generation of a grid and the solution of the flow equations on the

grid). This allows a great deal of flexibility to be attained. In short, what

is the most efficient, simple, or general technique required to complete

step #1 (which is basically a boundary operation) is not necessarily the same

" as the most efficient, simple, or general technique required to complete

i"__ step #2 (which is basically an area operation). This represents a major step

forward in orthogonal grid generation. This section reviews some methods used

to complete step #2.

One obvious way to generate an orthogonal grid is to invert the conformal

mapping used in step #1, and then map an orthogonal grid constructed in the

computational plane back to the physical plane, as mentioned earlier. If one

has used an algebraic stretching in the direction tangential to the body to

create the computational grid, fast Fourier techniques cannot be easily employed

in the mapping inversion. Depending on the mapping complexity, the number of

7 Fourier terms, and the presence of implicit expressions in the inverse mapping,

* .the creation of a grid at NxM points can require the order of CxLxNxM operations,

*1" where L is the number of Fourier terms and C is a relatively large constant.

* " In practical terms, this can require about six seconds of time on an IBM 3081

computer for a typical* case. For a non-stretched isolated airfoil mapping,

where fast Fourier techniques can be used in the inverse mapping, a typical

grid can be generated in about two seconds of IBM 3081 computer time, once the

conformal mapping is known.

* For the purposes of this paper "typical" means a 128x32 grid using 256 Fourier
terms for an inlet/centerbody configuration, unless otherwise specified. The
IBM 3081 computing time quoted can be taken as roughly equivalent to an equal
amount of CDC 7600 computer time.
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Another way to generate an orthogonal grid is to solve a Laplace problem

(with Dirichlet boundary conditions) on the computational grid for both x and y

(the physical plane coordinates), which are known on the boundary as described

in Refs. [39] and [41]. Since the Laplacian operator will retain orthogonality,

the (x,y) values thus calculated will describe an orthogonal grid in the

physical plane. A fast Poisson solver, Ref. [421, with an operation count of

CxNxMxtn2N, where C is a relatively small constant, may be used to solve the

Laplace problem. For a typical grid, this will require about two seconds on an

IBM 3081 computer. This solver is sufficiently general even for use when

independent stretchings are used following a conformal mapping to generate the

rectangular grid in the computational plane.

THREE DIMENSIONS

Conformal mapping is basically a surface technique, but it can be used as

one component of a three-dimensional grid generation system. One example is

shown in Fig. 12, taken from Ref. [16], where a three-dimensional inlet/

* centerbody grid was constructed using conformal mapping in each circumferential

plane, or slice, followed by independent algebraic stretchings to construct an

orthogonal grid in the sliced plane, one of which is shown. The resultant j
three-dimensional grid is orthogonal in two directions, but not in the third.

Similar techniques are used to construct near-orthogonal grids in Refs. [13],

[43], and [44].

REFERENCE MATERIAL

The following table summarizes a limited amount of reference material for

conformal mapping of aerodynamic configurations. The book by Kober, Ref. [31],

is particularly useful when attempting to map a new configuration. The paper

by Moretti, Ref. [45], is highly recommended as an alternate review of the f*

field.

-01 _
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FIGURE 12. PERSPECTIVE VIEW OF

THREE-DIMENSIONAL COORDINATE SYSTEM

TABLE 1 - A LIMITED SET OF CONFORMAL 14APPING REFERENCES.

Subject References

General - Papers 27, 28, 40, 45, 46, 47, 48
General - Books 11, 31, 32, 33
Airfoil 18, 24, 26
Airfoil with Spoiler 49
Two Piece Airfoil 24, 36, 38
Multiple Bodies 24, 38
Inlet 16, 50, 51
Inlet with Centerbody 16
Axisynetric Body 37
Cascade 19, 20, 21, 22, 23, 39, 41
Non-Planar 4, 5, 6, 7, 8, 9, 10, 12, 13, 14
Symmetric 16, 17
Ducts 27, 29, 30
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PACKAGED TOOLS

To accomplish simple conformal trannformations, one does not need much in

the way of supporting tools. For more complex transformations, a number of

packaged tools can substantially simplify program development. Among these

tools are spline fits, fast Fourier transforms, efficient matrix techniques,

fast Poisson solvers, near-circle to circle transformation packages, and good

graphics. The need for, use, and availability of these packages is covered in

this section.

Happing procedures often require interpolation between points. A spline fit

is a good way to accomplish such an interpolation, Ref. (521. In addition, it

may be necessary to numerically integrate a function. Such an integration can

be accomplished by analytic integration of a spline passed through the function

values. A spline routine accomplishing both of these objectives is listed in

a FORTRAN program form on pages 279-281 of Ref. (261. By simply declaring all

floating point variables in this routine as COMPLEX, this program is suitable

for integrating a complex function. The derivative form of transformations of

Eqs. (15b), (16), (17), and (18) require such an integration.

A fast Fourier transform, such as given in Ref. [26], is a key element of an

efficient implementation of transformations using Eqs. (15a), (15b), or (18).

The program liating contained within pages 202 to 240 of Ref. [261 uses fast

Fourier techniques, and makes a good starting point.

The LINPACK package available from the Society for Industrial and Applied

miathematics (SIAM), Ref. [53], contains linear equation solvers that can be

useful in mapping operations. If one uses a near-circle to circle transform

at unevenly spaced points in the circle plane (namely at points corresponding

to the input points in the physical plane), fast Fourier techniques cannot be

used. By using LINPACK routines on a fast computer (i.e: IBM 3081) moderate

computation times (about one minute of CPU time) are required for a representsa-

tion involving one or two hundred points. A typical FFT mapping time for the

same number of points is two seconds.

Fast Poisson solvers are available for filling-in the grid, as mentioned

previously. A rather versatile fast Poisson solver is reported in Ref. (421.

Good graphics routines for plotting intermediate contours and grids have,

in practice, been found to be the most important element of the process of

inventing now mappings, or new combinations of mappings. By using extensive

graphics, a defective mapping is soon discovered with little effort. This

allows a wider range of functions to be tried (guessed) in the given amount of

time allowed for completion of a project. The graphics package must be general

'.." w ----.- . . -----
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enough to plot both contours and grids and should be accessible by a simple

subroutine call. It is not unusual to plot fifty different intermediate results

during the development of a mapping sequence such as that in Ref. [161. Of

course, each plotting call is sequentially commented out, but not deleted,

during the development process. Such an extensive use of graphics greatly

simplifies debugging, but would be unbearably tedious without a simple calling

sequence. Since graphics tends to be tailored to a particular computer

installation, a sufficiently versatile and easy to use package often must be

written locally and thus is not usually available to the public.

CLOSING REMARKS

- 3Hodern finite volume flow solvers do not require an orthogonal grid, but a

near-orthogonal grid is usually beneficial. Often a simple conformal trans-

formation, followed by independent algebraic transformations, can be used to

generate such a near-orthogonal grid with little difficulty to be expected in

a computer program implementation. This is a good way to get involved with
, con formal mpping.

The conformal mapping of a contour onto a canonical contour is far easier

to accomplish using a one-step technique based on Eq. (18), as opposed to€I
classically mapping a contour onto a near-circle and then mapping the near-
circle onto a circle. This is especially true since Ref. (261 contains a one-

step conformal mapping computer program which is easily modified to map new

geometries. This one-step mapping technique is faster, simpler, mre resistantF to root selection problems, and more stable than the classical technique.
It is not necessary to generate the grid using the inverse of the transform

Pemployed to map the contour to a canonical contour. In fact, it would seem

that use of a fast Poisson solver to generate the grid using the known boundary

correspondence offers a flexibility, simplicity, and economy that may not be

surpassed by other methods.
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APPENDIX A

-PRODUCT MAPPING

Consider the product mapping

f(z).?(Z) - g( )'j() - = - + it

The real axis in the Z plane can be specified by the relation Z - Z, so on

*the real axis

f(z).?(Z) - f(z).(2)

-* I- pure real + i*

Therefore, the real axis Z -Z map to the real axis 0 - 0 in the w-plane.

In a similar maner, the real axis C - G also maps to the real axis * -0 in
the w plane. Thus the real axis 2 = maps to the real axis C - C.

* ,RATIO MAPPING

Consider the ratio mapping

f (Z) jZ
S. -I .(z)

... ... .. . ..... ....... . . .... .. . . . . . .
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APPT IX A (continued)

The real axis in the Z plane is specified by Z Z -, so on the real axis,

to fz Z e 4S2

Tm~

, ; ,,pure iseginary - + i*

- " Therefore, the real ais Z - Z maps to the imaginary axis " 0 in the w

plane. In a similar manner, the real axis C - C also maps to the imaginary

axias 0 in the w plane. Thus the real axis Z Zaps to the real axis

6

tM. i

p

'4..
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A RLGEBRAIC GRID GENERATION
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Hampton, VA 23665 :A
ABSTRACT

) Three methods are described for transforming grids in bounded two- and three-

dimensional physical domains into a uniform grid in a rectangular computational I

domain. The methods are based on mathematical interpolation functions

and do not require the solution of differential equations or the use of complex

variables. They are simply referred to as algebraic methods and are called

transfinite interpolation, the multisurface method, and the two-boundary

technique. The primary advantage of the methods is that they provide explicit

control of physical grid shape and physical grid spacing. Secondly, they .

require relatively few computations. Consequently, the application of inter-

active computer graphics in conjunction with the methods is advocated for rapid

generation of grids. The basic mathematical structure of each method is

described, and particular attention is given to surface representation,
paramter variable generation, and control function generation. Physical

boundary topology and grid derivative requirements are presented.

.NOMENCLATURE

a,b,c vector valued representation of surface points

A,B, C vector valued representation of surface derivatives

a function relating normalized arc length to the computational

variable spanning between surfaces

magnitude of vectors tangent to a spanning function

f,g,h control functions
,vector valued representation of the physical domain
FI, intrmediate vector valued representations of the physical domain

G integral of interpolants

JJ-1 Jacobian matrix, inverse Jacobian matrix

" control parameter in a grid concentration function

L,N,M number of defining points in the I, J, and K directions in

the physical domain

r,s,t normalized arc lengths

S a set defining points on a surface

rI
FP19VOUS PA~

n BA
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SC a set defining points in the computational domain

Sp a set defining points in the physical domain
.S vector valued representation of a surface

T orthogonality magnitude coefficient

V vector tangent to a piecewise linear curve

uvw dependent variables from the physical domain

x,yz physical coordinates

XY, Z physical coordinate functions

01#01Y Bblending functions

6 kronecker delta function

Xblending function for linear interpolation

blending function for cubic interpolation

* rs, t computational coordinates

A,AriAc increments for a uniform computational grid

Superscripts

n,m nth, mth partial derivative
' ,. t Subscripts

IJ,K index for known points in the physical domain

k index for surfaces

£index

~INTR ODUCTION

The numerical solution of partial differential equations about irregular

geometries and with varying characteristic scales has created the need for

coordinate systems and associated transformations that reflect both geometric

and physical requirements. Coordinate transformations can complicate the basic

equations of motion,1 '2 but they can simplify the application of boundary

conditions and refine solution accuracy in critical regions. The process of

finding coordinate transformations in discrete representations is called "grid

generation," and in this paper three algebraic grid generation methods are

examined. The methods are transfinite interpolation, the multisurface method.

and the two-boundary technique. Interpolation forulas in term of homotopic

.* appings3 and constraints in term of point positions and/or derivatives

are the essential elements of the techniques.

Transfinite interpolation4 described by Gordon and Hall in the early 1970's

is a highly generalized algebraic grid generation method. It is an outgrowth

of methods of surface definitionS pioneered by Steven Coons. Tranfinae

interpolation is applied through a series of univariat interpolations where

,. , . -, ,"sA

f0 3-
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blending functions and the associated parameters (point position ad/or

derivatives) determine a grid. ZrikSSon 6 and RiAzi and Zrkssa 7 have adapted

the original transfinite interpolation formulation to use only exterior boundary

descriptions and derivatives of certain boundaries. They have also incorporated

exponentials into the blending functions to concentrate the grid near an

exterior boundary. The developers of the GIM code 8 '9 use transfinite interpola-

tion for grid generation. They define boundaries in terms of algebraic

geometric formulas (linear segments, circular arc, conic, etc.) and use linear

blending functions for the interior grid computation.

The maltisurface mothodloll developed by Peter iseman provides formulas

- for grid definition based on grid descriptions of two boundary surfaces and an

arbitrary number of intermediate control surfaces. Choosing interpolants

(defined similar to blending functions) and the placement of the control

- surfaces determines grid shape and spacing. The multixsurface method has been

* used by Ziaeman in numerous applications1 2 1 3 but moat notably for computing

grids about turbine cascades.
1 2

The two-boundary technique 1 , 2 ° 1 4 described by this author is based on the

, 4 description of two exterior boundaries and the application of either linear or

hermite cubic polynomial interpolation to compute the interior grid. For

cubic interpolation, surface derivatives combined vith magnitude coefficients

control the orthogonality of the grid at and near the boundaries. Igowski, 1 5

applying the two-boundary technique, extended the derivative magnitude coef-
ficients to a functional form for variable orthogonality control.

Four additional topics are discussed. They are surface parameterization,

grid spacing control, grid topology, and grid computation. These topics

oompliment the basic mathematical structure of the algebraic grid generation

methods and should be considered in their application. An introduction to

boundary-fitted coordinate systems, which sets the stage for grid generation,

precedes the description of the algebraic methods.

UNDMN-FZTTZD C)DNA!U TMASFR!ZONS
The motivation for discrete coordinate transformatims or grid generation

is the numerical solution of partial differential equations. Numerical solu-

* " tions are obtained by either finite difference or finite element techniques,

however, the emphasis here is directed at finite difference methods. Normally

equations of otion are derived relative to a Cartesian coordinate system.

When boundary conditions must be applied on irregular subdomains of the

Cartesian coordinate system, and when there axe regions within the subdommain

,+ , . + .+ + + +,+ +?;+. 7. - .. . -

: . .. ° ' '-++ "+ -++ + +"+ 3'++ + ,; '+ +'' ' , •: +
;+ + .+. 1, -+ . .
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that have rapidly varying solutions, it is desirable to transform the equations

to a more appropriate coordinate system. Anr ideal coordinate system for

obtaining numerical solutions is a boundary-fitted coordinate system where the

physical boundaries of ani irregular subdomain transform into exterior boundaries

of a rectangular region, arnd where regions of rapid change are amplified. If

the bounded subdomain of the Cartesian coordinate system is called the physical

domain, then the rectangular coordinate system where a solution is obtained is

called the computational domain ( Fig. 1). A transformaticn between the two

Physical

Computational *dmi

domain

T) y j
*Fig. 1. Computational domain--physical domain

domains is a unique single valued functional relation. This is represented

symbolically by letting x, y, and z be coordinates in the physical domain

and , ni, and be coordinates in the computational domain, then

E - (x,y,z). n = f(x,yrz), oxr -)

and conversely

x - x(t,fl,t), y -Ymo,r z -ano

The bounds of the computational domain are defined by

0 << 11

4..-

4, . - -~.. . .K'r~ '(~ L~4 tt
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Fig. 2. Computational grid

A uniform grid (Fig. 2) is superimposed onto the computational domain by letting

=constant,

An constant,

A =constant 3

Given the functional relations

x y and z -=

the uniform grid in the computational domain is transformed to a corresponding

grid in the physical domain.

in order to transform the equations of motion, partial derivatives with

respect to the independent variables %, y, and z must be transformed to

partial derivatives with respect to the variables F, n~, and C. For example,

if u, v, and w are velocities in the x, y, and z directions in the

equations of motion, then the first derivatives of u, v, and w with respect

to x, y, and z are transformed to first derivatives with respect to

, , and r by chain differentiation. That is

. I. ---. .- , ' . °- ." -- a .
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au au au1  -au au au

v Bv 3v Dv av arl r a al
T- 5-Y 3w rc In- R ~ Tx- y TZ

3~w 3w av aw aw 3w a

The matrix

3x ay z

3x iy 3z

is the Jacobian matrix of the transformation. If the functional relations

t (x'y'Z),I n - fl(X#y#z)t anm 4 0 4(xFyPz)

are known, then the Jacobian matrix can be directly found by differentiating

the functions. It is not necessary, however, to explicitly know &, 11, and

C as functions of x, y, and z to determine the Jacobian matrix. The

inverse Jacobian matrix

ax ax ax

an a

3z 3z az

* can be obtained by differentiating the functions

x - x r, y - y(ar1,o;) and z - z(af,,l)

A
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with respect to , , and t. With these derivatives

j = Transposed of Cofactor (J-)

where lI-ll is the Jacobian determinate.

ax ax ax

az az az

axsa z a z a az aa

Lx a~ a X a

Thus

!I,

a az 3 3 axaz ax as axa axa

- n- T -) - RI li - Rx in)

(j a z a

G&u Q ac TZT (aiI X" 1

;az -aaz (ax az _ax (z ax x )

provided liJ-l 0. Higher derivative analysis can be pursued in a similar

fashion. For more information on the transformation of partial differential

* equations the reader is referred to Reference 11.

It is rare to find algebraic expressions of the computational coordinates
as functions of the physical coordinates. The preferred approach is to

express the physical domain as a function of the computational domain and

differentiate the physical grid with respect to the computational grid. It is
very important that derivative evaluation be performed and

|.
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incorporated into the finite difference approximation of the equations of

motion in such a manner that geometrically-induced errors are not created.

References 17 and 18 address this subject.

ALGEBRAIC GRID GENERATION METHODS

In this section three similar algebraic grid generation techniques are

discussed. The objective is to outline the mathematical structure so that the

techniques can be compared for common salient features and individual merit.

Each case is based upon the computational domain and the physical domain

presented in the previous section. Intermediate functions which enhance the

control of grid spacing may also be postulated.

Transfinite interpolation

Probably the most recent and comprehensive description of transfinite

interpolation for application such as those arising in computational fluid

dynamics is presented by Rizzi and Eriksson. 7 This description generally

follows their format. A transformation from the computational domain to the

physical domain is a vector-valued function

L y(;,n,) (1)

where

0o-C< 1~, "0 < YJ< 1,

0 < < I.

The first formulation of transfinite interpolation, which we call the "point

method" is based on knowing a sparsely-organized set of points in the computa-K M

Jm

tional domain Sc C I- T ;L3X KIK and the corresponding point set in

la'I.jai

J"J
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K-4

J-N

the physical domain SP, = ZK YZJ, 'ZJ4 Note that the set S C is

J-l

I-I

not the uniform computational grid. Each point in the computational domain is

at the intersection of three perpendicular planes, and in the physical domain

each point is at the intersection of three surfaces (Fig. 3). The vector -

valued representation on each surface is given by

Sc Sr

* Fig. 3. Tranafinite interpolation--point description

- yv 1 'i,,, =I~l..L,(2a)

x(E',flC ;

x(~ K

r(E,fl,;,) - y(&,,;K cKMA,r K-1 ... K. (20)

L. Z(&InAK _

kX
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Interpolation between the points in the physical domain is performed by defining

a set of blending functions:

B 11.J- ..L

7. Y00C; X-1l... M,

with the conditions

MI(A P a61, b*' L

Si (fi ) . I 6 i'E1.. NH

where

it 01Ki

KI

The transfinite interpolation method is the application of the recursive

t algorithm

L

-'5'ci1 C) 1 CfC),(3a)

.A It'll
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N

S2 (&.q. )-l(,n,;) + M B(E)Lj,4)- F (E,n ), (3b)

J-1

2 2

K-1

Each step of the algorithm is a univariate interpolation in one of three pos-

sible directions, or the steps can be combined into a single equation. Also,

if it is assumed that F(C,n,t) is continuous, the order of the interpolation

direction is not important. obviously, a large quantity of geometric inform-

tion is required to define a grid. Deriving appropriate blending functions is

the key element and it can vary from one grid problem to another.

Eriksson5 uses only the outer boundary surfaces (Fig. 4) and out of surface

derivatives at certain boundaries to define an interior grid. This is reason-

able since normally a great deal of geometric information is known at bounding

surfaces, but not always away from them. Erikason's presentation is as followsIJ iand is referred to as the "outer surface" method.

•~ ~ ~ ~ ~ ~~21 n. o "';- ,~)( __ B;

rn  ari ,,

n , nto - -s

nn

1~,nf

N - 0.1.2...

Fig. 4. Transfinite interpolation--outer surface description

Let

• (l £,ri~l- = ("') ' n0O,l.,.P

, : '.... ,.

•4W
. .. -- -Z.
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n-O, 1.

an

n n-0,1 . .R

A set of blending functions is defined by

(n)

" a

"£ () £112, n-O,l...Q

' Y () 1-2 ,2, -o,1...,R 
t

it

A ~l 8 nm• am~(n) 
-,.

91 6na

And where the 8 functions are defined by

1 0, (1,.)-

: .i 
.%

;. -- .-,, _. , ' 
e ,,;
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The transfinite interpolation algorithm becomes

,,2 P

= U: x a A(f,C) (4a)

2-niO

F (Er1,) F( ,flA) + 8 (n-() (4b)

2 R

L- n=0

The boundary sets are

J-1 Jffl J-1
K-N

( t-2 K- K-M

K- Z K'0' I . t Z ' IKCK,,

IZK ' Y IZK ' ZI K 1  '-1. 1,,
|3-1 I-1 I--1
L-1 1.

I-i

L-2

J-N J-N J-N

:'XijI yIjL z ,- & I O,0 , i ,j, OJ ~ j n j jI -

I I-L L kI-1

I-1 ,

Also, outward derivatives at certain of these boundaries as veil as the blending

functions are required for this formulation. Again the choice of the blending

functions is critical to the successful application of the method.

.4%.*
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The mltisurface method

The multisurface method developed by Peter Eiseman is a procedure for

generating coordinates between an inner boundary surface S (,() and an outer

boundary surface 8( ,). An arbitrary number of internal surfaces

S 2(C1 A.m (&,C) are introduced to control the coordinate representation
~between S ( ,C) and i (&,C} (Fig. 5). Each surface representation is such

that

"k( " 1 k- .... .

S (C

Tangent vectors to - SN-.( )
a spanning curve

, Fig. 5. The multisurface method

The physical domain can be written as - °

[S s
x (a1 ( , ), S2(l,).~S..s(,) ,n) (5)..

w3Kere

z(;f (¢,), (*,)...-. * ),,) :

°. ,. ,• *

:. .. ,
' i , .,:::' , : ' . . .. ._ .o. - .



2

151

The variable n is the independent variable spanning between surfaces. With

this introduction the description of the multisurface method generally follows

that presented in Reference 16.

It is assumed that the set of surfaces described above are ordered from

bounding surface to bounding surface, and for a fixed E and 4 there is a

corresponding point on each surface. The intermediate surfaces are not

coordinate surfaces, but instead are surfaces which are used to establish a

field of tangent vectors to the coordinate curve spanning across the surfaces.

For the time being, it is assumed that the bounding surfaces are coordinate

surfaces. A smooth interpolation connecting the bounding surfaces results in

a smooth vector field of tangent directions but with unspecified magnitudes.

A unique vector field of tangents is obtained by correctly choosing magnitudes

which on integration fit precisely the bounding surfaces. This is demonstrated
" with the vector field of tangents given by

Vk,) Sk~] k-l..N, (Fig. 6). (6)

,, ,/ , SK+I1(, .-.

, ,,"d n K

• " " . ..... z w,.

Fig. 6. Tangents to a piecewise linear curve and a partition of the

spanning variable from the computational domain

The coefficients S are scalars which determine the magnitude of the vectors

but not the direction. Using the independent variable n for the spanning

direction, a partition n1 < n2- < %_- can be specified in correspondence

with the tangents in Eq. (6). The partitioned variable can be used to

represent the tangents as discrete vector-valued functions which map nI

into The first derivative of F(C,0,l) with respect to 11 is

given by

VAN.
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N-i

nYn (7)

k-i

where

and

6 ki0 k=

The interpoiants tIk c) are defined exactiy iike the biending functions in

*Eq. (3) but here they are used to describe a derivative function and muitipiy

a tangent vector fieid. Integrating Eq. (7) with an initiai ni and S (&,C)

'1 yields

N-i

I +I E kG k(11) r(k, (8)

*where

'nI~(x) dx.
fl

If the magnitudes E k are chosen so that each E k G k N-1) 1 , then the

evaluation of Eq. (8) at TjN- reduces to S N E,) This allows Eq. (8)

* p to be expressed

N-1i kn

k-i

which is referred to as Eiseman's generii muitisurface transformation.

';r

',~j7;A >:ZF.*

-. " ,-,
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The basic ingredients of the multisurface method are the partition

n 1 < 2  < the interpolents ik and the surfaces Sk(C). Choosing

*k to be polynomials of degree N in n, the curve connecting the bounding

surfaces is of degree N + 1. In a systematic fashion

N-1

-k - i).

. iAA

An example is a three surface transformation (N - 1 = 2) and with 0I - 0,

n2  1 - 1 - n, and 2 n then

. 2 2

G( nM) n- T -, G2 (n ) -

. F(&,n,) - (2 - n Sl(+&,o + (2 - n) -n S2(&,) + n s3(&,

or

3

where
2l( n ) - I -2 TI + n 2 -

2 - 2n - 2n
2 ,

38n) n

Comparing the Iltisurface method with transfinite interpolation (Eq. (3)),

the multisurface method requires interpolants i)k (n) and one set of surfaces,

and allows interpolation in only one coordinate direction. It is apparent

that blending functions can be derived from Eiseman transformation formulae

-. ~b

-a..

; ia .~ -:. . "..'-..'I"._,.
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starting with interpolants. It is important to remember that the most difficult

aspect of algebraic grid generation is the determination of functions (blending

functions interpolants, etc.) which control a grid. The emphasis in the multi-

surface development is on deriving interpolants which provide satisfactory

control.

The two-boundary technique

The two-boundary technique has been described by SmithI ' 2 and Smith and

- Weigel.1 3  The technique has common characteristics with Eriksson's formulation

of transfinite interpolation where position and derivatives on exterior

boundaries along with blending functions are used to define the physical domain.

For the two-boundary technique blending functions are specified to be linear

.- *and cubic polynomials as described by Coons. 5  These blending functions can

also be derived from Eiseman's two-surface definition and a special modification

of the four-surface definition. 1 6  Later control functions are incorporated

to further enhance grid spacing control.

The technique is based on defining two nonintersecting surfaces SI M, )

and S21 ,1 (Fig. 7) where

z I>
and

0< < 1, 0<< 4<1.

I i

L 
z

Fig. 7. The two-boundary technique

1.. ,. .- . . lJ . ,. - .. . . . .... . . .. . ' , ."" '-

4 .. .. - '.p . .:,,,. . . . . ,. . . . .
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The physical domain is expressed

F(Inc x(&,rnC 1 [(SI(E.I) s 2 (;),In)1

Explicit forms of the two-boundary technique are linear and hermite cubic

interpolation. The linear form is

2

M(,flm - knsk, (10)

k-l

where

(n n.

The cubic formulation isj

2 2 Fas a'
Pk~fl) +- P k k

V - k ' ~ +2(n)Lr') x 4~~~](1
k-l -

where

3 2

112 (n)--3-2n + 1,

(12)

P3()- n 3  
2n 2 + 1,

P4 (n) n

o < 1.

i~ ~)~. . - ~ ~* ; ,.. .*w,&.
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the cross product of surface derivatives or normal derivatives at the boundaries

is given by k4
ask a S axk~ ayk azkk12a kk k k 4(1

I ' i
The constants Tk control the magnitudes of the normal derivatives of the

boundaries. For nonzero Tk a grid resulting from this formulation is

orthogonal at the boundaries (t,C). Increasing the magnitudes Tk forces

the effect of orthogonality further into the interior of the physical grid.

If the magnitudes are too large, the grid becomes double-valued and is

unsatisfactory (Fig. 8). Kowalski allows Tk to be a function of & and

i; (Tk(LO)) which allows variable effect of orthogonality over the domain.

No orthogonality Satisfactory orthogonality Unsatisfactory orthogonality
magnitude magnitude magnitude

Fig. 8. Grid orthogonality

The key ingredients for the two-boundary technique, as it is presented here,

are two nonintersecting bounding surfaces, normal magnitude constants or

normal magnitude functions. It is later shown that additional ingredients

are control functions which govern the spacing of a grid. The following

section deals with surface representation which is used to define the bounding

surfaces.

% P- .
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SURFACE REPRESENTATION AND PARAMETERIZATION

Surface representation is an important aspect of the algebraic grid genera-

tion methods. Normally, the initial description of a surface is in terms of an

K7=M

organized point set S - Iz ,y ,z (Fig. 9). It is desirable to• =1
find a functional representation

fx(r,t)1

K ~+S(r,t) - y(r,t)

z (r,t)j

with two indepetident variables r and t, which contains S, and related to

independent variables from the computational domain (i.e., and C). A

process that is reccm'sendeo for many grid generation problems is:

1. parameterize the data set S with normalized arc length or approximate

normalized arc length (Fig. 10);

tg(1)

rt IK

/ 1
.:.--9---..

x r IK

Kjr3K/x .. ---- r I K

z y

Fig. 9. Surface representation Fig. 10. Arc length parameterization

4 2. construct single valued functions relating the arc lengths to the coi-

putational coordinates (Fig. 10); and

3. interpolate the data set S with a bidirectional interpolation pro-

cedure such as bicubic splines with the arc lengths being the independent

variables (Fig. 11).

I -
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X (r,t) y(r,t)

r1

. Fig. 11. Bi-directional interpolation

Approximate arc lengths are computed from the set S by

rIK rI-iK + [XI xlK) 2+ +IK YI-lX) 2  
(ZiK .i_3 2 ]

21/2

tIK IK- + )2XIK - + (YIK - Y )2 (ZlK - I

rl 1 t1- 11 (1

I I
I = I...L,

K i...M.

Normalized approximate arc lengths are j .

r iK tIK
= , = , 0 < < i, 0 < < .

rIK ti -- _tK-

K-M XH' ~~tII- P Sy lltlKl

After forming the sets S, SxK,r-K, tejjK

K-M Z=1 II

z =  KKt I= three bidirectional interpolations can be performed

| |&

, .. ' 4

XK' • , K-*,

, .. . .. -.. . .' , ., . ."A i
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for x(r,t), y(r,t) and z(rt). The intermediate variables r and t

are defined on the unit interval, and likewise and are defined on the

unit interval. Constructing single-valued functions r = f() and t - g (1)

has the effect of controlling the location of an arbitrary grid point on the

surface. Each surface can have different functions relating the computational

variables to the parametric variables. The functions f(Q} and g() are

called "control functions" and are discussed in more detail at a later point.

UNIFORMITY

In the previous section computational variables are related to parametric

variables describing surfaces. In a similar but more complex manner the

computational variable spanning between surfaces can be parameterized relative

to arc length. This is particularly desirable for the two-boundary technique.

The variable n used in the cubic blending functions for spanning between

the boundary surfaces (Eq. (12)) is a mathematical entity and has no physical

meaning other than it represents a coordinate from the computational domain.

Uniformly discretizing the variable n for a fixed F, r, and Tk yields

from Eq. (10) coordinates in the physical domain along a space curve (Fig. 12). j

Fig. 13. A uniform distribution

Fig. 12. Natural distribution of of grid points with respect
grid points along a spanning to arc length along a

curve spanning curve

In addition to defining the shape of the space curve, a distribution of points

(grid points) along the curve is specified. This distribution is fixed

unless smne control function replaces n in the blending functions. Before

applying control it is often desirable to initially specify a uniform

reference distribution of grid points along the space curve connecting the

boundaries (Fig. 13). Oe approach for obtaining a uniform distribution is to

compute the normalized arc length or approximate normalized arc length (a)

along the space curve. This establishes an empirical relation between the

:'1k, 5Ff . ..L~ A
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variable s and the variable n. Uniformly discretizing s, performing a

single-valued interpolation for n, and substituting into the blending functions

yields uniform distributions of grid points along the curve. Alternately,

the blending functions can be redefined in terms of s where now s e(n) and

3_2
P1M) - 2s - 3s + 1,

3 2

112 (T) - 2s3 + 3s2

1 3 (TI) s -2s + 8,

4() = s-3 2

s n, s e(n).

This procedure is complex because it has two steps and the necessity for an

additional interpolation. Control of the grid spacing distribution relative

to the uniform distribution can be accomplished by constructing a single4

valued function on the unit interval such that

s - he(n))].

The function h[e(n)] is a control function for the spanning direction.

GRID SPACING CONTROL

The spacing of a grid in the phyiscal domain is primarily affected by how

the computational coordinates are incorporated into the blending functions,

interpolants, or surface constraints. Eiseman presents what he calls

"piecewise local control" through the derivation of interpolants and the

reader is referred to References 11 and 16 for this approach. Another

approach is the construction of control functions which are embedded in the

blending functions or surface constraints. Control functions are demonstrated

using the two-boundary technique in two dimensions and with cubic blending

*functions.

The relationship between the computational domain and the physical domain

for the two-boundary technique in two dimensions is given by

41

:1 ,



(r T )v8 T 2 (161

) x1 (rl))11 (S) + x 2 (r 2 )112 (s) + T1 dyr 13 +2 dr2  )4
1 2

(14)

y(C,r1) y (r ) rT dr Cr) (S) TIx)I S1 1 l(s) + Y2(r 2 )1 2 (s) - T --- 113 - 2 -(r 2 2 4 (s)

and

Ij I(s) 2s 3 -3s 2 + 1,

3 2

112 (s) -2s + 3sI

3()8 s 2s2 +8.,

J 4(s) s - s 2

where

x (r1 ),Yl(r I ) poeition on the first boundary as a function of normalized

arc length along the boundary /
x 2 (r2 ),y 2 (r2 ) position on the second boundary as a function of normalized

arc length along the boundary
dx1  dyI

dl(rl), (r I) first derivative along the first boundary with respect

to normalized arc length along the boundary
dx2  dy2  first derivative along the second boundary with respect

1 2 to normalized arc length along the boundary

TI,T 2  -normal derivative magnitudes for the respective boundaries

r I . f (R) normalized arc length along the first boundary

2 - normalized arc length along the second boundary

a hie(n)) arc length along the grid curves connecting the two

boundaries
-fr

0 < C < coordinates froe the computational domain

IF N

. nxi
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uniformly discretizing and n~ and gi.ven the other quantities described
above a corresponding grid is generated In the physical domain from Sq. (14).

For grid curves connecting the two boundaries (Fig. [4), their relation-
ship and spacing relative to their neighboring grid curves is based on position,
derivatives, and derivative magnitudes at the two boundaries, and the blending
functions.* Given that the blending functions are the same for all grid curves,
the spacing between the curves is only a function of boundary informatio:..
The boundary positions and derivatives are a function of normalized arc lengths
which are in turn written as functions of the computational coordinate t. It
is the functions f I(&) and f2 (E) that ultimately control the spacing
between grid curves. When there is relatively low slope in these functions
(Fig. 14), there is concentration of grid curves, And when there is relatively
high slope the grid curves are dispersed (Fig. 15). in a similar manner

b(e(rI))

1 ,0

0,0 Fig. 14. spacing between neighboring grid curves

ff ~

01,0

Fig. 15. Effect of control functions
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the grid Points along a grid curve are distributed by the blending functions.
A control function h[e (r)) J relating n to the norualIzed are length
determine* the final grid point distribution along the grid curve (Fig. 16).

* 
f 2 %F;

'9'O

4 1,01

,0 Fig. 16. Control of grid points along grid curves
The functions f 1 (0,f 2 (M) and h~ecn)] are called control functions.
They should be single valued, smooth, and have smooth derivatives. Another
condition is that the functions are defined on the unit square (Fig. 17).

0,0T 1,1

aat

'7
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where the parameter K controls the concentration of grid curves near the

first boundary. In general, analytic functions are restrictive relative to

where control can be applied. Another approach for arbitrary control is the

use of smoothing spline functions on the unit square. This approach is

described in Reference 15.

SIDE BOUNDARY OONSTRAINTS

The two-boundary technique can be constrained by boundaries intersecting

the two primary boundaries. This is accomplished by applying the technique

* as previously described, and then applying the recursive formulas of transfinite

interpolation. An example with one side boundary constraint is demonstrated

(Fig. lea). The two-boundary technique is performed with the formulation

4.1

~1 1 ,,; " (ll(C),gl(Z;)) ,S2(f2(t) ,g2()),rl.

F(Sl S2 (f2 (E)Wi2(t)), h(ht))

. -" constraint

I( fWFig. 18b. Side boundaryt

Fig. 1Sa. Step one in the two-boundary technique constraint

The second step is from the transfnite intetpolation formulation with a

linear blending function (Pig, lab)

S (f -

4.814 1 1

-it

Tta

linea ble din fun tio .. Fi. . .8b)., ,o , :,..
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GRID GENERATION TOPOLOGY

The algebraic grid generation techniques that are presented are defined

with the assumption that a uniform rectangular computational domain trans-

* forms into a physical domain. Also, exterior boundaries of the computational

* domain transform into boundaries on the physical domain. Consequently the

topology of the physical domain strongly influences how a grid generation

technique is applied. It is obvious that single six -sided box (computational4

4 domain) or a square in two dimensions is not going to transform into all

physical domains. Further, in certain cases, transformations can only be made

by introducing singularities. Problems most often arise when there are

closed boundaries and in this section some topological considerations are

described.

For boundaries in two dimensions, there are two primary types of physical

domains that transform from a square computational domain. They are 0-type
/- domains and C-type domains, and are more commonly referred to as 0-grids and

C-grids. Several two-dimensional domains are described schematically in

Figure 19 with corresponding boundary numbers in the computational and physical

domains. Also, multiple computational and physical domains can be coupled

with a comon boundary. A resulting grid as well as grid derivatives should

be continuous across a comn boundary. If there is a discontinuity, special

consideration should be taken in the finite difference procedure for the

4. solution of the equations of motion.

2

computational domain physica domain

t4
3 3

Fig. 19a. Simple O-grid

, 
j
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44

computational domain physical domain 6

62

Fig. 19b. Simple C-grid

6

computational domainphialdmi

*7 845
3 8I

2j 1

Fig.19c. Multiple body 0-grid

88

*computational domain physical domain

9 10

[ 2 3 14 5 6 7

rig. 19d. Multiple body C-grid

* ~ ________________________4,
.4 

7 .

* - ~ ~ ~* *.4,
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9 8 7 f0
computational physical domain 12

compuatioa domain

12 domain I I
1 7

100

i 4

5 61

-1. 2 3

Fig. 19e. Combination domain C-grid

0 d a nC- 6 2 6

p a oncomputational domain
w n t s o17 8 3 physcal 4 7 domain 8

............1 0. . ,

, 11 12 12

.. 9 T9

d Fig. 19f. L-shape domain

sinuFor closed boundaries n three dimensions disuss types of domains

are 0-0 domains and C-0 do acns. The topologies associated with closed and
boundary domains in three dimensions is more complex than for two dimensions. "

A primary reason is that a planar surface from the computational domain

; will not tranform into a closed three-dimensional surface without introducing

singularities. Rizzi and Erikeson 
6 
extensively discuss the problais of

', three-dimensional closed surface topology and associated singularities and

the reader is referred to Reference 6.

A final note on topology and singularities is that every effort should be

made to place an unavoidable singularity in a region where there is little

change in the basic equations of motion. Near a singularity there are large

changes in the derivatives of the computational coordinates with respect to

4.4 W.
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the physical coordinates. These large changes between neighboring grid

points can lead to inaccuracy and/or possibly instability in a finite dif-

ference procedure for the solution of the equations of motion.

GRID COMPUTATION

Algebraic grid generation methods generally require a large quantity of input

data. These data can be divided into two types: "fixed data" and "variable

data." Fixed data describes quantities such as bounding surfaces, whereas

- -l variable data describes quantities such as internal control surfaces of

control functions. Interactive computer graphics is ideally suited for this

type of application. Variable data which control a grid can be modified

with cursor or numeric input at a graphics terminal, the resulting grid and

grid derivatives visually observed, and the data again modified until satisfac-

tory grid characteristics are achieved.

The algebraic grid generation methods work well in an interactive environ-
4ment because the computation is explicit with no iteration necessary for a

C given grid solution. What is necessary, however, is that the communication

* rate between the computer and graphics terminal be high (9600 baud or greater)

because of the large number of line segments that must be displayed for a

grid. An aside point for the algebraic methods that are discussed is that

the grid characteristics can be worked out on a relative small grid (few

grid points) and the resulting control directly applied to compute a larger

grid.

DISCUSSION AND CONCLUSIONS

The three algebraic grid generation techniques that are described are

basically interpolation procedures with several common characteristics.

Blending functions, interpolants, or control functions along with physical

geometric constraints govern the transformation of a uniform rectangular

computational grid into a physical grid. The methods are relatively simple

to understand, they are axplicit and do not require extensive computational

effort, and they have a high degree of generality.

Next to the computational procedure, the most important consideration for

grid generation is the topology of the physical domain. For three dimensions

where there are closed boundaries, singularities are introduced. Care should

be taken relative to where singularities exist and the corresponding effect

in the finite difference procedure for the solution of the equations of
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motion. Grid topology is not extensively discussed in this paper. but its

importance is emphasized.

Another consideration is that grid derivatives must be smooth. This

means that each step in a grid generation method must produce a smooth

result. Wiqqles is one step propagate into the next step and finally into

the grid.

A final point is that the use of interactive computer graphics for grid I
generation is highly advantageous. Until the time is reached when grid

generation is truely coupled with the equations of motion and the grid

control is adaptive, instantaneous human intervention in the control process

in the next best approach. Since algebraic grid generation methods are

explicit and require relatively few computations, they work very well in an

interactive environment. This implies that the development of computer

applications software is an important aspect of algebraic grid generation.
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TRANSFINITE MAPPINGS AND THEIR APPLICATION TO GRID GENERATION

WILLIAM J. GORDON AND LINDA C. THIEL
Department of Mathe-atical Sciences, Drexel University,
Philadelphia, PA 191,11 USA

SUMMARY

-' The two essential ingredients of any boundary value problem are the field

equations which describe the physics of the problei.i and a set of relations which

specify the geometry of the problem domain. Mesh generators or grid generators

are preprocessors which decompose the problem domain into a large number of

interconnected finite elements or curvilinear finite difference stencils. A num-

ber of such techniques have been developed over the past decade to alleviate the
Ifrustration and reduce the time involved in the tedious manual subdividing of a

complex-shaped region or 3-D structure into finite elements_ Our purpose here

is to describe how the techniques of bivariate and trivariate"*blending function- ''-

interpolation, which were originally developed for and applied to geometric pro-IISblems of computer-aided design of sculptured surfaces and 3-D solids, can be

adapted and applied to the geometric problems of grid generation. In contrast

to other techniques which require the numerical solution of complex partial dif-

ferential equations (and, hence, a great deal of computing), the transfinite

methods proposed herein are computationally inexpensive. _

1. INTRODUCTION

Over the past decade, a number of schemes have been developed for automating

the generation of finite element and curvilinear finite difference grids. Among j
P these, the transfinite mapping technique of Gordon and Hall[5] has been shown to j

have a number of advantages (cf. [6],[7]). Some of these are:

1. Exact modeling of boundaries

2. Minimal input effort

3. Automatic node connectivity definition

4. Well-suited to interactive graphics implementation

7 5 Good correlation between boundary nodes and interior mesh

6. Computationally efficient

7. Easy extension to three dimensions.

We use the term "transfinite" to describe this class of techniques since,

unlike classical methods of higher dimensional interpolation which match the

primitive function F at a finite number of points, the transfinite methods match
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F at a nondenumerable number of points. In fact, as we s ill see below, trans-

finite mappings of the plane match F along entire curve segment., while trans-

finite mappings in Euclidean 3-apace can match r exactly on the six faces of a

curvilinear parallelpiped.

To begin, we recall the geometric interpretation of the graph of a vector-

valued function of two independent variables a and t

.(u,t) - [x (u,t),x (st) .... Ox(s,t) ] T . ()
1 2 2

As the variables a and t range over a domain S in the s,t-plane R2 , r(st)

. traces out a region R in Euclidean n-space, n That in, F maps regions in
2R into regions in En

FS R2 _. En. (2)
For two-dimensional problems, we shall be concerned with continuous transforma-

tions F which map the unit square - [O,1]x[O,1] one-to-one onto a simply con-

nected, bounded region R in E or 3. Such maps can be thought of as topologi-

cal distortions of the planar region S onto the two-dimensional manifold R,
* which is either a planar region (R c 9 ) or a surface embedded in 3-space ..,

3(R c E ). In either case, a one-to-one (univalent) mapping S - R is equivalent

*to the introduction of a curvilinear co-ordinate system on R. The curve of con-

s itant generalized co-ordina.te - s* is the image F(l*,t) of the line s-' InS.

Similarly, the curve Clst*) is the set of all points in R with generalized

co-ordinate t - t*. Thus, the point F(s*,t*) on R is said to have generalized

co-ordinates (s*,t*), and, since the mapping S - R is univalent, any point Pe R

can be uniquely referenced by its generalized co-ordinates.

If S is the unit cube [O,llx[Ollx[Ol] in the st,u-paramter apace R and

R is a bounded region in Euclidean 3-space, then a one-to-one mapping F of S on-

to R can be envisioned as a topological distortion of the cube into R. Such a

mapping of R3K E3 generates a curvilinear oo-ordinatization of the solid R so

that each point of R may be referenced by its generalised coordinates (e,t,u).

For bounded, simply connected planar domains R, one could of course generate

an orthogonal co-ordinatization by means of a conformal napping of R onto a

canonical region such as a square or a circle. awever, from a practical stand-

paint, the construction of a conformal nap Is equivalent to the solution of

Laplace's equation and Is thus contrary to the goal of computational SIMplicity.

In contrast, the transfinite mappings described below are relatively simple to

construct and implement for a wide variety of regions, and are oomputationally

inexpensive.

AA

v.._-_.., , --,'-: , - + + , + " +++. .... +: •.... .. . ...- '.. .. ++
i + . + , ,..-.-...+.- :. - , , .+ : . - . .. .. ++, , + .-. , ; -'
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-. V' f

173

2. TWO-DDMSXONAL REGIONS

We first consider the case in which S is the unit square [O,1]x[O,l1. Let us

postulate the existence of a primitive function F which maps S onto R. It should
be remarked that the function F is a fiction which we introduce only for nota-

tional simplicity and convenience. In practice, the only thing we are given is

the geometric description of R in terms of its boundary, and it is the task of

the analyst to cast this information into a form appropriate to the mapping

formulas considered below. This, however, is not difficult to do and can be

iplemepnted by a computer subroutine.2 2
Generically, F: R 4 E should be thought of as a continuous vector-valued

function of the two independent variables a and t such that f: DS 3 aR.

, kFor example, consider the following mapping:

t)~t - t-(l t//-) s intr2si 11 co ! (3)
\Y5t) \ 2 //

This maps the unit square [O,llx[O,l1 onto the quarter annulus R shown in Fig.l.

The perimeter of the unit square maps onto the perimeter of R, and lines of con-

stant a and constant t map onto the curvilinear co-ordinate system illustrated.

In other words, each of the curves shown in the figure is a curve ofgenerallzed

co-ordinate s - oonst. or t - const.

Our problem is to construct a univalent (one-to-one) function U: S R which .

matches f on the boundary of S, i.e.

(Ot) -(O,t), ((s,O) (s,)4)

A function t which interpolates to F at a non-denumerable set of points as in

(4) will be termed a tranftinite Interpolant of F.

To explain the notion of transfinite mapping, we shall find it convenient to

rely on the algebraic theory of approximation developed in (31 and (41. In this

peper, by a projector P we shall mean an idempotent linear operator whose do-

main is the linear space F of all continuous functions defined on S and whose

range is a subspace of F. The above interpolation problem (4) can be viewed as
a search for a projector P such that V - P[F] is a univalent map of S - R which4, lo .

satisfies the desired interpolatory properties. U is termed the projection o F

or the Imago of F under P.

Suppose now that #0410 and 0 are four univariate functions which satisfy

the cardinallty conditions

sl. .

!~
- V..'& , . . . . . % -
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0i(k) -
5 ik - for ik - 0,1O, i0, 15k

~(Ji)• - 6 for J,t - 0,1

and consider the projectors Pa and Pt defined by

P.[I]siO(.)r{•O,t) +,(•)1,(6t) " )
pt =[of 2V (t)F(s,to) + Vl(t)F('t) J

- Then, the product projection

1 1
iPtF] - X islIC)~±t (7)

- -o j-o
4

interpolates to F at the four corners of [0,l]x[O,11 and the Boolean sun

projection

(P * t ) [P I -=P 01 + P 1[] - VPt[ ()...
5 t a t t.

interpolates to F on the entire boundary of [0,l]x[0,l1. Those properties of

the functions (7) and (8) may be readily verified by evaluating the right-handsides for the appropriate values of a and t and recalling the cardinality pro-

pertie 151) see also (31 or [4).

The functions and V' in the above formulae are as yet unspecified except

for their values at the points -to - 0 ands 1 - t - 1. Theyarecomonly

referred to as 'blending functions' and the function Z - (P * Pt)[1] is termed

a blended interpolant. The simplest choice for the blending functions in (5)

is the set of four linear functions

()- 1 - , O(t) - 1 - t0I (9)
(01() - , Mtt t

4

The vector-valued bivariate function U B (P 9 Pt) (F] obtained by using (8) and

(9) is termed the bilinearlyt blended interpolant of F, or the trangfinite bi-

linear Interpolant of F'. Explicitly, it is given by

U(s,t) - (l-G)F(o,t) + GF(l,t) + (l-t)F(6,o) + tr(s,l)

- (1-i)(1-t)F(0,0) - (l-s)tF(0,1) (10)

- 8(l-t)F(l,0) - st?(ll)
4I 41

This function has the properties that U - F on the perimeter of the unit square

10,1]x[0,11. This was first demonstrated by S.A. Coons in (21.
Figure 2 illustrates the mappings induced by the projectors (6)-(S) on a

SThe reader should verify that both the operators P and Pt are, in fact, pro-
jectors, i.e., they are linear and idempotent. t

S. '-' A

..- .- ,A
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region R with blending functions given by (9). It is readily seen that P IF]

and P IF] each match only two opposing boundary segments, P P I] matches only
t~a t

the corners of R, but (P.9 Pt )[] does, in fact, interpolate the complete peri-
meter of R. The mappings P IF] and P [] are sometimes referred to as "linear

a t
lofting", in analogy with the drafting procedure known as lofting. P P ],

which is linearly ruled in both directions, is termed bilinear, and (P * P )[F]

is properly termed bilinearly blended. The three projectors P , P and P * P

are all transfinite projectors since they interpolate F at a nondenumerable num-

ber of points.

* Other examples of transfinite mappings obtained using equation (10) are shown

' in Figures 3,4 and 5.

We can generalize the above notions in two ways: first, we may consider map-

pings of R - E for general n; and secondly, we may interpolate F not only on

the boundary of the region R - t(x liX 2 .... Xn) . F(s,t): 0 < s, t < 1), but

also along other 'flow lines' or constant generalized co-ordinate lines. To

this end, let 0 < a0 < al < ... < am " 1 and 0 - t0 < t1 < ... < t -, and

" let { il()) 0 and {* (t)1 -0 be functions satisfying

0 < i, k < _4, 0 < J, I < N. Now define the projections

Ps[ ]~ ~ = *isuli,t)

• i-0

N (12)

The product projection

K N
PIt I 1 id(s,(t)(it ) (13)

i-O J-0

interpolates to F on the finite point set { . while the Boolean sum

or transfinite Interpolant

(Ps0 P F)[1 S P;] + Pt(;] -P (] (14)

interpolates to F along the M+N+2 lines a - si, 0 < i < N and t - ti, 0 C j < N.

That is, if (at) (P P[t )I hn

U(e:t.- F(s,t 0 S J S N
4. (15)U( , t) - 7"(sit t) , 0 S 1 !5 N

If m - N - 1 ands 0  tO, 1 - -tI  , (14) reduces to the transfinite

bilinear interpolant (10). If N - V 2 and so - t o - 0, 8 - t I - 1/2, 8 2
t2 1, then using the blending functions

I4
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*0s) - 2(s-1/2)(s-l), *0 Ct) - 2(t-1/2) (t-i)

41(a) - 4W(l-s), *(t) 1 4tl-t) (16)

42 () - 2a(8-1/2), *2(t) M- 2t(t-l/2)

in (14) yields the biquadratIecall. blended Interpolant of r along the six lines

a 3 0. 1/2, 1 and t - 0, 1/2, 1.

There are cases in which bilinear transfirite mapping techniques will not

produce a satisfactory curvilinear grid. This typically happens on regions R

which are so grossly distorted that there is either too great a variation in the

size of grid elements or protions of the generalised co-ordinate curves actually

-I map outside the region (overmpill*, of. [51). An example is shown in Figure 6.

Here, a bilinear transfinite mapping was executed with the result that som

constant generalized co-ordinate lines overspilled the region.

There are basically three ways to deal with such difficulties. First, one

my decompose the overly complex region into two or more simpler subregions

and map each of these separately. Although this approach generally works well,

.. .there my be problems at the interfaces between subregions, since the general-

ized co-ordinate lines will have slope discontinuities there. one way of

* handling this difficulty is to employ higher degree blending functions, e.g.,

* ; cubic Hermite blending functions. N

I A second way of attempting to achieve a satisfactory transformation is to

reparametris the boundary segment@ of R by, for example, introducing monotonic

transformations of the independent variables a and/or t.

Another way of dealing with complex regions is to introduce auxillarg con-

atrainta into the transformation problem. Since the paramount objective Is to

obtain a one-to-one (invertible) mapping of S onto R, the analyst is perfectly

free to enforce whatever additional constraints he feels will guarantee the in-

vertibility of the mapping. in our experience, we have generally found it ads-

quate to specify, as an auxiliary constraint, the image (i.e., the mapped posi-

tion) of a single Interior point of S. That is, we identify where inside R we -

desire to map a selooted point in the interior of S. For simplicity, suppose

the point in S whose Image position we want to constrain is the mid-point of

the square, s - t - 1/2. We want to force this point to map into the point in R

* : having co-ordinates (a,O). Let f be the bilinearly blended function of (10).

hen, the following transformation maps 0s onto SR and maps (1/2,1/2) onto the

~~(s,t) - 8(s,t) + 16OUl-oltl-) t (11/2.1/2) ( 17) '": '

To verify this, note that along the perimeter of 10,11x(0,11 the right-hnd side

4. P -7. 7F'"*

t ,,

...... .4,
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reduces to just (s~t), which maps OS exactly onto 3R, as desired. For

(s~t) - (1/2,1/2), the riqh--hand side reduces to just (ao). More generally,

the point (a,t) - (a,b) can be mapped into (oL,B) by the formulas.

V(s,t) - U(s't) +e a-l-ab(1-b
V As an example, Figure 6 shows a region R for which the bilinearly blended

transformation (10) does not give en invertible mapping of S onto R. it is

intuitively clear that the image of the point (s,t) - (1/2,1/2) has mapped too

* far to the right. Therefore, we enforce the auxiliary constraint that the paint

(1/2,1/2) in S should map onto the point (.494,.119) in R. Figure 7 illustrates

the result of the transformation cbtalined using (17).

In [5), Gordon and Hall propose the use of more general auxiliary constraints.

For example, instead of just a single point, they consider mappings for which

lines of constant a or t are forced to map onto preselected generalized

Co-ordinate curves in the domain R. Such curves may arise naturally as inter-

V faces between subregions of R,. or they may be determined by the analyst on qeo-
metric grounds. The transformation formulas appropriate to these constrained
maps are given by equation (14).

finite interpolation techniques over triangles may be more appropriate. The

theory f or such "trilinearly blended" methods was developed in [11. The details -

- . of these techniques an applied to grid generation may be found in [61 and [71. f
As a practical matter, the curves bounding R may not be easily represented

as closed-form mathematical expressions. Nevertheless, the above results still

apply if the boundary curves are represented as discrete paint sets, i *e.*,

piecewise linear curves. For a fuller discussion of "discretised trans finite

mappingsm"a e 61 and (7). Surfaces in Euclidean 3-space are handled in pre-

cisely the sm way as 2-D regions. All that need be done is to add the third

co-ordinate functions U~s) and B Ct) to the x and y Components. A discussion Of

surface decmosition techniques is given in (71.

* ~3.* 1KM-DIUNUONAL SOLID STXXWMIZ

* The purpose of this section is to outline the extension@ to 3-dimensions of

the bivariate transfinite mapping techniques discussed above. To begin, we

consider the following three proJectorss

P(r)1 - C3l-s)'(O'') FIt,u)

P t 1) (l-t)P(s,O,u) + tF(s,lou) (19)

* 19 -f-u)Fr(s,t,o) + up (a,t, 1)

4..
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In these expressions, the "primitive function" P isa vector-valued function
of the three independent parameters S,t and U. As ot and u range over the unit
cube, F maps out the solid volume R. Depending upon the co-ordinate system used,
the three components of * may correspond to Cartesian, spherical, cylindrical,
toroidal, etc. oo-ordinates. As a practical matter, the co-ordinate system

employed should be that which moat appropriately fits the geometry and topology
of the problem domain.

Quite clearly, the three projectors in (19) correspond, respectively, to

linear blending (lofting) in s,t and u. Now, however, the geometric entitieson the right-hand side of the expressions are not curves, as in (6), but rather

surfaces. For example, as t and u range over the parameter domain [O,ljx[O,1],* the vector-valued function FCO,t,u) traces out a surface in Euclidean 3-space
corresponding to one of the six faces of the solid volume R.

It is useful to consider the pairwise products of the above three projectors.
For instance, the product of the first and the second is

FD) - (1-N) (1-)0O'u) + (U-s)tF(01U)

+ s(l-t)F(l,,u) + $tF(l,l,u) (20)
The right-hand side of this expression contains four expressions which refer to

" the edges of the object under consideration. By evaluating the expression
along the four edges (a,t) - (0,0,(0,l),(l,) and (1,I), it can be verified
that the trivariate function P aP t does, in fact, match along these edges.

(It may be easily demonstrated hat Pa P t( - Pt P aI, L.e-, the projectors
* commute, just as in the bivariata case.)

We have seen that the projectors P ,P. and P each interpolate the two oppos-
.*Ing faces of the solid volume described by F(s,t,u), and that products of pairs* of these projectors interpolate to the edges of the solid. If we take the pro-

duct of all three of the projectors in (19), we obtain the expressions <1

P P P [F] -(-) (l-t) (l-u),(0 ) + (l-)(l-t)uF( 'l)

* + (l'-)t(-u)(,l,01 + (l-e)tur(O.l,l)
.+ 

(21)
+ lU-t)(i-U)(l,O,O) + e11-t)U(l,O,l)

+ st(1-u1(l,l,o) + stu(l ,ll).

The right-hand side of this expression contains values of r which refer to the. L"eight corners of the region R. It does, in fact. interpolate to these eight
corners. Since (21) is linear in each of the three paramters st end u, it is

-. termed a tzlllnear Interpolant. The graph of the trilinear interpolant is a six-
sided polyhedron which passes through the vertices of Ri it is simply the 3-0

2*. q, ',* 4+4 .+. .

--
A
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generalization of a quadrilateral in Euclidean 2-space.

In the 2-dimensional case, one starts with the two projectors P. and Pt of

(6) and, by combination, generates a total of four; namely, Ps, Pt, PSPt and

P * P In three dimensions, the situation is much more complex and the variety
a t

of possible projectors much richer. In [3] and (4], it is shown that under the

two binarary operations of operator multiplication and Boolean (O) addition, any

collection of comutative projectors forms a distributive lattice. Space does

: not permit going into the details of this theory, but we can illustrate some of

the results in the trivariate case. Without proof, we state that there are 21

-%" distinct projectors which can be formed by multiplication and 0 addition of the

three projectors Ps, P and P . In addition to those displayed above, thea t u
* following are examples:

P a . Pt" Pa + Pt - PePt
Fs " PtPu " P a Pt " PsPt

" " Pst P u s Pt Pu PsPtPu (22)

P v pP P *P - PsP .
a t tu U t 9 t

P Pt *PP PuP PPt PtP +PP - 2PsPtP

P, " Pt u Ps P t PaPt- P t u PPt u

One should note that, because of the idempotency and linearity of the projectors,

much cancellation occurs. For instance, one has P. 0 PePPt IP + PPPPt PIP"Pt

- P , which means that nothing is achieved by taking the. sum of P. and Pt.

This is because the interpolation properties of PaPt are a subset of those of

the projector P5.

An aspect of the theory developed in 13] and 14] is that there is an Isomor-

phiam between the distributive lattice of projectors and the associated distri-

butive lattice of their precision sets. In other words, if we know the expres-

sion for a certain projector, then we can determine the point sot on which it

interpolates by replacing operator multiplication by set intersection and * . *

addition by set union. For example, the precision set (set of points on which

it interpolates) of P5 consists of the two faces of R defined by s - 0 and

* a - 1p and similarly for Pt and Pu. Thus, it follows from the isomorphism that

the precision sets of t.e projectors in (22) are, respectively, given by the

following expressions in which Se s t and 8 u are the precision sets of P., Pt

and PU
U?

1t77',Z7'
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S U S
8 t

Ss u (St n S u

(s n st U Su

S U S u (s n Su ) (23)
9 t t u

(S n S ) u (S n Su ) u (S n Ss)8 t t I u a

5 t U u

If one thinks of the precision sets, it is obvious that the weakest (algebral-
calZg dnimal") of all projectors is the triple product P PtP u and the "algebral-

cally maximl" projector is the Boolean sum of all three: Ps 0 Pt 0 Pu" All

*Which of this mirtad of 3-D projectors one uses in practice is a matter of

what data is given; or, more precisely, where the data is given. In other words,

one is given the precision set and must use the isomorphism "ackward* to infer

- - the appropriate projector (i.e., interpolation formula). For instance, if one

* ,:
t  does, in fact, know the exact shapes of all six of the bounding surfaces of R,

* then the appropriate mapping equation is the full-blown expression

(P a t Pu) [t 0 P which explicitly involves all faces, all edges and all

corners. At the other extreme, one may only know the co-ordinates of the eight

corners of R. In this case, one would use the transformation equation (21).
.. i n practice, the situation is usually smhre in-betwee i.e., the data is

seldom as complete as required by the maximal projector P 0 P 0 P or am scant
4 t U

s only the eight vertices needed in PsPt P,[. The examples given below asm

that the function F is known (i.e., data is given) on the 12 edges of R. In

this case, the revelant transformation equation or mapping formula is:

(PPF 0 PP P P)1
a t tu S s

. (l-s) (l-t)F(O,O,u) + (l-s)tF(0,l,u)

+ s(l-t)f(1,0,u) + stf(l,l,u)
_ +~ (l-t) (l-u) (s,O,O)+(l-t)u (s,O,l)"! ..

+ t(a-U)(s,l,O) + tJf(s,l,l)

+ (l-s)(l-u)?(0,t,O) + (l-s)Uf(O,t,l) (24)

+ s(l-U)(l.t.O) + su'(l,t,l)
.... 2[C1-s) (l-t) (1-)P(o,o,) + (l-s) (l-t)u (o,o~l)

+ (l-s)(l-u) (0,lO,0) + ( 1-s)t(0,,)

+ s(l-t) (-u)(l,0,0) + s(l-t)0(l,,1)

+ sttl-u)f(ll,O) + t(l,1,1)]"

*1a r 4
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Fimmr 1

fth cur I Inear co-ordinate systan rIced by the fol iwing
mmping:

F(st) 2 4s
y(s~t) (+,~sn 2/

4'A~
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Figure 3
The curvil neor co-ordinate system generated by the f~lol ing

* paranetrizaticm:

5tt + .5]5t + 2

[k2.s + -F,t) j

F~s,) 125 - .75 cos (Ors)

2 75 sin Ors)]

-2, 0.0 < s < .33-

1-6.5+135s, 3 6
-2 +6s, .O<s < .33

4 -6S, .66 s I

A'
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N,4

Fictio '0
The rcusflnte w afa rgiawit a cackvia he o11~fin
para,2tizatkr'rioo Ool

= ~ 3j ,r(1,) =-0030t1 1 03
[1+0 00s

-2,0 O.os.31- 00 0

(, ) N

-2 00s ,s < .33

0.0 .33 .s <.66

6 -9s.66 .s5 I
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FiM
The cirvil 1nej CO-ordtnate system
frIed using the bilI near blerj travsfni tet
mDIng. The bcujdory seg1Ent are:

F(Ot) l t

(4- 1.s +7.s2, 0.0 1s < .33
9 - 36 + 36s2, .33 <s <.66
-3.Ss + 7.5s2, .66 s< I

F(s,O)

I-75 + 1.5s .3 3 s <.661.125s - 1.125S2  .661 i

- 20 + 2Os2j

F(S 1)

[-2 + 4ft
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* Fi'qjre 6 d
Bilinear blending hryilsa noa-whooljent ow. The
parcietrization of the bcwckirY Is:

F (0,t V ~1 F~lt [I + 2t -2
t Lt

ii,'O F(sA l)
101 i 3s +s~
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*. Figure 7
A curvillnear co-ordinate system with no "overspill" is achieed
via (17). Here, the Doint (1/2,1/2) In the s,t-olone Is mapped
onto the point (.494, .119) In the x,y-ollne.

V.rIt
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ORTOGOALGRID GENERATION

Peter R. Eiseman
Department of Applied Physics and Nuclear Engineering, Columbia University,
New York, New York 10027

INTRODUCTION

-T--> Coordinate transformations have been a key element in most numerical

solutions to partial differential equations when either the solution or the

region exhibits some geometric complexity. The grids from the transformations

are chosen to represent the region boundaries with coordinate curves or surfaces

and to adequately resolve the solution by clustering points, curves, or

surfaces. The coordinates can be used separately or in a composite fashion to

appropriately discretize a configuration with a topological complication in

addition to that of basic geometry. In either case, the discretization is well

structured since the space of computational variables is rectilinear. Solution

procedures developed in a Cartesian setting can then be applied along with the
4

corresponding simplicity in the organization of computational data.

To gain the clear advantages of a well-structured disctetization, the .J
original partial differential equations must be expressed relative to the grid.

The result is usually an increase in the complexity of the equations. This

increase is greatest with nonorthogonal coordinates, is fairly mild with

orthogonality and is the least with conformal transformations. ,
To choose between the various types of coordinates, we must M

which constraints are needed for a given problem.,/ The fundamental constraint

for a general region is its boundary geometry. When the coordinates match the
boundary, the need for boundary interpolation disappears and the grid iS also
aligned with the desired solution near the boundary. Without any further

requirement in the two-dimensional case, conformal systems are usually the best.

In addition to boundary geometry, however, the pointwise distribution along the

boundary is often required as a further constraint. The distribution is a

boundary coordinate system or systems, which together with the geometry form a

complete boundary representation. When the representation is arbitrarily

prescribed, conformal transformations are not applicable because of analytic

continuation. As the next simplest case, orthogonal coordinates are

preferable. In two-dimensions they are generally applicable on both planes and

curved surfaces. In three-dimensional regions, orthogonal systems are severely , "-
restricted and are not generally applicable. The best that can be done in the

general content is to bound such regions with orthogonal systems so that full

4A;4
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orthogonality can be specified at the boundaries. Further boundary constraints

can also be imposed with specified derivatives so that rates of entry or exit

from a region can be given. In any dimension, the capability to create a

smoothly assembled composite mesh for topoloqically complex configurations would

be achieved. In addition to the various boundary constraints, significant

advantages can be obtained under the constraint that points, curves, or surfaces

be clustered in some location within the region. The purpose is usually to more

fully resolve the numerical solution of a given problem with a fixed number of

mesh points. Additional advantages can also be achieved with the constraint

that a certain desireable mesh structure be smoothly embedded within the region. j
Under all of these conditions, orthogonal coordinates can usually be obtained

but are restricted to two-dimensional situations.

To impose any of the constraints for any desired purpose, the element of

control must be established within the mesh generation process. The degree of

available control depends upon the type of coordinates and is quite substantial

for two-dimensional orthogonal systems. Once established, the mesh controls can

be applied directly in advance or with a prescribed evolution to follow the

expected path of solution behavior. Moreover, they can also be applied from the

evolutionary solution properties to produce algorithms that are dynamically

adapted to the solution.

Due to the possible control, the inherent simplicity, and the improved

accuracy in numerical simulations, we have been encouraged to develop methods

for generating orthogonal coordinate systems on planes and on curved surfaces.

To unify our discussion of the various methods, the surface metric will be

introduced with the understanding that Euclidian planes are included as special

cases. The required geometric background is included here in a brief

preliminary section so that our development is essentially self-contained. The

metric is also important since it contains the basic information about any

coordinate system and is used to relate the given partial differential equations

to the coordinates. In terms of the metric, we can easily distinguish between

conformal, orthogonal, and nonorthogonal systems. For orthogonal systems, the

cross terms in the metric vanish for conformal, the remaining terms are all

equal. Any deviation from the orthogonal metric is a direct measure of the

corresponding deviation of the coordinates from orthogonality. Since coordinate

orthogorl'.ty enters a given system of partial differential equations only

through the metric, the accurate rendition of orthogonality depends solely upon

the metric. When the metric for a coordinate grid is evaluated analytically,

the accuracy com from the underlying transformation. With a numerical

z 77'"
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evaluation, it comes solely from the grid which then motivates us to consider

grids which are numerically orthogonal. The choice between analytic and

numerical evaluations depends upon the application. As an example, the use of

conservation law form would bias us towards numerical evaluation and hence

numerical orthogonality.

The various methods of orthogonal coordinate generation can be reasonably

compared on the basis that a maximal amount of control can be exercised at the

least possible cost. The cost is in terms of computational and human

efficiency. Computational efficiency depends upon speed and storager human

efficiency, upon robustness and the number of parameters that must be specified.

The amount of control is in terms of the number of constraints that can be

applied. With additional constraints, the number of specified parameters must

increasel but in the interest of human efficiency, must not increase beyond what

*' is required for the exercise of control. In most cases, the element of control

is the most important factor since it yields the capability to obtain grids that

meet desireble specifications. The cost usually becomes important only when

the coordinates must be frequently generated as would occur when an evolutionary

process must be followed.

The methods for orthogonal coordinate generation can be split into the

categories of orthogonal trajectory methods, field solutions, and marching
techniques. Orthogonal trajectory methods yield a great amount of control at a.
low cost and are currently the best available methods. The trajectories are

generated with respect to a given family of curves which is usually taken from a

nonorthogonal transformation. When the nonorthogonal transformation is chosen

to match a complete boundary representation on all four boundaries of a region

and to have orthogonality at two opposing boundaries, the trajectories can be

generated in parallel to the boundaries that have orthogonality. This yields an

orthogonal system that conforms to the geometry of all boundaries and has

pointwise distributions specified on three out of four of them. In addition,

the clustering controls on the chosen family cof curves from the nonorthoqonal

transformation are directly carried over into the orthogonal system. To improve

upon this situation, we should first be able to give the fourth boundary a

pointwise distribution. A direct extension of orthogonal trajectories may be

applicable here in the spirit of a global iterative cycle in which the fixed

family of curves is continually adjusted until the desired pointwise distri-

bution is attained. A more direct and potentially advantageous approach is to

consider field solutions where the coordinates are generated by elliptic

partial differential equations with Dirichlet boundary conditions. In addition

... r
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to the specification of pointwise distributions on up to all four boundaries,

there is also the important potential to create general clustering controls

which would improve upon the clustering from orthogonal trajectory methods.

In cases where there is only one boundary that is important, marching methods

have been developed to march away from the boundary. In comparison with

orthogonal trajectory methods, the need to specify a family of curves is

removed and is usually replaced by a hopefully simpler prescription that may

demand less of the user. In all of the methods, the metric plays a funds-

mental role, and its use in field and marching techniques is a key to success.
Moreover, these techniques may be considered together on the basis of various

conditions imposed upon the metric.

GEOMETRY

Curves, Surfaces, Tangents, and Metrics 4

*To readily define geometric objects in up to three dimensions, we will

consider a fixed three-dimensional Euclidian space where points are described

by the position vector

-. (cI , c 2 , c 3) (1)

with Cartesian components ci. A general curve or surface is then defined by

-4. .4

• ( C ( ) 1c 1 1 c 2 1( A), 3 1 X ) 2 )

where the coordinate vector X is given by x - x1 for curves and x (x., x2)
, for surfaces. A curve that is contained in a surface is given by x -x(t)

X(t), x2 (t)) to yield a position vector

1Cc 22 ', ~;(t) -C (it( ( t ) ), C2 (t(t)), c3 ((tw) ()

for parameter t. In particular, coordinate curves on the surface a.e given

when either x1  t and x2 is constant or x1 is constant and x2 - t for the

respective x1 and x2 directions. For the curves and surfaces, sufficient

smoothness will be assumed so that all derivatives exist and are continuous.
For a surface curve section about (to0) , the increment A; - c(t) - '(to) is

given by the seiant vector from (to) to (t) which defines the approxiste

rate of change 5;/At in the same direction. An illustration is given in

Fig. 1.

I
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td

C2C

.2

Fig. 1. The natural tangent to a surface curve.

In the figure, the indicated limit

dt 3  -,tt

0 0

LC cc1 t(4

V-d t -t t t t -t o0
0 0

is clearly (assuming smoothness) a tangent vector to the surface curve at the

point c(t o ) and with a magnitude equal to the rate of travel along the curve.
0

fWhen the surface curves are coordinate curves, we get the tangents

4 -
a

" and (5)

2 ax2

which we call the natural tangents for the respective coordinate directions.

Now returning to the secant Ac, we see that its length is an approximation to

*
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curve arc length. Then, in the limit, we get the differential element of arc

length ds from 2

(ds) =dc•dc

ac d x(ax. j*a. )
14.

( (i e j dxi dx. (6)

= gij dxi dx

= g11 (dxl)2 + 2 g1 2 dxI dx 2 + g2 2 (dx2 ) 2

where the repeated indices represent sums from 1 to 2. The implied summation

is a standard notation that we will continue to use. The expansion for ds is

just a rule for distance measurement along the surface with respect to its

coordinate representation. The functions g = define the rule which
i cl to

is called the metric. For distance measurement s - s. along a coordinate

curve for xi , the only nonzero coordinate differential is dx i and the metric

becomes ds = yr- dx. or simply d - Irill dxi in correspondence with the

view of the secant approximation. The angle e between the coordinate curves

is also obtained from the metric since

cose = - , , 1-:(7)

Ie 11e2  /911 9 22

The coordinates are orthogonal when cose vanishes which occurs when g12 " 0.

Consequently, the metric for two-dimensional orthogonal coordinates is of the

form

2 22
(ds) . g1 1 (dx1 ) + g22 (dx2)

2  (8)

where the diagonal coefficients need not be equal. Here, a square element

defined by dxI - dx2 = dx is mapped onto a rectangular surface element with

sides dso - V dx and ds2 - dx. The element aspect ratio is just
1e__ =1 2 9

dos2 . g2 (9)dl gll

*When the aspect ratio is unity, differential squares map to differential

* squares. The orthogonal metric then has equal diagonal entries and the

coordinates are called isothermal parameters or simply the system is called

conformal.

"" *5,Q 7 •'
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In the orthogonal case, squares of area (dx)2 are mapped to rectangles of

area da1 ds2 = g--l 22 (dx) The Jacobian J of the tr&Asformation is

easily identified as v 192 which in the more specific conformal case is

just J -g = 922* In the more general nonorthogonal case, J - / where
2

g - det(gij) - gll 922 - g12

Intrinsic Constraints

In general, we have seen that the metric is the rule for distance, angle,

and area measurements within a surfacel as a consequence, it is intrinsic to

- the surface. Moreover, any quantity that depends only upon the metric is also

intrinsic. As a rule for measurements with a surface, the metric is indepen-

dent of any specific coordinate representation. To change the representation

from (x1, x2 ) to (Y V Y2) coordinates we have

2x .xgi dyx.

(ds) 2 gj dx dx .g.j ay y L- dyk  -k dyt dYk (0s)

so that

ax ax. (1b
91k - aij ay3 1.

are the coffecients attached to (y1 f y2 ). In general, any intrinsic quantity

is independent of coordinates.

The Gaussian curvature (1) of a surface is a scalar quantity and was shown

by Gauss to be intrinsic. He was very proud of this result and called it

"Theorems egregium" which means "extraordinary theorem." Explicitly, the

Gaussian curvature K is given by

a;11  a;11. x1  2 -

. ,1 (l)
4,, g- l, 912 agl2

as g2 I  asx2

3q 22 a; 2 2
22 3x1  ax2

ag 3q
L ____2a__ 3 J72 1l

7-9
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With orthogonal coordinates, g1 2 - 0 and

K - 1ag 22  a 1 11112a
a .J ax x2 JJ (1a)

or equivalently,

K =L2 2 (log g22 + (log g ()12b)
2g4 2 ax 1 ax 2

In conformal coordinates, also g11 = g22 and thus

- 2 2 (12K- 1 .- . + I... log4  (2e

2 rg ax 2  ax221(gg

In Euclidian space, cartesian coordinates can be defined which is equivalent

to also setting g = 1 and thus

SK 0 (12d)

as would be expected for a flat space.AJ
SWhen surface coordinates are changed from old coordinates (x I , x 2 ) to new

coordinates (yIp Y2 ), the Gaussian curvature can be computed in each to give

Kold and Knew respectively which by coordinate invariance yields the equality

Knew K old (13)

which is a constraint on the new choice of metric. To create new orthogonal

coordinates on a surface region described by old generally nonorthogonal

coordinates, the constraint becomes

ag 11  a 1 g a22)
__ -- 2 (14)

with the gij's attached to the (y 1 , y 2 ) rather than (x I , x 2 1. When the

surface curvature is known in advance, Kold can be used directly. As

examples, K - b for a sphere of radius b and Kl d  0 for a Euclidianexsls oldol

< i ,,4. 
, "j" :
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plane. In the Euclidian case, the constraint on two-dimensional orthogonal

coordinates then becomes

1 ag 22  a 1 ag 11 0a (15)1Y _ _ Y2
(2 /g 1 1 g 2 2

* The Restricted Existence of Three-Dimensional

Orthogonal Coordinates

As in the two-dimensional case, distance measurement in three dimensions is

given by a metric

2 (16
(ds) = gij dx. dx (16)

where the indices now run from 1 to 3 rather than 1 to 2. Orthogonallity is

-given by

g1 2  g1 3 " g2 3 "0 (17) -"

and in the context of Euclidian space the coordinates are called a triply

orthogonal system of surfaces.

The number of triply orthogonal systems is, however, greatly limited.
Dupin (11 in 1813 showed that the intersections between the surfaces were

lines of curvature of the surfaces. For any surface of such a system, this

means that its orthogonal surface coordinates are of a very special type. As

lines of curvature, each coordinate curve follows either a maximum of minimum

curvature direction. For example, on an axis of an ellipsoid, the maximum

direction points towards the smallest remaining axis while the minimum points

towards the other. If they are equal, the choice of orthogonal directions is

arbitrary and the location is called an umbilic. A surface where all points

* are umbilic is a sphere. On a sphere we would then be able to choose ortho-

gonal coordinate systems at will. As pert of a triply orthogonal system, two

families of surfaces would be the cones from the origin and through the

respective family of curves on the sphere. The final family would be all

other spheres that are concentric to the given sphere. Unfortunately, we

could not choose a nonspherical outer boundary or even a nonconcentric

spherical one.

The restriction is clearly more severe for general surfaces. As an

example, three-dimensional boundary layer coordinates over a two-dimensional

surface would be useful in a number of situations but only exists (as shown by

L4

., - : '
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Darboux [11) when the surface coordinates are lines of curvature. Under a

further requirement of grid clustering along the surface, clustering would

have to appear where it is not needed. In addition, if only a portion of the

surface is needed, then its boundaries must also be lines of curvature which

is not generally possible. Because of the restrictions to such specialized

cases, three-dimensional orthogonal coordinates will not be available for most
problems with nontrivial geometry. As a consequence, only two-dimensional

orthogonal systems are of real interest. In the threedimensional case, the

primary interest is with orthogonality only on one family of surfaces or only

- 'on boundaries.

S~Analytic and Finite Difference Orthogonality

When the curvilinear variables of a transformation are uniformly dis-

cretized and are subsequently mapped by the transformation, we obtain a

curvilinear grid. Without any further use of the given transformation, all of

the metric data must be evaluated directly from the grid. In particular,

T orthogonality would then be determined only by the grid. The evaluation

should also be consistent with the overall numerical scheme. The consistency

. is particularly evident in cases where conservation law forms are used and u qb?

where it is important to correctly model internal flux balances. Typically,

* the choice is between central or one-sided differences. For our discussion,

central differences will be used with the understanding that other forms of

differencing would follow the same pattern.

The uniform discretization of the curvilinear variables is given by the

coordinate vector x(i, J) - (a + i Axi, b + j &x2) for increments &xk and for

constants a and b. The curvilinear surface grid is then given by
4(,. - (.(i,j)) from Eq. 2. With respect to the grid, the central

difference approximation to the natural tangents from Eq. 5 are second order

accurate and are given by

E Ili, J) 24

ci, J) c~ + 11)- - 'C(i1,1)(8

1 ~2 Ax1

*J.4

2 2 Ax 2

Their dot product yields the central difference metric

.- . .. - " . V .-"£m m mm
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which approximates the metric g9k of the analytically defined transformation.

With only the grid data, the transformed partial differential equations would

be expressed in term of the approximate metric which would be from Eq. 19 in
the case of central differences. Whether or not the metric appears in the

explicit formulation, the effect of orthogonality comes entirely from Gki.

The condition for central difference orthogonality is just G12 - 0 and is

illustrated in Fig. 2.

c(-, j+l)

4

z 2
• 1~c -, j ) :

i Fig. 2. Control difference orthogonality. 
,

As an example. the polar coordinate transformation * ='" Nx coo X2

X1 sin x2, 0) takes a uniform discretisation of x into a uniform polar grid.
By symmetry, the central difference metric can be computed under the

assumption that the angle x2 is 0. At x2 ' 0, we have Ez - (1, 0, O) and
xI

2 -AX2 (0, sinA x2f 0) which yields central difference orthogonallity

G12 - 0 that is then valid for the entire mesh. This corresponds exactly with
analytic orthogonality where the computations yield g12 

= 0. The

"M.
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correspondence, however, is often not exact. For example, if the angle x2 is

replaced by a nonlinear distribution function, then G is nonvanishing and
12

912 is vanishing. That is, we have analytic orthogonallity without precise

central difference orthogonality. Conversely, it is also possible to have

central difference orthogonality without analytic orthogonality.

When an analytically orthogonal transformation renders upon discretization

a grid with a significant departure from finite difference orthogonallity, the

recommended approach would then be to use the transformation itself to get the

natural tangents and the subsequent metric data. The computation would

involve either analytic evaluation or the use of a temporary grid refinement.
e With both computations, the information which is missing in the given grid is

supplied. The value of this information must, of course, be balanced against

other considerations before we decide to get it.

*ORTHOGONAL TRAJECTORIES

Overview

The generation of orthogonal coordinates by means of orthogonal trajec-

tories depends upon a specified family of curves and a specified pointwise

distribution along one of the curves. Curves in the family must not overlap

other members and must be ordered in a monotone fashion so that each is

) positioned to follow all previous numbers and to precede all others. If all of

the curves were given an aligned and normalized arc length parameterization,

then a system of coordinates would result where the curves are just a family

of coordinate curves. Suitable families are then obtained from prescribed

nonsingular transformations. The transformations are nonorthogonal, for

otherwise, the desired system would already be given. Controls over the

chosen family of coordinate curves come from the nonorthogonal transforuat.on,

are quite extensive, and have been well-developed within the general context

of coordinate generation. To complete the specified data, we must select the 32

curve on which the pointwise distribution is to be prescribed. If the curve

is internal, then the orthogonal coordinates can be generated in the opposite

directions away from the curve. This effectively splits the problem into two

separate problems. As a consequence, the selected curve can be considered as

a boundary curve which for our purposes is an initial boundary. From the

pointwise distribution on the initial boundary, the orthogonal trajectories

are obtained by integration across the field. They end upon the opposing

boundary as a target giving it a pointwise distribution. The boundary will

thus be referred to as a target boundary. The overall process is illustrated

in Fig. 3 where the trajectories are the oriented curves from initial to

'No
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target boundaries. The generation of coordinates to obtain various families

*. of curves will be discussed. This will be followed by a development of the

fundamental differential equation for orthogonal trajectories along with an

example. Then the various specific methods will be examined.

' , Target
%' ., Boundary

4t
M" Specified

Family of
Curves

Initial Boundary

Fig. 3. Orthogonal Trajectory Methods

The Choice of Nonorthogonal Coordinates

When the desired orthogonal system only has two prescribed boundaries and a

pointwise distribution on one of them, the shearing transformation yields the

* simplest way to get the required family of curves. On a surface, the two

boundaries are curves of the form described in Eq. 3. Assuming the same

parameter z2 for each curve, let corresponding curves in the coordinate space

X= (x, x2 ) be denoted by (z2) and (z2 ) . The shearing transformation is

* then given by Z(;) from Eq. 2 where

x = (1 - z1) a(z2 ) + s1 9(Z 2) (20)

for 0 < z < 1. As z varies from 0 to 1, the family of curves varies from

c(a&(a 2  to c(t(z2)) which are the prescribed boundaries. The basic

construction here is in the (xI, x2)-plane and is depicted in Fig. 4.

Al
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3 x2

a t-s

; zI  constan't

1

Fig. 4. The Shearing Transformation

The shearing process is also equivalent to the application of an operator P1

* that acts upon any surface coordinates between the two curves and is defined by

P PlI (x) - ((l - a I.) 's z 4 s 1 9(a2)) (21)

We then easily find that the repeated application P1
2 is just P. and hence

that P1 is a projector of any surface coordinates with the two given

boundaries into a sheared coordinate system with the same two boundaries.

This projector, however, yields a smooth curve diatribution which is uniform

only in the i-plane. To obtain uniformity on the surface, the aI - variable

would be taken as the normalized arc length along the surface curves of

shortest distance that connect the surface boundaries at each fixed z2 . From

a geometric viewpoint, the direct surface construction would also be preferred

since the resultant projector is independent of the given surface represent-

ation in terms of l-coordinates. Although the shearing process would be

accurately represented with respect to the surface, the inherent simplicity

would be lost. As a consequence, will consider only projectors such an P1 In

*q. 21 which are developed relative to the x-plane.

In the x-plane immediate alternative possibilities are provided by sheared

conformal transformations and by elliptic partial differential methods. With

the sheared conformal approach, a contour is coarsely approximated with a

:-7&Rt
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simple conformal transformation that serves to unfold it roughly onto, for

example, a horizontal axis. A shearing transformation is then applied between

the unfolded contour and a horizontal line to yield upon composition a

coordinate system which fits the contour and is approximately conformal. A

notable example is given by the sheared Schwartz-Christoffel method of Caughy

[2). with the elliptic partial differential equation approach, the Poisson

system presented by Thompson, Thames, and Mastin [31 is directly applicable

and also provides immediate clustering controls over the family of desired

curves.

.. When the desired orthogonal coordinates are to conform with geometry on two

boundaries and with pointwise distributions on three boundaries, more control is

needed in the nonorthogonal transformation. At a basic level, we must be able

to obtain a family of coordinate curves which connect two opposing boundaries

with specified geometry and which are orthogonal to each of them. Then the

connecting curves define the geometry of the remaining two boundaries in

correspondence with the end points on the two given boundaries. Taking one of

the connecting curve boundaries as an initial boundary, orthogonal trajectories

are computed towards the other as a target boundary. Because of the existing

boundary orthogonality at the two specified boundaries, they would already be t

trajectories; hence, would be preserved under the accurate computation of

trajectories. This process is depicted in Fig. 5. .

c Target Boundary
3 lz2 )

Sc 1  .Initial Boundary

c C2

Fig. 5. Nonorthogonal surface coordinates with orthogonality on two
prescribed opposing boundaries.
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The specified boundaries on surface are the curves denoted by a(z2) and

;(z2 ) which are respectively images of curves a(z 2 ) and b(z 2 ) in the I-plane.

The specified orthogonality conditions on the surface are pulled back to the

x-plane where they are not orthogonality conditions but are more general

derivative conditions. In the plane c - (x1 , x2, 0) the two conditions

coincide. The derivative condition is obtained by using the known boundary

data in the fundamental differential equation for orthogonal trajectories.

"* Its derivation will be presented in the next section.
.4+ +

In the x-plane, coordinates which fit the boundaries a(z2 ) and b(z2) and

which meet the desired derivative conditions can be simply obtained from the

multisurface transformation [4) where further controls on the family of

connecting curves are also readily available. In two-dimensions, the construc-

tive surfaces in the transformation are curves Wk(z2 ) which are ordered from

boundary a(z2) =I(z2) to boundary b(z2) - wN(z2) with the intermediate

curves w2 (z, ... , WN-l(z 2 ) available for control. At each value of z2 , a

piecewise linear connecting curve is determined by joining the successive

points k (z2) with straight line segments. In correspondence with the N-1

straight line segments, a partition rI < r2 < ... < r_1 for the assumed

transverse coordinate z1 is prescribed. In further correspondence, a sequence

- of interpolation functions *k(zl) is defined to vanish at all partition points f

*except rk as k - 1,2, ..., N-1. The general N-surface transformation is then

given by

4+ 4. N-1 Gk(zl) (22)
x(zI 2) 1(2)+k-I Gk (r N-1) k+l

where
zi

Gkl 1 = k(z) dz

It is an easy matter to check that

x(r1 , z2) - a(z2 )

(23)

it(rNl1 , z2) - 9(z2)

IV,
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and

3'X *k(rk
S(r z2 k Gkrk [k+(z 2  - k(Z 2 )J1 rk k kl-i)

for k 1 1, 2, ..., N-I. From a substitution for the derivatives, we obtain

the alternative Hermite form

N-1 G k (z 1) rk( (24)., (Z' 2) =11 2 k=-l *k(rk) 'zl kv2)

With either form, an operator P1 is defined by

~~ a) Z;1 - ;(Zl , z2)) (25)

2
and is seen to be a projector (P1  PI). Any coordinates on the surface
which meet the surface data that has been pulled back to the X-plane data of

Eq. 23 are projected by P into the multisurface coordinates. When global

(N-2)nd degree polynominal interpolants *k are used, the -surface transform-

ation is given by an (N-l)st degree polynominal in z1 . Here, each surface

corresponds to an extra degree of freedom. With 2 of them, we get the
. shearing transformation of Eq. 20 and the corresponding projector given in

Eq. 21. with 4 of them and the partition 0 - r1 < r2  < - 1, we get the

cubic Hermite projector where

.x(zl, 21 - (1 - 3 zl + 2 a1
3 1(0, z21 + z 1 

2 3 2 z1 Ill, z2)

(26)

+ z (l - ! , 2) - 2(- z z
1az 1  2 1 1 a: 2i-

The cubic Hermite transformation of Eq. 26 has been studied by Eiseman (41,

Smith and Weigel [51, and Kowalski [61. The associated projector also meets
the minimal conditions that are demanded of the connecting curves that ?re

illustrated in Fig. 5. The control required to meet more conditions L

available with larger N. Since N distinct conditions are enough to determine

an N-l)st degree polynomial, the polynomial U-surface transformation can be

cast into the general Hermite form.

AWN
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J I, i

X(z , z) = (z) ---- x(tj z )
1 2 jL JO 3z jj1l i=0 l

with

J
N 1 (1+1.) (27)

j=l 
(7

and polynomials Oij (zl) satisfying

- 8k

lk ij (t£) -
6
ki a tj

for tI - rI , tj - rN_, and arbitrarily selected points t. in between. The

most direct and useful application of the Hermite form is the specification of

extra conditions only at the boundaries. For more precise controls over the

curves, we must return to the selection of the multisurface interpolants Ik(al)

and take them to be local piecewise-polynominal functions. The added precision

comes from the resultant local dependence on constructive surfaces and from the

use of lower order polynomials in the construction of the *~k . Details are

presented by Eiseman (7, 81 and Eiseman and Smith [91. One application of the

extra control, here, would be to approximate the desired geometry of the

lateral boundaries which were the unspecified initial and target boundaries of

Fig. 5.

When an exact specification is required of all boundaries, the simplest way

to get suitable coordinates is to use Boolean sums of projectors as presented

by Gordon 1101 and by Gordon and Hall [11]. In addition to the projectors P1

that we developed for the z -variable, similar projectors P2 can also be

defined for the z2-variable. The Boolean sum of the projectors is defined by

P1 (P 2 = P1 
+ P2 -PP 2  (28)

and is itself a projector if P1 and P2 commute (P P2 - P2P1 ). With P1  P2 as

* a projector, we obtain surface coordinates (P1 0 P2 ) c(x) which conform to all

boundaries. At a minimum, orthogonality ip needed on two opposing boundaries

so that they are reproduced as orthogonal trajectories. To meet the require-

ment, P1 is taken as the cubic Hermits projector (Eq. 26 inserted into Eq. 25)

while P2 is taken as the shearing projector (of Eq. 21 with an interchange of

variables). These projectors coumute and thus define suitable coordinates.

.. > . I . .. if.
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Watford [12] used these coordinates in the plane for his orthogonal trajectory

method. When more control is desired, either the general Hermits form of 4

Eq. 27 or the local multisurface interpolants (for Eq. 22) may be used. With

the general Hermite forms in both projectors, mixed derivatives occur and, as

examined by Gregory [131, commutativity only comes from continuity at the

corners of the region. Barnhill [14] presents two methods to remove the

problem which are known as Little's square and Brown's square respectively.

Direct applications of the general Hermite form have been considered by Rizzi

and Eriksson [151 for higher order specified data on the boundaries. With the

general form of the multisurface transformation given in Eq. 22, coumutativity

comes from the specification of the control curves. When they form a control

net, commutativity is immediate and the local interpolants can be applied

directly. Otherwise, the sane considerations as in the general Hermite case

% must be examined.

As an alternative to the above algebraic constructions, suitable coordi-

nates can also be readily obtained by iterative elliptic partial differential

fequation method of Sorenson and Steger [16]. The iteration is done globally

on the whole system of equations. In each cycle, the source terms of the

Poisson system from Thompson, Thames, and Mastin (31 are updated. The cycles

*also include the main solution step for the inverse Poisson system. Thus, the

additional cost of iteration is minimal. Upon convergence, derivative condi-

tions can be satisfied at two opposing boundaries. As a consequence, boundary

* orthogonality can be specified.

The Fundamental Differential Equation

Once a suitable nonorthogonal coordinate system has been selected for the

surface, the differential equation for orthogonal trajectories can be formu-

lated with respect to the desired family of coordinate curves. Rather than

specific formulations, we will develop the fundamental differential equation

,* from which the others will follow as special cases. Without loss of

generality, the given nonorthogonal coordinates can be taken asA = (xI , X71 2
for the surface c(*) of Eq. 2. This is only the assumption that the right

coordinates were selected in the original surface representation.

The orthogonal coordinates to be generated from the trajectories will be

denoted by y -Yl' Y 2) and defined on the domain a1  yl b1, a2  Y2  b2 .

The original coordinate curves with constant x will also be assumed as
2

coordinate curves in the orthogonal system, and thus, will constitute the

specified family of curves. When the family of curves are given by constant

N-A.

4
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values of y2. the desired transformation takes the form

X, x 1(Y1, Y2)

(29)
x 2  x x2(Y 2 )

and corresponds to the pointwise distribution x l(yI , a2) on the initial curve
'(x1(y1 , a2), x2(a2)) . With the metric coefficients 9i for the (yI" Y2)"

coordinates, the orthogonality condition for the transformation is just
q 12 - 0. Under the change of coordinate rule given in Eq. 10, the

orthogonality condition expands into

ax1 ax1 aax 1 ax 2  x a x ax ax_
1l 1  a 2  g12  ayi 22 g a1

ay Y2a Y Yli2  (30)

where the metric coefficients gi4 are attached to (xl, x2). From the form of

the transformation given in Eq. 29, the derivative (ax2/ayl) vanishes and the

condition reduces to

(31)I X +x " 2  ax
2 2y2  ay

If (X /ay1) also vanishes, then from Eq. 10b we get l which together with

12 yields a vanishing Jacobian J - ill i22 " i12 and thus a coordinate
singularity. For nonsingular coordinates the isolated derivative can then be

factored out of Eq. 31 to give

xx 2 (32)
91172 12 y2 0(2

The derivative (ax./a"21 in the equation must be the total derivative
(dx2/dy2) which directly follows from the form of the transformation given in
Eq. 29. With nonsingularity, it must also not vanish. As a result, x2 (y2 ) is

,. monotone, the inverse function y2 (x2) exists, and it is also monotong. The
orthogonal trajectories are the curves with y. taken as a constant which for a

particular trajectory may be denoted by V.. Upon substitution, the
transformation reduces to xI - x1 &' Y (x211 which for simplicity can be
denoted by xI (x2) . With one application of the chain rule, Eq. 32. becomes

• . L . ". ' , .,' . .2V
_____________________._______ 

, 
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1 g 1 2  (33)
dX 2 911

which is the fundamental ordinary differential equation for orthogonal

trajectories. The equation is always well-defined for nonsingular coordinates

since g11 > 0. The initial conditions are just x (e) -x I (YIP a2 ) for each

Y and where e = x (a2). Upon integration,
1 2 2

x (y2 )- ,, (34)

x1 (yl' y2) = X(y I a2) -J g12 dz

which explicitly defines the trajectories for a given x2 (y2). The

trajectories are also the characteristics to the fundamental hyperbolic

partial differential equation which is giver, by Eq. 32 in inverse form. With A

Jacobian J, the inverse derivative expressions

3Xl1 1 3y1  Bx2  1 3y1
- = --- and
aY2 J ax2 ay2  J ax 1

are inserted into Eq. 32 to yield

By1  g12 ay1  (35)

Bx2  g 1 1 B 1

which has characteristic directions given by the fundamental ordinary

differential equation, Eq. 33.

An Example of the Fundamental Differential Equation

k To illustrate how the fundamental differential equation is applied and how

r it relates to other derivations, we will consider a simple useful example.

Let f be a nonnegative function of a single variable and consider the shearing

transformation

- (xI, x2 f(x1 ), 0) (36)

with curvilinear coordinates p < xI < q and 0 < x 2  1. For constant values

of x 2 , we get a family of curves through which we wish to obtain orthogonal

trajectories. The curves are in the plane c3 - 0 and are depicted in Fig. 6.

~60
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c 
2

f

IO c
0 p

Fig. 6. Family of curve from shearing transformation.

From the definition in Eq. 5, the natural tangents to the coordinate curves

are the respective x k-derivatives of c and are given by

11 (1 x 2 f N 1 ). 0)
'1 (37)

e (0, f(x),0

where fV denotes the derivative of f. The metric coefficients are defined in

Eq. 6 as9~ 9, e e~ and in our specific sheared system become

2

-1 x 2 fMx1 ) f' (x 1) (38)

[2 f(x1 )2

B y substitution, the fundamental ordinary differential equation (Eq. 33)

* becomes

dx1  x2 f(x) f'(x1 )(

d2  1 + (x 2 f'(x1)J2

has a unique solution when V' satisfies a Lipschitz condition.

30'
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To obtain a comparison with direct Cartesian formulations, we will write

the fundamental equation in terms of the Cartesian components c1 = xI and

c 2 . x2 f(x . The inverse transformation is then given by xl = c1 and

x2  C2/f(c1). This, in turn, is differentiated to yield the differentials

dxI = dc (40)

dc2 - x2 f'(c ) dcI
dx = 2 2 1

2 f(c)

Upon direct substitution, the fundamental equation (Eq. 39) becomes
. do2(41)

dcl x 2 f' (cl)

which could have been directly inferred on the basis of negative inverse

* slopes to the curves c2  x 2 f(cI).

In the Cartesian formulation, a further variant with slopes is considered

in Berger and Curtis [17). The family of curves is defined in the functional

form

O(x 2 , c1 , c2 ) 0 (42)

A normal increment (dcI, dc2) should then be proportional to the gradient

V= (LL. @ ) which means that the slopes are equall hence we have
ac a3c

1 2

ra, C (43)
dc2

2 2j
dcl cI

For our exazple, we take c 2 - 2 f(c) and from Eq. 43 arrive at the

result of Eq. 41.

Methods of Generation

The various orthogonal trajectory methods can be separated into the

categories which correspond to either a continuous or discrete specified

family of curves. With the continuous specification, the fundamental

differential equation or one of its equivalent forms is usually used. The

family of curves is usually generated from algebraic coordinate transforma-

tions which are preferable because a smooth normal field must be readily

defined everywhere so that the fundamental differential equation is also

,1 2

• - .
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available everywhere. Primary advantages with the continuous family are that

the orthogonal metric coefficients can be accurately computed regardless of

the resultant grid point locations and that the accuracy in the determination

of the locations can be made arbitrarily high in either a global or local

sense. The correct locations are especially important in cases where the

trajectory must reproduce a boundary which was intentionally taken to be

orthogonal to the specified family of curves. The objective tiere is to

generate orthogonal coordinates with specified boundary data on three out of

four boundaries. The accurate computation of metric data comes from the

- coordinate change rule of Eq. 10 and from the geodesic curvature [1) of the

coordinate curves under consideration. As in the case with Gaussian curvature

(Eqs. 11-15), geodesic curvature is also an intrinsic quantity. For

coordinate curves in x,, it is given by

2/91 , + 9 1ax + 2g 1  2

and in x2 , by

K 'g 2 2 + g 2 2  2g 2 1  (44)

= - S'T22 x, g1 2 ax 2922 ax

-2 gg 2  2 2

2For the orthogonal coordinate system (y1 , Y2 1 with metric h,
2 = g 1 and

h 2 g2  the curvatures reduce to

a hl

I 1 (45)
1 2 2

1 2K2 h h h2 aylI

Since the family of curves with constant x 2 was retained as constant y 2 curves

in the form of the transformation (Eq. 29), the curvature K1 along each mebe

of the family is independent of the coordinate system. As a consequence, XK1 can

be analytically computed at any location in X-coordinates (Eq. 44) and must be
eqal to the corresponding expression in i-coordinates (Eq. 45). In the

expression, h 2can also be computed analytically in terms of NIP, x 2 ). Under a

change of coordinates, the metric coefficient g 22 can be expanded in term of
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gij by the rule given in Eq. 10. When the orthogonality condition of Eq. 32

is used to eliminate the derivative (x 1/y 2 ) in the expansion, we get

h h2 = T dy(46)

which is suitable for analytic evaluation. With the evaluations for K and

h2 P the curvature equation becomes

dh 1 K/~ 47).' ~dh]. Kh
dx 2  1g 1

This can be solved simultaneously with the fundamental differential equation

(Eq. 33) to accurately produce values of the metric hI and h2 along with the

locations. The calculation for h1 is then effectively decoupled from parallel

solution data which otherwise would have been required. I
Blottner and Moreno [18] and Blottner and Ellis [191 have considered

applications to surfaces of the general form

c - (r(xl, x2) cos x2, r(xl, x2) sin x2, x11  (48)

which included particular studies for ellipsoids, paraboloids, and spheres.

In each case, they were interested in the creation of approximate boundary

layer coordinates. From Darboux's Theorem [11, exactness is not possible

unless the resultant orthogonal system reproduces lines of curvature. In

their study, Eqs. 33 and 47 were derived for the constant x2-curves on the

surfaces of Eq. 48. The equations were then solved for both locations and

metric data.

In another study, Watford used the fundamental equation (Eq. 33) and the

metric equation (Eq. 47) for the generation of planar coordinates. The t

specified family of curves came from the nonorthogonal coordinates defined by

the shearing projector of Eq. 21, the Hermits projector of Eq. 26, and the

Boolean sum (Eq. 28) of the two. On application, the metric equation was

written for AS1 rather than hI by using the relationship dsI - h 4yl.

With a further study of the planar case, Davies [203 considered the

fundamental equation in the hyperbolic partial differential equation form of

Eq. 35. His basic solution was implicit and was interlaced with a

characteristic analysis. Unlike the others, interpolation was required along

. .... . *- , .. ... "- .* . ." • d* i? ?
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the constant y2-curves and the metric data was determined solely by finite

differences rather than by Eq. 47.

When the specified family of curves is to be given in discrete form, the

associated nonorthogonal coordinate transformation can be continuously or

discretely defined and can be obtained by any readily available method. The

objective is to now determine an orthogonal correspondence between successive

curves which would be a good approximation to the corresponding analytically

defined trajectories had we been able to fill in the spaces between curves

with the underlying nonorthogonal coordinates.

The method of Graves and McNally 121), 122] provides us with a simple and

effective technique for the generation of orthogonal trajectories in the above

- discrete case. The technique is a predictor-corrector process and is

illustrated in Fig. 7.

Point In Orthogonal

Correspondence

J /
Second Predicted Normal - I / First Predicted Normal

~II

II
II

w GCurve k
Point

Fig. 7. Graves-McNally Predictor-Corrector Process

f-I.. .-.; . ".

There it is desired to advance the orthogonal trajectory from a known grid

point location on curve K up to a grid point in orthogonal correspondence on

4.'

A, ......
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curve K + 1. The first step is an Euler predictor in which the point of

intersection is found between curve K + 1 and the normal line to curve K from

the known grid point. Then the normal direction from curve K + 1 at the point

of intersection is used to obtain a second predicted normal line from the

known grid point. The process is completed when the point of intersection for

the second predicted normal is found on curve K + 1 and is averaged with the

first intersection point. The result is the desired point which is in

orthogonal correspondence with the known grid point location that we started

with on curve K.

With the view that the orthogonal correspondence depends upon the missing

continuum of curves, Potter and Tuttle [23] have proposed a method in which the

continuum is approximated by an assumption on the normal directions. In

particular, the normal directions are represented by a vector field of unknown

magnitude which is then completely determined under the assumption that it is

divergence free. The divergence free assumption means that the normal field has

no sources or sinks. The mathematical implication is that the cell aspect ratio

(Eq. 9) is of the form

__1 a(y ) b(y2 ) (49)

g2 2

for some functions a and b. In terms of potential functions defined by
a - dA/dy1 and b - dB/dy2 , Laplace equations are obtained and solved between

the successive curves K and K + 1. At the outset, the initial locations, and

also normal directions, are known on curve K. On curve K + 1, the family of

normal directions are known and the pointwise locations are desired to

determine the orthogonal correspondence. In between, the postulated vector

field is smoothly filled in and conforms to the known family of directions on

curves K and K + 1. From the solution, which is done only on the given curves,

a unique orthogonal correspondence is obtained. The divergence free

assumption, however, is not valid for all orthogonal coordinate systems. For -.

example, between concentric circles of a polar coordinate system, the

assumption fails since the normal vector field is always of unit magnitude and 4

enters the inner circle over a smaller arc length than the outer circle on

which it exits. Although the assumption is not met, the form of the metric

aspect ratio (Eq. 49) is retained. Moreover, with logarithmic scaling in the

radial direction, the normal fluxes can be balanced on concentric circles.

Here, it is evident that magnitudes of the normal vector field are also

uniquely determined. In general, the aspect ratio form of Eq. 49 is not

V. * ..
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retained. To illustrate this fact, we consider the example which lead to
2

Eq. 41 and take f(xI) - /2 which yields a case where the orthogonal

trajectories can be computed analytically. With initial data at c2 - 0 given

by c1 - 1 + y1 for 0 < yl < 1, we readily obtain the cell aspect ratio

(50)

Y2 /2(R + 1)

922 R

where

2 2
R = /1 + 2 y2 (1 + yl 2

Because of the radicals, it is clearly impossible to manipulate the expression

into the product form of Eq. 49.

With the work by Ghia, Hodge, and Hankey (24] we return to the linear

constructive process between curves K and K + 1. In contrast to the method of

Graves and McNally, their method is based upon an approximation of g12 = 0.

In the discrete notation of Eq. 18, the first step is to find the index j for

which the expression

E - 1E(il k) + . 1 ijV 1)1 (51)C(j, k + 1) - k) -I+,

14

changes sign. Here, i designates the fixed point on curve K, and j is the

index for successive points on curve K + 1. The point corresponding to the

sign change would yield a rough approximation to orthogonality. In r. second

step, the approximation is improved by linear interpolation over the interval

on which the sign change occurred.

To alleviate the orthogonality errors, it appeared to the present author

that a leap frog technique would be advantageous. Consequently, the leap from

method was developed and applied to some examples which were graphically very

similar to the results from the previous discrete methods, but were orthogonal

to machine accuracy in the central difference metric Gk1 of Eq. 19. We shall

now describe the method which is also illustrated in Fig. 8. The first step

is to compute the central difference natural tangent U, X) which i given

in Eq. 18 and which is at the ith point

wr 7
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Curve k + 1 New Point

Curve k E

°I

Curve k -

Fig. 8. The Leap-Frog Method

on curve K. In the second step, a line which is orthogonal to I (i, K) is

constructed from point i on the previous curve K - 1. The third and final . .
step is to find the point of intersection on curve K + 1. The new point on

the ith orthogonal trajectory is the intersection point. Since the previous

curve is always needed for the leap frog method, the first curve from the

boundary must be treated differently. This is done by using point i on curve

K rather than on curve K + 1. Then the resulting orthogonal grid is exactly

orthogonal with respect to central differences at internal points and with

respect to mixed forward and central differences on the initial boundary. On

the target boundary, by contrast, nothing can be claimed.

When the continuous family of curves is considered, all of the above

discrete methods can be used on a succession of discretizations. Here we

suppose that a fixed discretization is required along with accuracy demands

that exceed the level available from the resulting grid. The desired level

can then be obtained from grid refinements. In the limit, the results

converge upon the analytically defined systems, and for accuracy, become more

competitive with methods which directly use the fundamental differential

equation (Sq. 33). The accuracy is especially important if a prescribed

boundary is to be reasonably preserved as an orthogonal trajectory.

Otherwise, the specified boundary could be lost as the trajectory either

I
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leaves or goes interior to the region. In conjunction, there is also the

small technical problem of either modifying the methods near such boundaries

or else extending the specified family of curves to cover the small boundary

deviations. In addition, the accuracy is also required to extract the metric

data from the analytically defined orthogonal system which is being approxi-

mated. The intended application is clearly for cases in which an analytic or

nearly analytic evaluation of metric data is desired. In this context, the

finite difference orthogonality from the leap-frog method would not be

realized.

FIELD SOLUTIONS

Overview
4- with the orthogonal trajectory methods, we have seen that orthogonal

coordinates can be efficiently generated and be made to conform to a specified

pointwise distribution on three out of four boundaries. To specify a distri-

bution on the fourth boundary, we would require some global interative
1.

. procedure in which the previously specified and fixed family of curves would

have to be continually updated. On such problems, a more attractive and less

complex approach would then be to obtain a method for the whole field at once.
.' The result would be field solutions to systems of elliptic partial

differential equations which arise from specified forms of the metric. The

metric specifications over a field also lead to methods for another class of

problems. These are called marching methods since the grid is generated by

marching away from the single specified boundary. The class of problems are

those where the exact form of the far field boundary is not needed and where

more importance is placed upon minimizing the amount of sensitive user

specified data. Here, we shall discuss both elliptic and marching methods

under the general framework of metric specifications.

The Curvature Constraint

aThe first and most basic metric specification is just the orthogonality

condition g12 = 0. Without any further condition, a unique system of

orthogonal coordinates cannot be found. This is generally evident from the

curvature constraint of Eq. 14 where there is the imediate fredom to choose

either g11 or g22 or a single relationship between them. More specifically,

we shall illustrate the nonuniquenesa with a concrete example obtained by

orthogonal trajectories. For the example, consider the nonorthogonal

coordinates (xi, x 2 ) for C(x) of Eq. 2 which are defined by

4,

~-



223

Cl ~x

C 2  (x2 -x 2 
2  

O3x 2 21 3) + X2 (52)

3

for 0 < x<1. In the Cc1 , c )-plane, the coordinates cover the unit box and

are depicted in Fig. 9. The constant xl curves are vertical lines.

-2

122

and with the respective c2 locations x2  and X 2- When orthogonal trajectories

are constructed from a uniform distributiorf on the top of the box (c02-1)
the resulting orthogonal coordinates for the box are uniformly distributed at

both Cl and c2 - 1. When the system is reflected through both c.and c2-
axes successively, a nontrivial orthogonal coordinate system is obtained with

a uniform pointwise distribution on all boundaries for the larger box

-l < - 1. The system is also seen to be singular at the origin.

However, with the sames uniform boundary distribution, the larger box is also

clearly covered by Cartesian coordinates.* To suarize the example, the

condition 912 - 0 does not yield enough information to distinguish between the

Cartesian and constructed systems for the larger box. Moreover, there is no

control over singularity.

. . U:
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Haussling and Coleman [251 presented a method that was based entirely on

the condition g12 , 0. Because of the above nonuniqueness, the choice of

orthogonal coordinates is determined by the various specific aspects of the

numerical method such as the initial conditions for an iteration. The method,

however, did produce orthogonal grids for cases with specified pointwise

distributions for four boundaries. To get a system which could be solved for

each coordinate, they obtained two equations by differentiating g1 2 = 0 in

each direction Y.. With the known orthogonallity at the region corners, the

two equations are equivalent to g12 ' 0. In discrete form, a linear

combination of the two equations had to be used in order to insure that the

difference molecule had a nonzero central coefficient.

Unlike the nonunique situation above, the available degree of freedom to

impose an additional metric condition can be used to establish controls on the

orthogonal coordinate generation process. With an assumed condition, the full

metric will be considered. For simplicity, we will concentrate on the planar

case with fixed Cartesian coordinates c = (xi , x2 , 0) for Eq. 2. The

extension to curved surfaces follows a similar pattern and will be examined

subsequently. Now let ij be the metric for (x,, x2 ) which is given by

" " - - I and -g2 0 since the coordinates are Cartesian. With the911 gl 22 g12

specified metric g,, for the desired orthogonal coordinates (y' Y2 )' the

* change of coordinate rule for metric coefficients becomes
X

2x ax 2 (53)

x1  1  ax2 x2 _
- + - - =0

ay 2  y y1 Y2 rYl 'Y2

8ax1  ax2  22

which must be solved for xI - xI (yl' Y2) and x2 - x2 (y' Y2). The general

rule is given in Eq. lOb with a notational interchange of g and gi" The

metric equations here are clearly satisfied by the polar formulation

ax1  1x1

a 2 sina !x2 _ Cosa (54)

ay1  11l ay /q22  cs

senior-

• ., ..., .... . .. .;,, .. .. :. " , ' ? .. ... " .. ' : LA , " ;
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A solution then exists if the differential forms

W 1  Cosa dy 1 + V'2sina dy2

(55)

w
2 

= - -,. ,i, dy + cosa dy
1 1 "22 2

respectively correspond to chain rule expansions for dxI and dx2 so that

W= dx and w = dx This means that w and w must be exact differentials.
1 2 - 2* 1 2

By the Poincare-Lemma [261, they are exact if they are closed which by

definition means that dw1 = 0 and dw2 = 0 where d is the exterior derivative.

- . In terms of the derivatives defined in Eq. 54, the closure condition is

equivalent to

eaoY2 wc (56)

Upon substitution, the equality of mixed derivatives altogether yield two
Sequations which reduce to

ay 'Y2

. 31(57) I ag, = 22
"; Y2 /g- IY

--: ay1

The corresponding differential form is then given by

1g ag 58
1~ j11 dy1 - __L 22 dy2 (8

:' W3 " g Y2 dY. R" yl y 2  8

4 For an angular function a(yI, y2) to exist such that w3  da, the differential

form w3 must be closed which, as before, is equivalent to the equality of

mixed derivatives. Upon substitution, the equality becomes

Gaussian curvature vanish.. for a plane. The expected curvature constraint

iI
-g a

a L22 +. -. 1

;.. o. . ! n l a 7Y7 1amgmm lqi i(5i9)11 NH ld
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means that there is only one degree of freedom in the choice of metric. Once

chosen, the constraint is the integrability condition which determines the

remainder of the metric. Then the metric can be used to obtain the solution

by means of line integrals of the differentials. The integrals ore well-

defined since the integrands are exact differentials which then yield path

independence. From a givea point YO w (y10 Y20) to a new point y - (yl' Y2)

the line integrals are given by

.4.

-~~ -). } -2 Y)oi3 ~ i: (60)

for Cartesian locations where the rotational angles are determined from '
.4.

+ 0 V ra gg dY2  (61)

Yo

The metric development and the realization in terms of line integrals also

extends to curved surfaces. For the extension, we return to the general

metric rule on coordinate changes given in Eq. lob. Since the rule produces a

quadradic form for the derivatives, the associated symmetric matrix can be

diagonalized by a unitary transformation. Since the matrix is also positive

definite, square roots of diagonal entries can be taken and unitary matricies

can be accordingly modified to give a transformation into the form of Eq. 53.

The transformed derivatives are linear combinations of the original coordinate "

derivatives and can be expressed in the polar formulation of Eq. 54 which

satisfies the basic metric rule. With the associated differential forms,

exactness is achieved subject to the curvature integrability constraint for

curved surfaces. Accordingly, the line integrals can be defined in the sme

manner as before.

Coordinates from a Metric Specification

The ivailable degree of freedom to specify the metric can be used in

t various forms. The first form that we will consider is the case where

orthogonal coordinates are attached to the streamlines of an isentropic steady

., .AU
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gas flow. This case was developed by Schindler 1271 and is given here in

basic form without his examples and further extensions. The equations for an

isentropic steady gas are given by

a (ul) + I 01 ) j- (p u2)-0
x 2 2(62)

[ u+ au

ax 2  ax~

' + u -2 + a O
P I *ax 2  ax i2 -o

1111 2 x~ 2
-Y Y

0

where (x, x2) are Cartesian coordinates, (Ul, u2 ) is velocity, p is density,
4p is pressure, and y is the ratio of specific heats. In terms of the sound

speed c rn/p , the last equation in Eq. 62 is automatically satisfied when

2.
P" P_

0 (63)

When orthogonal coordinates (y1, Y2 1 are chosen such that streamlines are the

constant y2 curves, the gas equations Eq. 62 become

/ 2_-{L ac =0y2

2 2

2 2 a(65)

Ya22

a + 2 1 2

2 y-l 2 ( 2)

al wa- exp a s# - R(y1 )

... ....+$ , ,

•~~~~~~~.* 4 : •..-- . . . . .
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where A, B, and R are constants of integration. Under the transformation

y1 -JR dy1 and Y 2 - JA dy2  however, we get q1 1  R 9 and g2 2 ' A g22,

and therefore, can safely assume that R - 1 and A = 1. The remaining

integration constant is the Bernoulli function B(y2 ) which we specify. In

terms of the Mach number M the second equation of Eq. 65 yields
c

= M
a - B(y+2

• " (66)

Sc , B(y 2 ) /M2 +  2

Y-

On substitution into the other two equations, the metric is given by

f2 
(1) 

1
M 4X Jy1 B(y) ;2 UY1 Y20 H j(67)

[ /- lj
2 + 2 2(y-l)

VgI22 M Y-1

After the Bernoulli function B(y2 ) has been specified, we get a single

differential-integral equation for the Mach number M - M(yl, y 2 ) by

substitution into the curvature integrability condition given in Eq. 59. The

orthogonal coordinate system attached to the flow is then obtained from the

line integrals of Eqs. 60 and 61. The available degree of freedom, here, was
consumed by the Bernoulli function.

In another study, Warsi and Thompson [281 consumed the degree of freedom

*with an additional Laplace equation and considered general orthogonal coordi-

nates for annular regions in the plane. Following Potter and Tuttle (231,

they assumed that the desired normal field in the direction from inner to

outer loop is divergence-free, and as a consequence, that the cell aspect

ratio has the product form aiven in Sq. 49. Then under the transformation

1 
=  l and b2 - -dy 2 with a and b from Eq. 49, the orthogonal metric

becomes ll " 22" The curvature integrability constraint becomes

V 2 2l~ -l "0 which is of the onforml type from Eq[. 12€. To coplete the

system, the Laplace equation V2 y1 - 0 is also derived from the above

assumption.
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For cases with the arbitrary boundaries, Eiseman 129] proposed a method

where metrices that fit the boundary data are specified. On the two

boundaries where y2 is constant, g91  can be evaluated directly by finite

* differences, g22 can be evaluated only at the endpoints (i.e. region corners),

and g22 must be specified elsewhere as a rate of entry or exit into or out of

* the region. On the other two boundaries, the roles of the indices I and 2 are

*, interchanged. With the metric given on the boundary, transfinite inter-

polation (Eq. 28 or [101) is used to continue it smoothly over the entire

region. Local clustering controls are then established by the addition of

functions which vanish on the boundaries. Functions, such as B-spline basis

elements, are ideally suited for this purpose since they can be used in

(tensor) product form to vanish everywhere except on a local region of

interest. The overall continuation, however, must be positive everywhere, or

else a coordinate singularity would result. Now with g11 and g22 defined

everywhere, it would appear that more than the available degrees of freedom

were consumed. But on returning to the change of coordinate rule (Eq. lOb) to

derive the desired equations for the coordinates, we will find that in the

planar case only the cell aspect ratio Vgij7 peasa tesecfe1122 apasa h pcfe
quantity. From the rule of Eq. 53, the second equation for g1 2 " 0 can be

split into the Cauchy-Riemann form

ax 2  1 ax 1 (68)

ay 2  hay 1

ax2  axI
hy -h~y , Y2

for some positive function h. By use of the other two equations from Eq. 53,

we get
2 ' _) 2

z=1  ax]2  )

(ax2 )2  r __
+: , . h- +' .,.- h 1++'

* . 3y 2j i av2
2

" g22

and hence

(70)
h

g22
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From the Cauchy-Rimnn form in Eq. 68, we can directly compute mixed

derivatives for x2 by differentiating the first equation with respect to y

and the second with respect to Y2 " A similar computation can also be done for

b xI after h is brought onto the other side of the equations. Upon the equality

of corresponding mixed derivatives, we obtain the coordinate generating system

Dx1 . 0

Dx2 - O (71)

where

+ h I
3. 1 h 3y1 I 2

which can be identified as the Laplace operator in (Yl y2) and which is

linear when h is assumed to be known as it is here.

An alternative coordinate coordinate generating system can also be used

with the specified h. To obtain it, we use gll g from E. 69 to

eliminate gl1 in the curvature integrability constraint of Eq. 59. The result

is the elliptic partial differential equation

2
+ -i- h + 2 - 0 (72)

1  a" 2 "y2 J

that mst be solved for F - log g22 subject to Dirichlet boundary conditions.
upon solution, g22 0 e

F and g11 0 h
2 eF can be used in the line integrals of

Eqs. 60-61 to get the coordinates.

Under the observation that the gradient of a Cartesian coordinate x. is a

constant vector field which is then divergenceless, Ryskin and Leal (301 also

arrived at the Laplace coordinate generating system of Eq. 71. However, they

specified h only in cases where at least one boundary was free to move.

There, the pointwise distributions were not specified, but instead were

determined by boundary conditions consistent with the Cauchy-Rimamn form of

Eq. 68 in a pattern very much in the spirit of conformal methods. The

boundary movement came with a global iterative cycle. In cases where the

boundary and its poLntwise distribution were to be fixed, they made h conform

to the boundary data in the same manner as in Xiseman (2911 but in contrast.

the coordinate equations (Bq. 71) were also put into an iterative loop under

the assmption of a nonlinear system. The Laplace system of Bq. 71 clearly

becomes nonlinear if h a" an unknown is expended in term of the metric form

given in 5q. 53, and subsequently, inserted into the system. From this
viewpoint, the boundary conformity of h is applied at each cycle wLth boundary

Joa
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data taken from the current grid in the evolution towards convergence.

However, with the evolution of h, the rates of entry or exit into or out of

the region become dependent upon the numerical method. The values of h are

constant only at the region corners where the boundary data determines it

uniquely. The result is that h is method dependent everywhere except at
corners. This mans that they have essentially arrived at the same situation

as in the study of Haussling and Coleman (251 where nonuniqueness can result

as in the example associated with Fig. 9. To summarize each cycle, the

solution determines boundary h which, in turn, determines the solution.

The primary motivation for the iterative cycles came from the supposition

that h could have been selected as unity, in which case, the coordinates would
. be conformal and would, therefore, have all of the limitations arising from

analytic continuation properties. With h chosen to fit the boundary data, a

* result of h - 1 may not be a real limitation, however, because the pointwise

distributions on the boundary may already be consistent with a conformal

transformation. This would also be consistent w."h Eq. 72 and the line

integral approach. An affirmative conclusion, however, has yet. to be drawn

between the noniterative position in Eiseman [29) and the fully iterative one

in Ryskin and Leal 130]. Here, it remains to consider various applications to

cases with arbitrary data on four boundaries. it would not be surprising if a

* method based upon a controlled evolution of h should arise.
Rather than a specification of cell aspect ratios as above, a natural

quantity to specify in the cell volume which is given by the Jacobian

--g 11 g2 2  Then 91, can be eliminated from the curvature integrability

condition of Eq. 59 with g11 - J /g2 2 in the same manner that we did to get

Eq. 72 in the case of specified h. The result is a partial differential

equation for g22 that is hyperbolic rather than elliptic. As a consequence,

specified volume methods must be solved by marching the grid away from a

single body. Steger and Sorenson [31) have constructed a direct method from

specified J and g 1 2 " 0 which in expanded form are given by

ax1 ax2  ax2 ax1 J (73)

x1 ax1  x2 ax2
ax ya 1- !2-- LX

ayla2  ayl y
A number of interesting grids were generated with this method. A distinct

advantage comes from a smaller demand upon the user to specify sensitive data.

In comparison with orthogonal trajectory methods there is no need to specify a

family of curves which for concave regions would require some cleverness in

'V'A
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order to avoid unwanted clustering on an outer boundary. In its place, & user

must specify cell volumes from a simple model grid which is tailored to the

application and results in an unclustered outer boundary. The tailoring coms
from the same arc length and pointwise distribution for the model body which is

connected to a desireable far field structure. The disadvantages of the method

are that boundary discontinuities propagate and that the outer boundary cannot

be prescribed. In an earlier method, Starius [321 considered a technique based

upon the Cauchy-Riemann form of Eq. 68 where h was chosen to make the system

hyperbolic. This, however, could not be marched beyond a narrow band from the

boundaries. A more complete survey of hyperbolic methods can be found in

* Thompson, Warsi, and astin 133).

CONCLUSION

subject to various constraints, orthogonal coordinate generation techniques

have been examined under the unifying context of the associated metric. The

metric was seen to be the basic ingredient for both the generation process and .

the application of the results.
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. . PATCHED COORDINATE SYSTEMS

P. E. RUBBERT and K. D. LEE
* Boeing Commercial Airplane Company

Seattle, Washington 98124

INTRODUCTION

)Numerical grid generation has been an excellent tool for producing

curvilinear body-fitted coordinate systems. Curvilinear coordinate systems or

grids are commonly used in the solution-of partial differential equations in

domains surrounding arbitrary geometrical boundary shapes, as reviewed in
Ref. 1 ed-ttdgrids are particularly advantageous in the treatment of

surface boundary conditions, and usually yield a degree of simplicity in the

logic required to solve the hosted partial differential equations.

* , In practice, numerical grid generation usually involves transformation of
the physical domain of interest into a geometrically simple domain, such as a

* rectangular block or assembly of blocks. The solution of grid generation

equations in the simple domain produces the coordinates of a corresponding

grid in the physical domain, subject to a variety of grid control procedures

aimed at producing favorable grid characteristics. This process is usually

straightforward when the topology of the physical domain is simple enough to

allow transformation to a single rectangular domain. But when dealing with
geometrically and topologically complex domains such as surround an aircraft

configuration,.(the authors' work has dealt principally with the solution of

partial di erential equations governing the flow field about aircraft
configurations), the total issue of grid generation becomes more complex. The

domain in general cannot be mapped into a single block. The configuration

surface geometry itself 'may be nonanalytic, and these features will be manifest

in any grid surrounding such complex boundary shapes.

MULTI-BLOCK STRUCTURING

One approach to organizing coordinate system for complex domains,
espeically in three dimensions, is to divide the domain into a number of

Sgeomtrically simple subdomins, termed block&. The grid within each block

r* can then remain of simple character, such as rectangular. We term the grid

.PEO PA.
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comprised of the assembly of such subdomain grids a block structured or

multi-block grid. Figure 1 shows both single and multi-block grids in the

domain about an airfoil.
The multi-block concept provides a general capability for surface-fitted

grids in simple or complex domains. Figures 2 and 3 demonstrate typical

multi-block representations of a wing/body/nacelle/strut configuration. Each

component of the solid configuration is mapped into a simple rectangular block

in the computational space. The computational domain then consists of the
remainder of space surrounding the configuration blocks. This space can be

divided In an obvious way into an assembly of rectangular blocks.

In the transformation, physical corners appearing at intersections between

components (such as between wing and fuselage) are kept as corners in

computational space. However, the block structure introduces some new types
of special points as seen In the figures. A point on the smooth boundary

surface in physical space can appear as a corner point in computational space

(termed a "fictitous corner). Some gridlines may merg together as shown at
*the wing-tip (termed a "collapsed edgem). It is therefore necessary that the

hosted algorithm be adaptable to these aspects of the grid.

~APPROACHES TO STRUCTURING

At least boo approaches are commonly used to generate multi-block grids.

One is to generat the grid separately within each rectangular block. In this
case, certain of the block boundary surfaces no longer correspond to boundary

surfaces of the original problem. They are Just boundaries separating one
block from another, and we call them field boundaries. Nevertheless, solution

of the grid generation equations require grid boundary conditions on these

field boundaries, and these are usually supplied by the user. Grids generated

in this manner are termed patched grids or patched coordinate systems. There
is no built-in feature leading to any degree of grid continuity across a field

boundary separating one block from another. Some control of grid continuity

is available through proper choice of grid boundary conditions on the field

boundaries.
Another approach to generating multi-block grids is to solve the grid

generation equations in the entire block-structured domain as a single grid

generation problem. This adds a degree of complexity in that the grid
generation equations must be solved in a domain comprised of an assmbly of

blocks, rather than one block at a time. In our experience, this has nt been

'1k
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difficult to implement. One consequence of this approach Is that the locations

of block boundaries in physical space (field faces) emerge as a solution of

the grid generation problem rather than an input. Also, all grids will be

analytic across field faces. We term grids generated in this manner as

directly solved multi-block grids.

Some of the differences between these two approaches are illustrated in

Figures 4 and S. In practice, a combination of these two approaches
frequently provides the degree of flexibility desired for many problems of

interest.
Figure 5 illustrates some characteristic differences between patched and

directly-solved multi-block gri-s. With patching, the block boundaries,

and CF, are supplied as boundary conditions to the 3D grid generation

process. Grid analyticity across block boundaries is not guaranteed since

volume grids on both sides of a block boundary are generated separately. Grid

control features are therefore sometimes implemented to achieve a degree of

°' analyticity across block boundaries. In the directly solved multi-block
system, grids are automatically analytic across all block boundaries in the
field, for example, U and 0, but grids my still be nonanalytic across

* surface perimeter lines. However, the grid spacing near fictitious corners

cannot be as easily controlled as in the patched system, leading to grids that
are less desirable in this aspect. In practice, both methods of grid

generation have merits and limitations.

The issues of grid generation cannot be addressed without considering the

adaptability of the hosted algorithms, i.e., the algorithms for solving the
partial differential equations. Some algorithms require smooth analytic

grids. Others do not. The adaptability of the hosted algorithm therefore

Imposes requirements on grid quality, and vice versa. For many classes of

problem there can exist a tradeoff between hosted algorithm requirements and

grid requirements. The two are Intimately related. The present paper offers 4
some phtlosophy on grid versus hosted algorithm requirements, as well as a
discussion of multi-block grid generation techniques.

* THlE OVERALL GRID GENERATION PROCESS
30 grid generation via patching is shown in Figure 6 where the

illustrations represent 2D cuts for a wing/body configuration both in physical

* and computational space. The procedure starts with dividing physical space

into six-sided blocks by considering the structure of configuration

i.
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components. The next step is to discretize the block perimeter lines which

connect block corner points. This 1D-like discretization is illustrated by

cots through which the perimeter lines penetrate the plane of the figure. The

ID discretization provides boundary conditions for a subsequent 20-like grid

generation producing grids covering the block boundary surfaces. These in
turn serve as boundary conditions to produce 3D volume grids filling each

block. Grid control can be achieved at any of the above four steps, i.e.,

through the block pattern, perimeter discretization, surface grid generation

and/or volume grid generation.

- Grid generation via the direct method is shown in Figure 7. Since the

coordinates of field block boundaries emerge as part of the solution to grid

generation in the direct method, we divide only the natural boundaries such as

configuration surfaces and exterior boundaries into four-sided patches in

order to map the configuration components into rectangular blocks in the

transformed space. Then the perimeter lines enclosing patches on physical

surfaces are discretized appropriately in a way to produce a good grid

* "distribution. The subsequent 20-like grid generation is carried out only on

the natural boundary surface patches. Next, volume grids are generated at

once everywhere in the computational domain. Therefore, the domain where the
grid generation equations are solved is not a simple rectangular box; it is a
large box containing an interior cutout comprising the rectangular blocks

representing the configuratilin.

PERIMETER LINE DISCRETIZATION (ID)
The discretization of perimeter lines can be controlled by using different

spacing distributions. Uniform spacing, algebraic or geometric stretching,

and distribution proportional to a reference distribution can be applied along

the arc length or along each coordinate separately to provide good boundary

fitting behavior.

SURFACE GRIDS (2D)

We identify two different types of block boundary surfaces; configuration

surface and field block boundary. The 2D discretization of configuration
surfaces is perhaps the most difficult task in 3D grid generation. The grid
points must lie on the specified geometry and display characteristics of

smoothness, etc., acceptable to the hosted solution procedure. The surface

grids should also provide good behavior at block boundary abutments with
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neighboring surface patches. Field block boundary discretization is an easier

problem in that the block boundary need not be coincident with a specified

geometry except at the edges. Only smoothness and proper discretization are

usually required.

20 grid generation of a curved configuration surface in 3D space usually

cannot be achieved in one step due to the constraint that the grid points

should lie on a specified geometry. A promising approach is the use of a

parametric transformation. The 3D surface in (x,y,z) coordinates is defined

in terms of 2D parametric coordinates, say (u,v). The discretization process

- ~is then carried out In the parametric coordinates by using either analytical

or numerical grid generation schemes. Then the Cartesian coordinates of the

grid points are extracted. For example, a parametric transformation is

commonly used in the discretization of wing surfaces. The chordwise lines are

mapped into one parametric coordinate using a parabolic transformation and the

spanwise lines into the other parametric coordinate by a shearing

- transformation. It then becomes a simple matter to specify a discretization
* . that produces smooth grids of desired quality.

Another approach is the use of projection. Discretization is obtained

first on a simpler geometric surface by numerical or analytical grid

generation schemes. Then the discretized points are projected onto the real,
curved surface geometry to obtain the grid coordinates. For example, a

discretization of a fuselage surface can be obtained by generating grids on a

circular cylinder and projecting them radially into the surface definition.

On a field block boundary, grid points are not usually required to fall on

a defined surface. Therefore, one can adopt a relatively simple numerical

grid generation scheme. The scheme we use is an extens-,on of the 2D grid

generation method developed by Thompson, et al (Ref. 1).

In the standard Thompson approach for planar surface discretization, the 20

coordinates, T - (x,y) are extracted from the solution of the following grid

generation equations subject to specified Dirichlet boundary conditions. With

indices ( , ) as independent variables, they are

(VC) 2(TCC+rX) -2(VC.Vn~xcn + (Yrn) 2~

0

-L
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where (-2) 2  
a - 2

(yq) 2  *- /h2

Fvr..r, - T. , /h 2

and h is the transformation Jacobian which can be factored out in the
equations. The extension for use on nonplanar curved field block boundaries
involves the introduction of a third index, C , which remains constant on the
surface. The same grid generation equations are used withY - (x,y,z), i.e.,
three equations instead of two. Accordinglyf F " (x &, y, z&) in the
nonplanar case instead of-- (xe, Y i in the planar case, etc.

The grid control parameters, P and Q, are defined along perimeters whose
coordinates are given (Ref. 2). That is, P is derived from constant n
boundaries and Q from constant V, boundaries by letting respectively

z + oC 0 (2)

: I
,Xnr 

+ QXn 0 O.-

Any one coordinate or arc length distribution can be chosen to define the grid
control parameters. Also one can use the control parameter defined along one
perimeter for the whole domain or interpolate linearly between two facing
boundaries. Interpolation gives smoothly varying grids whereas the one-side
choice reduces grid nonanalyticity of grid lines across corresponding block
boundaries.

VOLUME GRIDS (30)
Volume grid generation Inside a block is a straightforward and relatively

easy task compared to surface discrettzation. One approach Is to solve the
system of nonlinear 3D grid generation equations introduced by Thompson
subject to Dfrichlet boundary conditions

(VC2C~tC0F_)+ (Vn) 2 (- (V 2 (-T4

A ~+ 2(VE.Vn)~ (I)T + 2 (PC V C)_fa

*' -. .---------.--
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where

* *l (r X TC)/h*

Again the transformation Jacobian h can be factored out. Similar to surface

grid generation, the grid control parameters, P, Q, and R, are extracted from

known boundary data. For example, the control parameter R is defined along

four perimeter lines with constant F and n indices by letting

+ R o, (4)

Then it is interpolated through F; and n indices or fixed by a choice of

indices to give consistent grid control at block boundaries. Other control

parameters can be extracted similarly using Equation (2).

The grid generation equations, either surface or volume, are solved

iteratively by using successive line overrelaxation (SLOR) or alternating

direction implicit (AD!) methods. The computational costs for the 3D

generation of patched coordinate systems is less than for directly solved

systems because these solution methods are faster on maller domains. This

cost can be offset by the added work required to separately generate the field

*. surface grids.

Another approach to volume grid generation is the use of linear grid

generation equations (Ref. 3). Instead of updating the nonlinear coefficients

appearing in the grid generation equations, Eqns. (1) and (3), the

coefficients can be established on boundaries and interpolated throughout the

domain. The cross derivative terms appearing in the grid generation equations

can be deleted for simplicity. This leaves a very simple, linear, elliptic.

set of. grid generation equations to solve. Our limited experience with both

methods Is that the latter Is less costly whereas the former seems to offer
more direct and effective means for grid control.

-,. ,,*. ,
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SOME OBSERVATIONS ON REQUIREMENTS FOR GRID QUALITY

In the real world of complex three-dimensional problems such as the domain
surrounding a fairly complete airplane, there exists a conflicting set of

issues and requirements. The developer of hosted algorithms would like grids

that are smooth, analytic, and topologically simple, with grid spacing in

accordance with the length scales of the hosted problem of interest. The
customer who will use the capability being produced wants to get by with the

easiest grid to generate, with minimal concern about grid irregularities and

their possible impact on the accuracy and reliability of the hosted solution.

And management generally wants the least expensive approach.

There is a tradeoff between demands placed on grid quality and demands
imposed by the hosted algorithms. Some hosted algorithms demand smooth,
analytic grids. Others are more forgiving of the grid. For many 2D problems,

the flexibility exists to go either way.
However, 3D grids frequently cannot be analytic in real life engineering

problems. An example illustrating this is shown in Figure 8, which depicts a
surface discretization used in an actual flow field calculation (requiring

only a surface and not a volume grid). Current trends are to seek solutions

of hosted algorithms requiring volume grids, and it is easy to visualize that
the volume grid about this airplane would not be smooth and analytic

everywhere. Smooth, analytic volume grids cannot be obtained from nonsmooth

nonanalytic surface grids since surface grids become boundary conditions for
the volume grid generation. For this conflaguration and many others like it,

smooth surface grids are Judged to be impossible. For example, Figure 9 shows

the fairing at a wing/body juncture. The surface itself has creases and slope

discontinuities, and their influence on the hosted solution is a desired

quantity that cannot be smoothed by fairing a smooth grid over such areas.

Nonanalytic coordinate lines and nonsmooth grid stretching cannot be avoided
when the geometry involves angular abutment between different components.

Hence, the authors are led to the opinion that for complex geometries such

as that shown, .one must demand hosted algorithms that are forgiving of grid

,7 irregularities.

Our experience indicates that hosted algorithms which work reliably onj nonsmooth grids can be developed if that is recognized as a goal in algorithm
development. For example, a higher order panel method was developed for
solving the 3-D Laplace equation (Ref. 4) with that as a goal. It worked so

well that acceptable hosted solutions were produced from discretizatitns

-4
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defined by a random number generator (Fig. 10). Finite element methods that

give good solutions on nonsmooth grids are well known. Figure 11 demonstrates

algorithm compatability to grid irregularities in solving the potential flow

over a cylinder (Ref. 3), using a cell-oriented finite volume formulation

designed to be forgiving. Resolved are the algorithm issues concerning

fictitious corners and nonanalytic coordinates across block boundaries

appearing In multi-block grids.

Forgiving algorithms have been developed for a variety of other equations

in aerodyn.oncs. Figure 12 shows a panel method solution to the wave equation

for a spindle paneled in a random manner (Ref. 5). The forgiving algorithms

cannot only adapt to grid irregularities but also provide capabilities for

C. real life geometry (Fig. 13, Ref. 6). Forgiving and unforgiving algorithms
- - , are compared in Figure 14 for the Helmholtz equation.

Demands for forgiving algorithms have also extended into the solution of

complex nonlinear transonic flows. Figure 15 shows transonic solutions

- ;. obtained from a forgiving algorithm for the nonlinear, mixed-flow potential

equation (Ref. 7). Patched multi-block grids were generated by allowing

intentionally severe grid nonanalyticity across block boundaries to test the

robustness of the hosted algorithm. The accuracy of the results is F

remarkable, even when fictitious corners are located inside of the supersonic

region. The discrepancy in shock location is due to the use of different
upwind bias in supersonic cells and is unrelated to the grid. 3D transonic

results using multi-block grids are reported in Ref. 8.

SUNMARY

In many cases of practical interest, the irregularities present in the

boundary surface render the achievement of smooth, regular volume grids an
impossible task. One must require hosted algorithms that are compatible with

grid irregularities. Evidence is accumulating that this can generally be *

achieved if made an algorithm design requirement. U;

The use of patched coordinate systems is a feasible and systematic way of

generating orderly grids for complex configurations. They appear to offer an
acceptable degree of grid control. And requirements for grid control are

really not very stringent. The fact that one must have forgiving hosted

algorithms to handle complex geometries at all means that a modest amount of
grid control is all that is usually needed to achieve an acceptable grid.

(L
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PHYSICAL SPACE COMPUTATIONAL SPACE

- - FICTITIORUS COIR

Fig. 2 Multi-block representation of a wing/body/nacelle/strut configuration.

* Fig. 3 Example of a 3D multi-block grid for a wing/boy/nacelle/strut.
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MULTI-BLOCK GRID MULTI-BLOCK GRID BY
GENERATED BY PATCHING DIRECT METHOD (NO PATCHING)

LOCATION OF BLOCK BOUNDARY LOCATION OF BLOCK
SFECFIEDIN PYSICL SUFACEBOUNDARY IN PHYSICALISPECFIE INPHYSCALSURACESPACE OBTAINED AS THE

SOLUTION OF THE GRID

BLOC #1 L BLOCK 92 GENERATION PROCEDURE

BOUNDARY CONDITION

1BLOCK BOUNDARY

BOUDARY CONDITION GRID GENERATION EQUATIONS SOLVED

* ~~~GRID IN EACH BLOCK GENERATED SEPARATELY, NEIEDO N
SUBJECT TO BOUINDARlY CONDITIONS ON BLOCK
BOUNDARI

* Fig. 4 Multi-block grids; patched versus directly solved.

-SINGLE-BLOCK MULTI-BLOCK MULTI-BLOCK
(PATCHED) (NONPATCHED)

E
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STEP 1: DIVIDE PHYSICAL SPACE INTO 6-SIDED BLOCKS

STEP 2: DISCRETIZE PERIMETER LINES

I STEP 3: GENERATE 2-D GRIDS ON ALL BLOCK SURFACES

STEP 4: GENERATE VOLUME GRIDS WITHIN EACH BLOCK

Fig. 6 Grid generation process via patching (illustrations represent 2D
cuts for a wing/body). -
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STEP 1: DIVIDE PHYSICAL BOUNDARIES INTO 4-SIDED PATCHES

4

STEP 2: DISCRETIZE PERIMETER LINES OF PATCHES ON PHYSICAL
SURFACES

* ~STEP S: GENERATE 2-D GRID ON PATCHES (PHYSICAL SURFACES 2'-

AND EXTERIOR BOUNDARIES ONLY)

----------

STP4. GENERATE VOLUME GRID EVERYWHERE AT ONCE 4

Fig. 7 Grid generation process via the direct method (illustrations
represent 20 cuts for a ving/body).

Nv-~~ 5
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EXTERNALGUtICA-WENAC

SURFACEO

-. Fig. 8 Complexity of geometry In real life engineering problems.

Fig. 9 Fairing at a wing/body juncture, smooth surface grids are impossible.
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. - Fig. 10 Example of a forgiving algorithm; a higher order panel method for
the Laplace equation.
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Fig. 11 Example of a forgiving algorithm; a field grid method for the
Laplace equation.
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(4) RANDOM PAWLING OF A SPINDLE

SEact- Method of characteristics

Pawl1 method
.20.

* 10

- Ce 10 20 . o .4 0 d % 60 O ~ . 1. *,50 .60 0.1.

-. 201 (b) PRESSURE DITSTTIO ON TIE SPINDLE

Fig. 12 Example of a forgiving algorithmi; a panel method for the
- wave equation.

Fig. 13 Forgiving algoritms provide capabilities for real life geometry.
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1 .

BY AM ITM MM NEUS O T LATHR NUIEICA TECOOO

DESIG6E TO BE FOISIVING

Fig. 14 Capability limits imposed by forgiving and unforgiving algorithms
for the Helmholtz equation.
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Fig. 15 Transonic solutions obtained from a forgiving algorithm.
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"SOL.D MECHANICS APPLICATIONS OF BOUNDARY FITTED COORDINATE SYSTEMS

JOHN C. MCWHORTER
Department of Aerospace Engineering, Mississippi State University, P. 0. Drawer

* A, Mississippi State, Mississippi 39762

ABSTRACT

P A numerical method which utilizes the boundary fitted coordinate method is

presented and applied to the solution of three solid mechanics problems. The

three problems considered are the elastic torsion of uniform shafts of arbi-

trary cross section, the elastic torsion of non-uniform shafts of arbitrarily

varying circular cross section, and the bending of thin isotropic elastic

plates of arbitrary shape with simple or clamped boundaries. The boundary

fitted coordinate method is utilized to transform the arbitrary simply connected

or multiply connected region under study onto a fixed rectangular domain where

computations are easily done. The governing equations and boundary conditions

are transformed and solved on the rectangular domain by SOR iteration. !

Numerical results for all three problems show close agreement with analytical

solutions, although there is local error introduced when the coordinate system

is severely skewed. Numerical results check closely with experimental results

obtained for problems which have no analytical solution. . .

INTRODUCTION

The concept of boundary fitted coordinates can be applied to many boundary

value problems, and it is the purpose of this paper to present the results of

three applications in the general area of solid mechanics. The three applica-

tions are (1) the torsion of uniform shafts of arbitrary cross section,

(2) the torsion of non-uniform shafts of arbitrary profile, and (3) the bending

of thin plates of arbitrary shape. Each application has a different governing
equation and different boundary conditions, and each abounds with problems

having exact analytical solutions which provide a comparison with the numerical

results generated by the application of the boundary fitted coordinate method.

The solid mechanics theory for each application is presented briefly to

explain the governing equation and boundary conditions. The governing equation

* and boundary conditions are then transformed for solution in the boundary fitted
* coordinate system. Transforming the equations is independent of the particular

problem to be solved and must be done only once for each application. The

governing equation and boundary conditions are expressed as finite differences

" :~~~~ ~~~~ .. .r .. ... . "' ""-.......-."... ,

...... .N-
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in the transformed coordinate system and the resulting set of algebraic

equations is solved by SOR iteration. Thus all computations, both to generate

the boundary fitted coordinate system and to solve the governing equation, are

done on a rectangular grid of uniform spacing with no interpolation necessary

on the boundaries. This leads to the ability to generate a "black box" code

where the only input necessary is the shape of the shaft for torsion problems.

Plate problems also require a description of the transverse loading and an

identification of the type of boundary condition at each boundary point

describing the plate shape.

A general code was developed for torsion problems which accurately calcu-

lated the torsional shear stress in both uniform and variable profile shafts.

A general code for plate problems was developed for simple and clamped bound-

aries. No work was done on plates with free edges. Comparison between classi-

cal solutions and numerical solutions generated by these codes are presented

and show excellent agreement in most cases.

The coordinate system generation scheme used in this work is the same as

that developed by Thompson, et al. 1 Generally, the coordinate lines were

attracted to regions of suspected high gradients, and some work was done to

determine the effect of different coordinate spacings on the accuracy of the

results.

UNIFORM SHAFTS - ARBITRARY CROSS SECTION

The torsion of uniform shafts is a classical elasticity problem which has

been solved analytically for many geometric shapes both directly and by

conformal transformation. However, certain classes of cross sections with

re-entrant corners cannot be solved exactly. Since the governing equation

and boundary conditions are simple, this problem was worked first to demonstrate

the utility and validity of the boundary fitted coordinate method.

In terms of a warping function the governing equation is the Laplace

equation and the boundary condition is that the tangential derivative of the

warping function is known on the boundary. If a modification to the warping

function is made, the governing equation becomes the Poisson equation, and on

the boundary the modified warping function is zero. This is the same condition

that exists for a thin membrane stretched over a hole of the shape of the shaft

and inflated by a uniform pressure and is known as the membrane analogy for the

torsion of uniform shafts. It can be shown that the torque on the shaft is

proportional to the volume under the inflated membrane and that the shear

stress in the shaft is proportional to the normal derivative of the deflected

membrane and is directed normal to the direction of maximum gradient.

! .rA
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If interior holes are present in the shaft cross section, the membrane

analogy still holds if a weightless plate of the shape of the interior hole is

"floated" on the deflected membrane and held level by distributed couples

around the plate. The elevation of this plate must be found by a force

balance on the plate in which the pressure below the plate is balanced by the

membrane tension integrated around the perimeter of the plate. A more detailed

description of the membrane analogy is given by Den Hartog.
2

Fig. 1. Physical plane. Pig. 2. Transformed plane.

Equations for the membrane analogy

Figures 1 and 2 show the cross section of a typical shaft in the physical

and transformed coordinate systems. In the physical system the governing

equations and boundary conditions are as follows:

V2 w - -2 on R (la)

w 0 On S (lb)
0

P Lw dS -2A 0 on S (lc)
is an I I

Tx 31i 2a)

(2b)
y -

where Jt is the torsion constant and is given by

Jt 2J w dx dy 13)
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After transformation (for details see Thames 3 ) these equations become:

Ow 28w n + YWn + -w& + own -2J 2 on RI (4a)

w 0 on S' (4b)
0

F l(O8 w -d 2 y() A 0 on S(4c)

where
2

+ 2(Sa)

n n

x x + Y Y (5b)

Y x 2 + y
C

j =x&yn - xnyt (Sd)

a [y (Dx) - x (Dy)]/J (Se)

ExT (Dy) - y (Dx)/J (5f)

where

Dx- ax -2 + YX (5g)
CC En + nn

Dy= Cs y - 2 By n + yy (5h)

ASince the values of x and y are known from the coordinate transformation

at each grid point in the (C,n) transformed field, equations (5) can be

computed by expressing the derivatives with respect to and n as finite

differences on the rectangular grid of the transformed field. This must be

done only once for a particular transformation. Next the derivatives in

equation (4a) are expressed as central finite differences in the transformed

field, which produces an algebraic equation at each nods point in the trans-

formed field.

w +, Dllwi-1'j I  +Dwi+1'j-l " Wi+l,j+ -

+ 2,j+l + D3wi-l,j + D4Wi+l,j + DsWi,j- + D6

A&MM'S a
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where

Di 0/4(%ty) (7a)

D2 = (y+o)/2 a+y) (7b)

D = (a-T)/2 (a+y) (7c)
3

D = (a+T)/2 (a+y) (7d)

D5  (y-o)/2 (a+y) (7e)

D6 = j2/(+y) (7f)

If the shaft is solid, the transformation from the physical to transformed
field does not have a branch cut as shown in Figure 1, and the outer surface S

0

maps onto all four sides of the transformed field so that boundary condition
(1c) is not needed. Boundary condition (lb) is then applied on all boundaries

in the transformed field and equations (6) can be solved by SOR techniques

subject to zero value of w on all boundaries. Thus the only difference from

one problem to another lies in the generation of the coordinate system for

the particular shaft cross section.
-, , For a shaft with a hole in the interior, boundary condition (1c) must be

satisfied by an iterative procedure as follows. Assume a value w. for the

deflection of the weightless plate which is the value of w along the boundary

S1 . Knowing that the value of w on A'C' must match the corresponding value

on B'D', equations (6) can be solved by SOR iteration. The resultant force F

on the weightless plate from the inflating pressure and the upward components

of the membrane tension can be calculated from (4c) by numerical integration

along CID'. If F is different from zero, the value of w must be adjusted to

decrease P to zero. This was easily accomplished by Newton iteration.

Another method of solution which avoided iteration and produced the sae

result is outlined as follows: It is desired to solve (la) subject to (Ib) and

(1c) so let w - w + wBw1 where w. is as defined above. Now if V2w - -2 on R
0 0

with w 0 0 a S and SI a nd if V2 wI - 0 on R with w, 0 0 on S 0 d wI  1 on

S. then w - w° +w is a solution to (Is) and satisfies boundary condition

(lb). Boundary condition (1c) is satisfied if

d + wB  -- 1d 2A.Is an DjS an

NAM

-...--.--- - ---- - - - I
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Solutions for w and wI are obtained as explained above with known boundary

values, and the integrals in (lc) can be evaluated and wB calculated.

After the membrane deflection has been found the shear stresses are

evaluated by transforming equations (2a), (2b), and (3) and evaluating them

in the transformed field. Transformation of (2a), (2b), and (3) yields,

Tx - (x w - x w )/ J (a)

y n - w." ye Yw)/i J t (8b)

it = 2 J Ow dE dn + 2A (9),

where AwB is the volume under the weightless flat plate and the double integral

is the volume under the rest of the membrane. The magnitude and direction

of the shear stress can be found from its x and y components and plotted either

- Vas contours of constant stress in the physical field or as shear stress vectors.

SNOM-UNIFORN SHAFT, CIRCULAR CROSS SECTION, ARBITRARY PROFILE

The torsion of circular shafts of variable diameter along their length

is an axi-syimetric problem in the theory of elasticity, and it is a two-

dimensional problem in cylindrical coordinates as shown in Figures 3 and 4.

A detailed treatment of the problem can be found in Timoshenko4.

4A

CC
soD

A ! 1 or X

Fig. 3. Mon-uniform shaft of arbitrarily Fig. 4. Two-dimension cylindrical
varying circular cross section. coordinates.

yK ,

- __ _ -.-- - - - - - - - - - - - - - - - - -
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The governing equations can be simplified by the introduction of a stress

function to yield

35r -- 5 + =0 on R (10)
rr r zz

where

TE@ 1 (la)

and

T te2 r (llb)

Torques are applied to the ends of the shaft by the specification of a shear

stress distribution. In this work all shafts transitioned to a uniform radius

at each end so that the linear stress distribution of a uniform shaft could be

impressed as a boundary condition at each end. Due to uniform radius at the

ends T - 0 and due to a linear distribution of T 1 - = kr where
ire *ze1 z r r

k is any constant. Integrating, 5 - .25kr 4 at each end. To obtain the torque

on the shaft integrate Te over the end so that

T - -2wR zed JR 2wr2( 1 r)dr. Integrating,
. 0 0 -7 -r

T - 2w dr = 2w(5R-,0). For simplicity choose a unit torque and
3r R

set *o equal to zero. This gives *R = as the value of the stress function

along the outer surface of the shaft and zero down the axis of the shaft.

- 5k4  4 2
Now on the ends of the shaft f - .25kr 4 

and since # -R -T - , k +,

which yields * - (R) for the boundary condition on the ends of the shaft...

Now recognie that r and z in Figure 4 can be changed to y and x to match

the notation for which equations (5) apply. Next a coordinate system is

generated for the shaft profile shown in Figure 4 which is transformed into

Figure 2. Transforming equation (10) yields

aY# + a xl # 0 (12)
C nn y N C y &n

When this equation is expressed as central finite differences of #, an equation

similar to (6) results with # exchanged for w. Because of the presence of3
Or in equation (10), equations (7b) through (7f) are modified as given below,

-, : . " - .,,.

+ . .,, ,+
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D1 a 0/
4 
(cg+y) (13a)

D2 . (y+a - 3J X /2(Q y) (13b)

D - (n-T - 3jC X )/21oL y) (13c)

iT 3 y ni

D D5 = (y-a + 3 xC)/2( +y) (13e)

D6 - 0 (due to the right side of equation (10) being zero).

The algebraic equations in nodal values of t are solved by SOR iteration with

the boundary values of stress function being specified.

Substituting y for r and x for z, equations (11) for the shear stresses

become

6r - ax

1 .

which when transformed become

Sre -(y*( -y )/j y 2  
(14a)

T -(x* xn)/j y
2ze nX n

The stress components in the physical field can be cosputed in the transformed

field by expressing the derivatives of x, y, and # in equations (14) as

* finite differences in the transformed field. Shear stress contours in the
physical field can be plotted knowing TrS and .

BENDI1G OF AITRARILY SHAPED PLATES

The bending of thin isotropic flat plates by transverse loading in

. governed by the biharmonic equation. in this work the biharmonic equation is

broken up into two coupled Poisson equations largely because of the algebriac

I difficulty encountered in transforming higher derivatives. Recently, however,

there has been developed a way of accomplishing the transformation of

derivatives automatically.

4. , --- Wow-.
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Boundary conditions considered in this work are simply supported and

clamped boundaries which are either curved or straight. These conditions

require second derivatives of plate deflection. The free edge condition

requires third derivatives and was not considered.

The bihaxmonic equation and boundary conditions were non-dimensionalized by

dividing the physical coordinates by a characteristic length a and by dividing

the transverse plate loading by a characteristic loading qo. Bending and

twisting moments divided by qa 2 and plate deflections multiplied by flexual

rigidity D and divided by qoa4 are non-dimensionalized.

Plate bending equations

Governing equation. The biharmonic equation in terms of non-dimensional

bihamonic equation is reduced to two coupled Poisson equations whose solution

requires values of deflection and quantity F on the boundary. The physical

meaning of the quantity F can he found from the following moment-curvature .. ,

relations for a plate (aoments and deflection are non-dimensional).

32w 32W
'N1 x 7+ V (15a)

'+-V

=32W aw2
=5 + V 7(15b)

K *. .4y y 2 JT
M - (l-v) -E (15c)
zy ax3y

adding

% + = (l+V ) 2 - + 2 --W)

and

- V2- .(16)
(l+v)

it can also be shown that the sm of the bending moments at a point in a

plate is an invariant so that %x + My m n + nt m (+V)F.

Boundary conditions, simply supported edges. For a plate with simply

supported edges and straight boundaries, w = 0 & id F = 0 on the bvundaries.

However, if the boundary is curved and simply supported, w - 0 and the normal

moment N is zero. Since the tangential mament is unknown F cannot be

specified on the boundary and MN 0 must be used as the second boundary

t1

'"4"

... .. '" ... . .,
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condition. For a unit normal vector at a point on the plate boundary making
an angle e counterclockwise with the x axis, the normal moment about the plate

edge is

* M cos2 0 +M sin 2O - 214 sine cosO . (178)
n x y xy

Substituting equations (15)

N - (v - v cos 26 + cos2  2W+ (V sin2e + sin 2 ) a- +

(1-v)sin2a (17b)

Boundary conditions, clamped edges. For plates with clamped edges the

boundary deflection is zero and the normal slope of the plate is zero.

Transformed plate equations t,

The transformation of the two coupled Poisson equations yields expressions

similar to equations (4a) and (5). Likewise the expression for normal

moments contains second derivatives of w and for generality the expression 4
below which contains the coupled Poisson equations and normal moment was

transformed.

g(xy) AL 7 A A22  (19)
For-7 - 2 a2  2

Sor F 7T -+ 3 T1  , A 1 A22 = , A12 0 , - and

!for ~ ~q(x,y) 32F 32F =I =0,g=qq

co:e 32o " K

Sand ' (x,y) - [v + (l-v) cos 2 =] + [(l-v) sin26] a +

[v + (l-v) sin 2el a where q and

A V + U ~-0) coa2 e ( 20a)
A1" 2. - (l-v) in2 , (20b) '.

A - v + (1-v)sin2 e (20c)
12

'N /

• a, l
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Transforming equation (19) yields

S2'&nCv C 'V 3 C. +w C44 CS n  (2)

*where

SC2  -1 1 2iyn + 2 2  22)

C2  (-2A1] 1.y n + A12'N4¥n + N)C" 21,22x C xW2 (22b)

C3 (A~ Y 2 + 2,(, (226)
. , ~C4  ,, (A1111  + '%2 % 4- 2 2 3 )./32124

C5  ( 1 1814 4 412 2 A2293)/32 (22o)

2/j

S.. C 6 2 (c. 3  (22f) j
and

- Cy yee y2 3 )/3 (23a)

"2 " - 4En + lyyg - xY Je)/J (23b)

13 x )x g i + N 9xj n -nx.7)/ (23c)

I " I

B ~y (y yy j ~I yn' j ~3)l (23d)

1 " xxnYE - 4yg + (x&yJ n - xntvjl)/ (23e)

16 Ex tn Fl + (xJ- 2 )/ 4f

4 nC4 yc tt+XCY'n (239)

n " YnX n y x "nn 'cn + X'enn (23h1

niotioe t1 at expreseioLs (22) and (23) reduce to equations (5) for 11 -A22 -

and h,2 - 0.
The AeMIe 0 in equations 201 is found from expressions for .the unit notmal

in the transformed plane. *,7 ' "

4I

l j l . - .. 2.. ,/.., ... , .: •.
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e - arc cos (-oyC// 7) for lines of constant n and (24a)

e - arc cos(ay /v') for lines of constantC. (24b)

The normal derivative of deflection in the transformed plane is given by

-w a(yw -Ow )/Jvy- for lines of constant n and (25a)
an

* 9wnT U CW Ow )/J( for lines of constant F. (25b)

a is +1 for the top and right side and a is -1 for the bottom and left side
- of the computational field to insure a positive outward nomal.

Solution of transformed plate equaticns
Equatio (21) is the transformed governing Poisson equation V2w - when

g - F. Substituting F for w and setting g - q/% gives the transform of
2F - q/qo" Expressing the derivatives an central finite differences yields

the following coupled algebraic equations:

Fi,j - DI(Fi_1 ,j+l - Fi+l,j+l + Fi+i,j-l Fi-l,j.l )  (26a)

+2 i,j+l + 13 i-l,j + D4 i+l,j + DSpi,j-l 6 %

Similarly

wi,j - D(W -il ji+l,+1 - wi-lJl + wi+l,jl) (26b)

+ D + D + D4Wi+, + D 1 - D
2 i,j+l 3*i-l,j 4ilj 5 i~j-l 6pi,j

where

"S ID -1/4 cc 6  (27a)

-2 - (C2  1 1/2 C5 )C6  (2"b)
o .

D 3 -C - 1/2 (27c)

4 -(C 1 + 1/2 C4 )C6  (27d)

A A,

, . .v .' .

4!,:''* .-4.- , , '
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D 5 - (C2 - 1/2 C5 )C 6  (27e)

D -. 2 C (27f)
* 6 6

If the values of w and F are specified on the plate boundary, equations

L (6) can be solved by point SOR iteration methods. The normal slope can be

computed at each boundary point by expressing the derivatives of w in

-equations (25) as forward, central, or backwards finite differences depending

on the location of the boundary point in the transformed field. The calculation

* of the normal moment at a boundary point requires first the angle between

the outward normal and the x axis. This angle is evaluated from equations (24)

and used in equations (20) to obtain the coefficients A1 1 , l2" and A2 2 of the

t". deflection derivatives in the physical plane. Using these values of All, A1 2 ,

- . and 2 2 the coefficients of equation (21) can be computed by evaluating equa-

tions (23) and (22). The actual expression for normal moment depends on the

location of the boundary point. Forward, backward, and central finite

differences are used to compute the derivatives of w on the four sides and four

corners of the transformed field. Then the buundary moment is computed from

equation (21).

The computer code for the solution of plate deflection problems requires

the identification of the type of boundary condition present. This identifier

*selects either the normal moment equation or the normal slope equation for

the boundary value to be satisfied. Stdrting values of w and F are chosen for

the plate and the governing equations are solved. Next, the boundary value

of slope or moment is calculated and compared with the value actually present

on the boundary. This comparison dictates a change in the value of F on the

boundary and the procedure is repeated until convergence is obtained.

In this work it is assumed that the value of F at a boundary point

influences only the slope or moment at that point. A simple iteration scheme

was used to drive the calculated boundary value B to the desired value BBDY .

In the equation below p is the iterate number, and 6 is a relaxation para-

.. ... meter.

•p+l - p - F( (28p-(

There are more accurate and more efficient iteration schemes than this, but

it works well enough to demonstrate the validity of the general method. There

is certainly influence on all boundary points due to changing any one value of

14
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F, and for efficiency of calculation a global iteration scheme should be used

along with line SOR.

Fig. Sa. Coordinate system with uniform Fig. 5b. Coordinate system with an
boundary spacing e exponential boundary spacing.

REPSULTS FOR UNIFORM SHAFTS•

Four coordinate systems were generated for a circular shaft of unit radius

subjected to a unit torque. Two coordinate systems were simply connected,

one having a uniform spacing and one having an exponential spacing of boundary

points as shown in Figures Sa and 5b. These coordinate systems have singulari-

ties at the four points which transform into the corners of the rectangular

transformed field. The stress cannot be computed at these points but could

be taken as the average of the stresses at points to either side. Considerable

skewness of the coordinate system occurred near the corner points. The stress
distribution along line CF in Figure Sa which has orthogonal coordinates was

linear, and along line AF which has skew coordinates the stress distribution

deviated somewhat from linear. The value of the maximm stress differed from

the exact value by .42% at point C, by .59% at point 3, and by -. 68% at point A.
This error can be accounted for largely by a torsion constant .375% too small.

TrapeAoidal integration which gives a value smaller than the actual volume

*was used to find the volume under the deflected membrane.

A %.
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Fig. 5c. A comparison of surface shear stress error for two simply connected
~coordinate systems showing the effect of coordinate spacing and

skewness.

Figure Sc shows a plot of stress error in relation to the coordinate spacing
,: for the simply connected coordinate systems in Figures 5a and 5b. one sees 5%":

error in the region of large spacing around points B and D for coordinate

system 5b. Skewness effects can be seen also.

By introducing a small hole at the center of the shaft an orthogonal

coordinate system was generated for the doubly connected region as shown in

,.Figure 6a. A constant value of stress around the outer boundary was .3% in

error. AMother small hole (diameter .01) was introduced at one half the

radius of the shaft (r = .5), and a coordinate system was generated which was

not orthogonal as is shown in Figure 6b. The coordinate spacing is uniform on .-

the boundary for both of these cases which should have constant stress around

the outer boundary. Figure 6c: shows the effect of c.ordinate skewness on the

error. Even though both systems have 51 radial coordinates, the radial spacing

near the boundary for the system in 6b is twice as great as for the system in

6a, and this is reflected in the accuracy in Figure 6c near points A and B
where the skewness is not large.

..........
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Fig. 6a. Orthogonal coordinate system Fig. 6b. Non-orthogonal coordinate
with uniform boundary coordinate system with uniform
spacing. bonaycoordinate
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A plot of stress along line PA in Figure 6b shows a linear distribution

with a spike at the interior hole located at r - .5. The stress on the sides

of the hole is twice the stress at r - .5 remote from the hole, just as pre-

dicted by Kelvin's fluid flow analogy. Figure 7 shows the distribution of

.. ,stress around the small hole, and it differs from a sinusoidal distribution

because of the non-unifomity of the "flow field" around the hole.

.7

.6

.4

.3

iWMEmcaa. STRw %OLIE5 .5% W

Fig. 7. A comparison of theoretical and numerical shear stresses around a

small hole at mid radius of a circular shaft.

Figure Sa shows coordinate systems generated for a hollow circular shaft

with a keyseat cut into it. The inner and outer radii, keyseat dimensions,

and keyseat radius were chosen to conform to an example from Tifoshenko
5

. •.

The circular fillet in the keyseat had three points for one coordinate system

and five points for another. Stress calculations gave values of 2.43 and 2.67

for the stress concentration at the fillets which compare with the value 3.4

given by Tioshenko
5

. Mre closely spaced coordinates would probably increase

the stress on the fillet slightly. The value given by Timoshenko was deter-

mined experimentally by a fluid flow measurement and could easily be in error.

Figure Sb shows a plot of membrane deflection contours around the keyseat, and

Figure Sc shows the stress contours which clearly indicate stress concentration ' ' "

around the keymeat fillets.

47VAii .4 i
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- -Fig. Ba. Coordinate system for the region around the keyseat in a hollow
circular shaft.

Fig. Sb. Membrane deflection contours Fig. Se. Shear stress contours around

around the keyseat in Fig. Ba. the keyseat in Fig. Ba.

I BRESULTS FOR NON-UNIFOPW SHAPTS

Exact solutions exist for the stress function in unifoza and tapered

shafts. Rather coarse coordinate systeis were generated for these two shafts,

and calculations for the stress functions yielded a quartLc distribution of

stress function and a linear distribution of stress. The surface stresses were
r. computed within .48% of the exact value for the uniform shaft and within .67%

of the exact value for the tapered shaft using 20 radial coo-dinates. Due to
the presence of a tern in the governing differential equation, it was

necessary to use a locally optimum acceleration parameter to obtain conver-

gence by SOR iteration.

As a further test of the boundary fitted coordinate nmthod, the problem
of two uniform shafts of different diameters connected by a circular fillet

was considered. Coordinate systems were generated for six different shafts,

*and stresses ware computed and compared with masuremnts mode by ja en. ,  .16

who used an electrical analogy to experimentally masure the stress concen- -
tration in shafts. A coordinate system typical of the six generated for the ' -'

I!N
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Fi.9.Coordinate system for a stepped Fig. 9b. Shear stress contours

Fi.9. shaft whose diameters are around the circular fillet
connected by a circular fillet, connecting a stepped

shafts' two diameters.

.5 NLOWNIAL DTA

¢-it

0.

ii

Fig. 9C. Comparison of numerical with Fig. 9d. Comparison of numerical
experimental stress concentra- with experimental shear
tion factors for stepped stress along a circular
shafts. fillet in a stepped shaft.

shafts is shown in Figure 9aand a typical set of stress contours is shown in

Figure 9b. The maxi-m stress was found and converted to a stress concentration

factor and compared with experimental values in Figure o. Agreement is

excellent except for small fillet radii, and Jacobsen did not believ the

accuracy of his results in this region due to the difficulty of measuring

e r p
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distributed along the fillet for one shaft. The agreement with Jacobsen's
data is excellent except in the corner above the fillet where no effort was

made to attract coordinate lines (see Figure 9a) since the stress is known
to be zero in external corners. Results for four shafts with circular
grooves of various radii and depths, and for a shaft of two diameters with a

S#"linear transition between the diameters are presented in Young 7.

RESULTS FOR PLATS OF ARBITRIR SHAPE
The deflection of plates involved coupled Poisson equations and boundary

conditions somewhat more ccmplicated than those used in the torsion of shafts.

In spite of the complexities of simultaneous governing equations and second
derivative boundary conditions, accurate plate deflections were computed.

Initial efforts to confirm the accuracy of the computer code were directed
toward the solution of classical plate problems which had Dirichlet boundary

"* • - conditions, namely zero deflection and zero F(-V2w). These conditions hold for

any simply supported polygonal plate. Other problems such as circular plates

or circular sector plates had zero deflection along the boundary and a known
constant F (circular plates) or known variable distribution of F (circular

* sector plates) along the boundary. When the boundary values of w and F were
prescribed, a point SOR iteration of the coupled governing equations converged
to the analytical solution with an accuracy which depended on number of

coordinates (grid size), coordinate spacing, and skewness of the coordinate
system. When the coordinate spacing was small, errors of .01% or smaller were

obtained, which supports an earlier statement that the error in the torsion

.ig. lOa. Comparison of numrical and Fig. lob. Coordinate system for a
theoretical deflection contours simply connected squi-
for a s1inly supoed equi- lateral trianqular
lateral pate .ol iy oed. plate.

"' * V, -

A.~~ ~ ~ 4'4~-.-



273

of uniform shafts or arbitrary cross section was due primarily to the determina-
tion of the torsion constant by numerical integration of the volume under the

deflected membrane.

A typical comparison of deflection contours is presented in Figure 10a,

which shows the close agreement between numerical and analytical contours for

an equilateral plate uniformly loaded and simply supported. The coordinate
* , system for this plate in shown in Figure lOb.

4' Having confirmed that the boundary fitted coordinate method would yield
correct results for field values of deflection and F when the true values of

boundary deflection and boundary F were specified, the next step was to deter-

mine the accuracy of calculations for boundary slope and boundary moment. For
plates without skew coordinates (square or rectangular shape) the calculated

slope at the boundary and boundary edge moments were as much as 3% in error,

although the deflection and F at the plate center were nearly exact. The
. coordinate system in Figure Sa was used for circular plates, and it has regions~of severe skewness around the four corner points. The boundary slope and

boundary moment values showed an error which was definitely related to the

skewness. Variations from 1% to 25% of the exact value of slope were computed.

The effects of skewness on the stress in a shaft were compared in Figure 6c

for several coordinate system. Stress is obtained from first derivatives,

while boundary moment is obtained from second derivatives, upon which the

- - - effect of skewness is more pronounced. t p i hu w n

-'For the solution of an arbitrary shape to be possible. the unknown boundary

values of F must be found which cause the edge slope or edge moment to be zero

according to simple or clamped boundary conditions. This was attempted itera-

tively and met with good success if skewness was not present in the coordinates.
For example, the values of F along the boundary of a square plate were varied

until the edge moment was zero. A central deflection error of 1% and central

F value error of .8% were obtained. However, when the same'procedure was

attempted for a circular plate with the coordinate system of Figure Sa (very .-

skewed), the central deflection error was 2.4%, and central F value error was
p. 1 .90. Skewness would have made the solution impossible except that for the

circular plate it was known that a constant value of F existed on the boundary,

- • " and it was not necessary to find a different F at each boundary point, as was
S. necessary for the square plate.

" .. Skewness is much loss pronounced for doubly connected regions so a circular

plate with a circular hole was investigated. This doubly connected region had

an orthogonal coordinate system, with radial coordinate lines attracted near

4t.
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the boundaries. The inner and outer boundary values of F, which are constant

around each boundary due to symmetry, were varied until the slope was zero for

clamped edges and until the edge moment was zero for simply supported edges.

The results were compared with an analytical solution by Georgian8 . In each

case the boundary values are satisfied, but the field values are in error

about 3% at the point of maximum deflection. This is to be expected since for

square plates the boundary values were calculated to only 3% accuracy for a

nearly exact deflection field. This error generally improves with a denser

grouping of coordinate lines (decreasing grid size) on the boundary.

To demonstrate the application of the boundary fitted coordinate method

to other shapes, an ellipse with an interior hole and a triangle with an

interior hole were investigated. Coordinate systems for these plates are

shown in Figures lla and llb, and they are clearly non-orthogonal, but the

skewness is not severe. The plates were simply supported on all edges and were

uniformly loaded. The variation of boundary F was found which satisfied the

condition of zero edge moment, and contours of plate deflection are shown in

Figures 12a and 12b. It is estimated that the maximum deflection error is less

than the 3% error obtained for the circular plate with circular hole, since

there are more coordinates for the elliptical plate than for the circular plate.

Fig. Ila. Coordinate systm for an Fig. llb. Coordinate system for an ,ellipse with a circular equilateral triangle with :interior hole. a circular interior hole. . ,

II
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Fig. 12. Deflection contours for uniformly loaded plates with interior and
exterior boundaries simply supported.

CONCLUSIONS

The boundary fitted coordinate method simplifies the boundary condition

description for solid mechanics problems, while complicating the governing

differential equations somewhat. This is an overall advantage since governing

equations are easily represented as finite difference expressions, and great

difficulties are eliminated by having coordinate lines coincident with the

boundaries. A distinct disadvantage of the method lies in its introduction

of skew coordinates which have an adverse effect on the accuracy of calculations.

It appears that the problems introduced by skewness can be overcome somewhat by

a finer grid spacing or more numerous coordinates. An advantage of the

method is the ease with which problems of different geometry can be worked.

Practically the only difference from one problem to another lies in the

generation of a coordinate system for the region under consideration.

The results obtained indicate that the boundary fitted coordinate method
yields accurate results and is relatively easy to apply to solid mechanics

- problems which can be formulated in terms of a field equation. The boundary

fitted coordinate method should be extendable to elasticity problems and those

problems which have moving boundaries or perhaps regions of changing shape

(yield zone for example). It is the ability of the boundary fitted coordinate

method to follow regions of changing shape which should be exploited in

future work.
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COORDINATE SYSTEM CONTROL: ADAPTIVE MESHES

J. U. BRACKBILL
Applied Theoretical Division, Los Alamos National Laboratory, Los Alamos, New
Mexico 87545

INTRODUCTION

In the numerical solution of transient fluid flow problems, the flow varia-

bles are calculated at a finite number of points. Typically, the points form

ordered arrays which are joined together in some systematic way to form a com-

putation mesh. On this mesh, the flow equations are approximated by finite

differences, which are then marched in time.-I

' It is intuitively obvious that the greater the number of points in the com-

putatton mesh, the more accurate the numerical solution will be. For one

-- thing, the accuracy of the difference equations depends on the fineness of the

. mesh. As importantly, the accuracy of the solution depends on the resolution

of flow gradients. Where the flow gradients are largest, the aDsolute error

in the difference approximation to derivatives is largest.1  In adoition,

more numerical diffusion must be introduced to maintain sufficient smoothness

of the solution for nonlinear stability.
2

When the flow gradients vary from place to place and trie mesn spacing is

constant, the numerical errors are largest where flow'graoients are least well

resolved. When mesh points can be added, errors are reduced most efficiently

by adding points only in regions of strong gradients.3  Similarly, when the

number of mesh points is fixed, greater overall accuracy can often be obtained

by concentrating mesh points where gradients are strong and dispersing them

where gradients are weak
-I--<

S--An algorithm which concentrates and disperses points automatically based on

the numerical solution of the flow equations is described as adaptive. Here,

an adaptive algorithm is derived from a minimum principle, and its application

to transient flow problems in two dimensions is described.

The major topics discussed are the variational formulation of a mesh gen-

erator with interior control, its use in adaptively rezoning a time-dependent

problem, and the solution of the inverse problem to allow adaptive zoning of

arbitrary initial meshes. Some of the discussion is reproduced from Ref. 1,

but the application to time-dependent problems is emphasized. *.

'.4
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VARIATIONAL FORMULATION OF THE MESH GENERATOR

For the solution of finite difference equations on a computation mesh, the

data is typically stored in ordered arrays of numbers, 6(i,j) in which the

indices i - 1, ..., M; j = 1, ..., N, give not only the location of the data

in computer memory, but also the physical relationship betwen the data at one

vertex x(i,j) and another, x(i',J').

In formulating the mesh generator problem mathematically, it is useful to

view the mesh, whose vertices are x(i,j), as the image of a mapping Z(,) in

which the points corresponding to integer values of the natural coordinates,t

and n, are the mesh vertices. The image of the mesh in natural coordinates is

a uniform, rectilinear mesh with mesh spacing at . an - 1. A mesh generator

•] . ' "determines the mapping x((,n).

p Obviously, the differential properties of the mapping are reflected in the• ". . properties of the computation mesh. For example, [ (ax/at)l - (BylB0)211 21

along a level curve of n is related to mesh spacing between vertices with the

same index j. Similarly, the volume of computational cells is related to the

, -, Jacobian, J, of the mapping,

3a -3" -

and the orthogonality of the mesh Is related to the scalar, vg eVn, which is

zero when conjugate lines of the mesh are orthogonal.

Integrals over the computation mesh can be written which measure these

properties of the mapping. The global smoothness of the mapping (the varia-

tion In mesh spacing along level curves of ( and i) Is measured by the inte-

gral,

, -f (VC ) + on ~2] dV

The orthogonality of the mapping Is measured by,

.• 2 3 
.

D

and the weighted volume variation is measured by,

,, - .
T " .,

* ,- .-.
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I V  f W dV

D

where w . w(x,y) is given.

The smoothest mapping can be obtained by minimizing Is, the most orthog-

- onal mapping by minimizing Io, and the mapping with specified variation of J

by minimizing I.14

A useful mesh generator results when a combination of Io, Iv and I

is minimized as in the penalty method. 5 That is, the integral I is mini-

mized,

* I-Is + Aviv +A1 Yo

-. where Xv and x0 are positive constants of 0(1).

SOLUTION OF THE VARIATIONAL PROBLEM IN TWO DIMENIONS

" To derive the Euler equations for the variational problem formulated in the

preceeding section, it is first convenient to interchange dependent and inde-

pendent variables using the relations..

'x = 7 j '- , x = y = j

After interchanging variables, the smoothness measure can be written,

M N N (dn 2 + 2 + y2 + yn 2 j

for which the corresponding Euler equations are,

(3~~~ Nil +______ 1 0.

; . k
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The measure of volume variation, after interchanging dependent and indepen-

dent variables, can be written,

M N
1,- f f ddnwJ2

for which the Euler equations are,

3wj 2 fJ(w y. w. y& + w(Jt y. in Jy) 0
ax

and

3 w 2 2 - + -j 2 [J(Nwn xnwt w(tan  nJt)) 0

Similarly, the orthogonality measure, Io, can be written

MN ."2 I
1 1 f

for which the Euler equations are

boilu + bo2xn + b + o + ao2ytn + ao3ynn - 0

and

aolzN + o2 n + ao3xnn + eol3% + eo2t n + Co 3ynn m 0

The mesh generator equations can be written in a form convenient for compu-

tation by collecting the coefficients of the highest derivatives of x and y

with respect to and n and writing,

1b b + .a _+ b - (+) a, +1 2l( 3 bZ~ 3nn aY(t aZY4n a3Ynn .-j7W x

i

tBo

**Sol-
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ax + a2x + a3X + clY + c2y + c3ynn j -lW (2)

The coefficients are reproduced here from Ref. 1 for completeness:

a - a. + X^v + )oao ,

b - be +Xvb v + Xobo , and

C ra )vCv + AoCo •

-as, -An ; b a1 B a ; C l =  a

a 2 2A ; b2 -- 21 ; 2 -2.

a3 -Ay ; bs3 By ; c*3 Cy

where

A-x 2 +, , , -) + ,2  C y-,2+ I2

and

NA2 + y ~n 2 I t r n +  ] yt ¥n 2 +-Y.

0 y

3 3

a = j3 ' j3j3 
"

* 1 " " Yi byt -
2  , %1 mn2  ,

a.3 "b 3  
2  * C'v3 N

.
• . .,*
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a ot In n , o t = n 2  , Co l - n n2

ao2 - + n , b02 - 2(2,ryn + ytyn) C 2 - 2(xtxi + 2yCyn

The generator equations form a set of coupled, quasi-linear, partial differen-

tial equations of second order which are only slightly more complex than in

the original Winslow algorithm.

Algebraic equations at each node result from the substitution of the dif-

ferences for derivatives. The system of equations is solved by a Jacobi iter-

, ation in which the values of xi j and Yi,j are treated as parameters. The

iterative solution of these equations will give new values of xi j and Yi,j

which satisfy the Euler equations above. A more complete discussion of the

numerical solution of the Euler equations is given in Refs. I and 6.

THE ADAPTIVE MESH

By choosing an appropriately defined weight function, w(x,y), the mesh gen-

- erator can be made part of an algorithm to adapt a computation mesh dynami-

cally to data generated by the solution of finite difference equations.

The weight function must depend on the data in such a way that numerical

errors are reduced. An obvious approach is to minimize the truncation error

S -. for a particular difference approximation. While this may be optimal, detailed

analysis of a given difference equation usually yields a very complex expres-

*f sion for the truncation error whose minimization may have no clear connection

to the variational forms above.

However, a simpler approach yields a practical, yet useful, algorithm. As

has been noted already, numerical errors are reduced significantly when flow

gradients are well resolved. When there are sufficient mesh points in each - *

gradient length of the function being represented, the smoothness of the func-

tion assures that truncation errors and numerical diffusion necessary for non- V

linear stability are reasonable.

The choice of weight function, w, is simplified by noting that as x

becomes large, the solution to the mesh generator can be written,

wJ2 - const.

Where 0, the function being represented, is positive, a weight function with -s, .

correct dimensionality is given by,

IN
I-
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1 4 (3)

so that wJ2 is dimensionless. Thus, where w is large, corresponding to

steep gradients, J will be small, corresponding to increased resolution.
Although the choice of weight function is straightforward, there are a

number of problems of a practical nature which must be solved. The gradient

of 6 is calculated from the numerical data by finite differences and may

accentuate the roughness of the data. Variations in mesh size occur in a dis-

crete way in moving from one cell to the next and may increase truncation

error. Finally, there are constraints on maximum and minimum zone sizes. The

-k minimum zone size determines the time step, and thus the cost of a calculation.

The maximum zone size cannot be greater than the entire mesh.

To address these problems, the algorithm must be modified. The weight

function calculated from the data is smoothed to spread the influence of a

single data point over a region of the mesh. The coefficient, xv, is typi-

cally chosen to be 0(1) so that the influence of the smoothness integral

* results in a smooth variation in cell size from zone to zone. Finally, w is

scaled between maximum and minimum values corresponding to prescribed maximum

and minimum zone sizes.

A NUMERICAL EXAMPLE OF ADAPTIVE ZONING

A simple example illustrating the effect of adaptive zoning in two dimen-

sions is afforded by considering the steady solution of a convection diffusion

- . equation in two dimensions,

YOU) -v 26. - ,

where U = h(r) is given, and /s is a positive constant. On an infinite

domain, the first integral of the equation is simply.

'90 . , -

One can see clearly that when p is small, where U is finite vO/O will be very 4-

large. Choosing U(r) to be a function which is non-zero only in an annulus of

width 6r at ro will result in the formation of a boundary layer at ro.

To demonstrate the increased accuracy of difference equations with adaptive ,

zoning the solution 0 is given analytically, and the error is defined as the

, -.. -..: , ,i
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value of the RHS of the first integral when 96 is approximated by a finite

difference.

The result of a numerical calculation on a square domain, 0 < x <1,

0 < y _ 1, with r- O at x = y. 1/2, ro  114, and Uo . 12 is shown in

Fig. 1. Where there is rapid variation of 0, the cells in the adapted mesh

are small in the figure.

An important result is shown in Fig. 2a where the variation of Iv , i s

and the error, e, with xv is shown.

Clearly, minimizing Iv reduces the error since both Iv and c decrease

together as iv increases. The decrease in Iv results in a small increase

in Is corresponding to a departure from Winslow's mesh. The decrease in c

as xv increases from 0 to 1 is dramatic; from 25% to 3.5%. The conclusion

is that with increasing adaptivity, substantial increases in accuracy are

obtained. The effect of varying the size of the mesh with and without adap-

*tivity, shown in Fig. 2b, indicates that equivalent accuracy is obtained with

the adaptive mesh with one tenth as many cells as in the nonadaptive mesh.

ADAPTIVE ZONING OF TIME-DEPENDENT PROBLEMS

Time dependent flow calculations can be adaptively zoned simply and cheaply

by the following algorithm. At the beginning of each time step, the weight

function is calculated from the numerical data and processed as described

above. The coordinates of the mesh are stored, and new coordinates are calcu-

lated from the mesh generator and separately stored. Either by interpolation

or by the solution of transport equations in conservation form, the data

are transferred from the old mesh to the new one, and the new mesh replaces

the old mesh in memory.
The algorithm is explicit. The new mesh is generated with data from the

previous time step and does not anticipate changes which may occur during the

course of the time step. This splitting of time advancement of the flow equa-

tions and time advancement of the mesh is more accurate when the solution f..
changes slowly from time step to time step, as expressed by the inequality,

1 00Jk*3-At < 1.,

One might object that this condition my be violated locally, especially in

singular perturbation problems. For example, a shock may move a distance

comparable to its width In a time step resulting in large changes in the solu-

tion in the neighborhood of the shock. With this in mind, one can understand

. . . . .. . . . . . . . . .... . .. .. . ,, _
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the value of smoothing the weight function so that the fine zoning induced by
strong gradients in the shock front extends some distance to either side of

the shock front. Thus, a more relevant condition for the time step is given
by the rate of change of the weight function,

7 1; at < 1.

When the weight function is varying too rapidly, additional smoothinq of the

data is often required (with some consequent loss in adaptivity).

When the inequality above is satisfied, the displacement of the mesh over a

time step is relatively small, and the mesh at the beginning of the time step
very nearly satisfies the mesh generator equations. After only two or three

* iterations, the solution is usually sufficiently good that further improvement
- - - is unnecessary. There is also a physical argument why this is so. The change

in the flow solution over a time step at a given point depends only on the
'- flow variables at neighboring points. So that the mesh generator can respond
*on the saes time scale as the flow solution, the domain of dependence for each

,. - point in the mesh must be at least as large. Since each iteration of the mesh
generator increases the domain of dependence by one cell in every direction,

two or three iterations are sufficient.

The value of adaptive gridding in time-dependent flow problems can be iden-
tified by considering the problem of numerical diffusion. In all flow calcu-
lations, the approximation to convective transport introduces numerical diffu-

-. sion. The amount of diffusion can be estimated by truncation error analysis.2

, For example, when convective transport in one dimension is approximated by an

implicit difference equation,
8

n+lj- - s. (.+; (e+ )1+1 - n+l(#u)j._)

n where m #(jx,(n+l)&t), the differential equation approximated by

the difference quation to O(ax3,t 2) is,

where oc' is the numerical diffusion, .

• ." 4,"
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1 8 t u2 6X 2 au

When it is required for accuracy's sake that uat * 6x, K' can be written,

1 6X (I !X au •

Clearly, when flow gradients are not resolved and 6x(au/ax) > u, K' is nega-

* tive and numerical instability results.2  Analysis of other, standard dif-

ference approximations yields similar results.

There are a number of approaches to maintaining stability. Historically,

an explicit numerical viscosity has been added to the flow equations to smooth

gradients and make them resolvable. However, the consequent reduction of max-

• -imum, representable Reynolds numbers is currently considered unacceptable.

Several other approaches which do not introduce excessive additional diffusion

are now available. One can calculate the negative diffusion locally from

truncation error analysis, and compensate by adding a comparable positive dif-

fusion. One can control diffusion locally using flux corrected transport.I Alternatively, one can improve the resolution of flow gradients through adap-

tive gridding. In this case adaptive gridding not only increases the accuracy

b of numerical calculations, but also the stability. Of course, adaptive grid-

ding is compatible with flux corrected transport.9
The effect of adaptive gridding is illustrated by the numerical solution of

Fisher's equation in a moving frame,

+ U + , u -,cY. V# + (- - .

where Uis the frame velocity, K the diffusion coefficient, and r the reac-

tion time. This single equation contains many of the effects modelled by a

I system of equations describing diffusion of chemically reacting materials. . -

In one dimension, the solution to Fisher's equation corresponds to a steady
112

front moving with speed v (i1i)1. Across the front, whose thickness is

proportional to K112, 0 increases from zero to one.10  -.

Since Fisher's equation will be solved on a moving grid, it is convenient

to integrate the equation over a volume whose boundary Is moving with local

velocity U,

T --.?t
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nature of the numerical diffusion, the reduction results from better resolu-

tion of the flow gradients.

ADAPTIVITY FOR ARBITRARY MESHES: THE INVERSE PROBLEM

To apply adaptivity to a non-uniform mesh, one must solve the following

inverse problem: consider a mesh given by the solution of the mesh generator

equations with AV 0. This mesh satisfies the generator equations with

V v  0 only for some particular w(x,y), which must be calculated.

In a typical problem, one has no a Eri knowledge of the location of

boundary layers or shocks. However, the boundaries of the domain or embedded

structures may be represented most conveniently using the mesh generator with

IV - 0, or by a simple functional mapping x(Q,n), y((,q). To adaptively

zone a calculation using this mesh as the initial mesh, one must calculate the

corresponding w! (x,y).

The weight function w1(x,y) can be calculated from the Euler equations

most conveniently when they are written in a form which explicitly displays

their dependence on w and its derivatives. This form can be derived from Eqs.

(1) and (2) by collecting coefficients of w, awlbx and awIay to obtain,

. ,,2 bw

and

S + A v+,A12 aw

S2  wR2 * r- 0  ,

* where S1, $2, R1 and R2 are easily evaluated using the definitions of

the coefficients and are functions of the given mesh coordinates.

* These equations are easily integrated along level curves of the computation

mesh. Noting that w( and wn are given by the chain rule, the derivatives

can be written,

w . -1(si * w, 1)x (s i )y J/a,2  
, (4)

and

w - -i(SI 2 (S2 + L , () .

IVy

:'7
, , -
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On level curves of the mesh where i is constant, one Integrates the equation
for w , and vice versa for mesh lines where q is constant. So that the

resulting w is single valued, one must require that the difference equations

satisfy the condition,

<w > - <w"t> a-O ,

where the brackets denote difference equations.

A simple example taken from a recent calculation of magnetic reconnection

in the earth's magnetosphere is shown in Fig. 7. The mesh is generated in the

4 upper half plane with level curves of f corresponding to nested ellipses whose

" * eccentricity increases from zero at the center to some large value on the out-

side. In addition, the distance between ellipses increases geometrically from

the center outward.

With xv 4 0 and w calculated from Eqs. (4) and (5) above, the mesh which
satisfies the generator equations is as shown. With w equal to a constant,p6

the mesh would collapse onto the center of curvature.6

" .ADAPTIVE ZONING FOR MOVING BOUNDARY CALCULATIONS
In many moving boundary calculations, the ability to redistribute points

along the boundary increases the accuracy and reliability of the calculations.

For example, in the modeling the Rayleigh-Taylor instability at the interface
between two fluids regions of large curvature may develop which require addi-
tional points to resolve. When the total number of points along the interface

is fixed, the points may be redistributed along the curve using the adaptive

mesh generator.
Where the curve is parameterized by s, so that x - x(s), y - y(s) where s -

s(t), the analogue of the smoothness integral along the curve may be written,

Is -ftds

To alter the distribution of points along the boundary, the integral,

* A IR 'fwstd

is minimized with given weight function w(s). When w is proportional to the

curvature,

.104
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j~..f dy--f ( P) do + f (( -V)/T) dV

V where i is the displacement of the grid over a time step and where F, the

transport across the surface of the moving control volume due to convection

and diffusion is given by,

1 ((U U)- )

As noted by Thompson, et al., 6 conservation form is preserved in natural

;. -. coordinates,

Y•F"((Flyn - ,22)c + (-FlVy + P21)n /a

, - where F1 and F2 are the x and y components of F. In this form, difference

equations in natural coordinates are easily derived.
Using an algorithm which combines donor and Interpolated donor cell differ- 4 < .

encing in the correct proportion to guarantee positive diffusion,7 Fisher's

equation is solved on the domain 0 < x < L. 0 < y < L with 6 - > 0 in a
small neighborhood of (x,y) . (0.2L, 0.21) initially, and U. (v,v), where v =

112
(dr)1 , a circular front expands to eventually fill the domain. With
(Kr)112 .10-2L, the thin front shown in Fig. 4 results at t - 0.4L(Klvr) 112.

With an Eulerian mesh, the results with a mesh of 625 cells shown in Fig. 3
are typical of a calculation with significant numerical diffusion. The speed

of the front is greatest toward the lower left corner, and the front actually

overtakes the incoming flow and stops only at the boundary. When the mesh

size is increased to 5625 cells, the results shown in Fig. 4 are satisfactory.
The speed of propagation is approximately correct and the shape of the front
is circular.

With an adaptive mesh and weight function given by Eq. (3), the results
with 625 cells are shown in Figs. 5 and 6, and are similar to the finely zoned

Eulerian calculation with nearly ten times as many cells. The speed of propa-

gation is nearly correct, and the shape is roughly circular. (With finer zon-

ing, there is further improvement as one might expect.)

With the same nuber of zones, evidently the adaptively zoned calculation

introduces less numerical diffusion than the Eulerlan one. Because of the

4
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points along the curve are concentrated in regions of greatest curvature.
The Euler equations for combined smoothing and curvature resolution terms

can be written,

2)R

A simple numerical example of the effect of adaptive zoning on an interface
is shown in Fig. 8. In this example, points are distributed at equal inter-

vals along the curve y - sin4 x when xR . 0, and are concentrated where
the curvature is largest when XR 100. Note that the area under the curves
is the same. Displacements of points along the curves are constrained to pre-

serve the area under the curve.

. , CONCLUS IONSThe discussion of the formulation and properties of the adaptive mesh algo-

rithm is as complete as space permits. Same additional details and exmples
are given in Refs. 1 and 9. Other aspects of the method, especially regarding
the use of adaptive gridding in realistic calculations, are described in Refs.
11 and 12.

As should be clear from the discussion, adaptive gridding is most useful

for singular perturbation problems where localized regions with large gradients
develop spontaneously. Often, choosing the correct weight function is not "
trivial, and, sometimes, it is appropriate to cause the mesh to respond to

structure in several dependent variables simultaneously.
An interesting new direction for adaptive meshes is described in Ref. 12.

* There, an adaptively zoned, particle-in-cell method is presented. Numerical
diffusion of material properties is eliminated, and changes in scale are accom-
modated. The method appears to have significant potential for multi-material
calculations.
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Fig. 1. In the
adaptive mesh, the
zones are concen-
trated in an annulus
where there is the
greatest variation
in the solution.
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error in an adaptive mesh shown in (b) is mich smaller than in a fixed Euler-
tan mash, especially for Re greater than one. Re, the grid Reynolds nu-"
ber, is the ratio of the average mesh spacing to smallest gradient length.
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.°Fig. 3. The solution of Fig. 4. With a 5625 zone Euler-
Fisher's equation on a 625 zone ian mesh, a solution with a moreEulerian mesh is depicted, circular front and correct pro-Contours of constant # are pagation speed is obtained.
concentrated in the front across
which 0 increases from 0 outside
to I inside. The distortion of
the front from the correct,
circular shape is evident.

%it ---"
II

Fig. 5. With a 625 zone adaptive Fig. 6. The mesh corresponding
mesh, a comparable solution to to Fig. 5 is shown. Note theone with a 5625 zone Eulerian concentration of zones in themesh is obtained. The shape is front.
nearly circular and the propaga-
tion speed is approximately cor-
rect.

4 ' t,

t .

0 .



294

ii

Fig. 7. A computation mesh for a simulation of
reconnection in the earth's magnetosphere is shown.
The grid results from the solution of the inverse
problem with adaptivity implemented.

(a) (b)

Fig. 8. In (a), points are equally spaced along the
• curve. In (b), the points are concentrated in

regions of high curvature.

.......... ... 
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I. INTRODUCTION

- Finite difference practitioners frequently make use of arbitrary coordinate transforms

and introduce body conforming curvilinear grid systems. The coordinate transforms may

either be built in globally in mappings from physical space to computational space, or

they may be built in locally in the finite volume sense. The advantages of using body

conforming curvilinear grids in finite difference flow field simulation include the following:

Body conforming grids simplify the application of boundary conditions insofar that grid

lines will coincide with the body boundary. Curvilinear grids may be clustered to flow

field action regions to improve solution accuracy. Body conforming grids may allow

simplification of the governing equations. Such grids can also help maintain a well-ordpr 4

system of algebraic equations suitable for vector-computer processing or approyif.,! - -

factorization-implicit techniques. "

The task of generating suitable body conforming curvilinear grids is not an easy one.

The grids should be generated in an automatic manner requiring miniusuam user input.

Yet the user will wish to maintain considerable control of where points will be distributed

along the boundary surface and how they are clustered in the interior field. Moreover the

grid must be tailored in some degree to the numerical algorithm because some numerical

algorithms are more sensitive than others to grid smoothness, skewness, and stretching.

S. Although use of body conforming curvilinear grids can offer the advantages cited

previously their careless application can lead to difficulties. This is particularly true when

the governing equations are differenced in conservative (i.e., divergence) form and transform

metric terms are brought inside the difference operators. Then as noted above, some

numerical algorithms are far more mesh-sensitive than others, and numerical accuracy

r, -
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and computational efficiency can be affected by how rapidly a grid changes or how far

away it is from orthogonality.

The subject of this paper is not the generation of body conforming curvJlinear grids;

rather it is the use of such grids in finite difference applications. In Section J of this paper

the difficulties of solving the transformed equations in conservative form are discussed.

In Section T various experiences are cited to suggest that considerable computational

efficiency can yet be gleaned by further improvements of the grid. Concluding remarks

follow in Section IV. -

U1. CONSERVATIVE DIFFERENCING OF TRANSFORMED EQUATIONS

a) Background

In aerodynamics applications we frequently try to difference the governing equations

* in conservative or divergence form. Conservative form differencing is preferred because

it best maintains the correct weak solution of the governing equations. Thus if a shock

wave is captured by simply solving the difference equations (as opposed to fitting a shock

wave discontinuity into the difference equations), then the speed, location and jump of

the shock can only be correct if the partial differential equations are in conservative

form. The difference equations must also satisfy the divergence relation, at least in the

vicinity of the shock. The conservative form of the equations may also be desirable for its

numerical properties. For example, nonlinear equations in conservative form can be more

cleanly linearized about a previous state than those in nonconservative form. This can

be advantageous in implicit marching procedures in order to avoid iterative solutions of

nonlinear equations with each marching step.

Let the conservation-law-form of the equations be represented in Cartesian coordinates

as

OtQ~0, + OWF + &YG -ff 0 1

where for simplicity only two dimensions are considered. This strict divergence form of

the equations can be maintained for new independent variables

IJ
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-- , , )(2)
*T 1

as (CIf [1)

a,'o + ae8p + o 0o (3)

where41
---J-Q (4a)

P = J-'(CQ + f.F + C1G) (4b)

= J- (qtQ + ,jF + qIG (44)

and where J is the transform Jacobian

For a thermally perfect gas Q, F, and G may represent the Cartesian inviscid and

viscous flux quantities for conservation of maw, momentum and energy. For example, for

inviscid flow
() ( (UP
P. Ru2 +p Puv

I = v Pv2 +p (6)

(e + P)) (tie +p),

where p is fluid density, u, v and w are Cartesian velocities components, p is pressure and

e is given by

e = ( y )-'p + p(,3 + v2) (7)

Alternately in the case of compressible potential flow

Q-p, F=pO., G=p~v (8)

and p = p(O) is determined by the Bernoulli relation.

Although the transformed governing equations (3) are more complex than (1), apparent

simplicity is returned to the inviscid flow equations with introduction of the unscaled

j.. ."
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contravariant velocities

V = t + 9Zu + QYuV ---7X(u - f) + rIV(V - 1)(9b)

For example, the transformed conservation of mass relation is given by

9(p/J) + Of(pU/) + oCpV/J) = 0 (10)

and does not appear too much more complex than the Cartesian form. Moreover, if , = 0

coincides with the body boundary surface then flow boundary conditions such as tangency
and no slip are especially elegant and are expressed as

V 0 (tangency) (11)

U, V 0 (no slip) (12)

.-, To motivate further discussion is it noted that the transformed equations (3) can be

derived by first performing chain rule expansions on the terms of (1). For example

F.= .F + 9.Fq + r.F, (13)

where -r = 0. The equations are then scaled by J-1 and metrics are brought back inside

the operators using differentiation by parts. For example,

and so on. Terms are then collected to give equation (3) as well as combinations of metric

terms that will be found to be zero. That is

aO+ap + [806 ~ + (1+4)f~ ) 'j (
+ +

""2I
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. All such right-hand-side combinations of metric terms are found to be zero because of the

relations
/l/J= -ye

* J=-- tu/ ((15) !

-, G= - V,f r i = -Zvils - Y 4
for example,

=~f!-)+a F(ye, -y,,) 0 (16)

and so on.

The point of all this is that the metric quantities have been worked inside the differential

operators. This is possible because combinations of metric terms such as

aeL +a no~7 0 (17)

are found. Note also that unlike equation (1), equation (3) has been scaled by J-1 .

b) Metric Differencing

I The fact that the transformed governing equations now have the metrics brought

inside the difference operations can lead to numerical errors. This is because the metric

variation is now being differenced along with the flow field quantity. In typical external

aerodynamics applications, the flow quantities far from the body are essentially constant

or uniform. Difference terms should therefore be zero, and this will be true if equation (1)

is differenced on a uniform mesh. For a nonuniform mesh the transformed equations will

not yield zero in regions of constant flow, however, unless proper differences of the metric

identities are zero, that is from (14)

6(,J) + 6,(,92IJ) = 0 (18a)

6(GJ) + 6,,( 11,IJ) = 0 (186)

. 6e(,/J) + b,(u,/J) + 6,(/J) = 0 (18c)

where 64, 6, and 6, are the difference operators used in the solution algorithm for (3). If,

for example, the metrics G/J, etc., could be exactly evaluated (as they can be in, say,

_ - .. I , " llm
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a cylindrical coordinate), then equations (18) will not be exactly zero but will be zero

to within the order of accuracy of the operators 6f, etc. For a rapid variation of the

metrics and for large grid spacing-sa phenomenon frequently occurring in aerodynamic

applications in the far field-this error can be very appreciable. It can, in fact, add a

error source to the equations that can overwhelm the solution accuracy. However, if the

metrics themselves are differenced such that equations (18) are exactly zero, then this error

is controlled. For example, in two dimensional steady flow relations (18a) and (18b) become

using (15)

-6(40 + Mqe)= 0 (19b)

If y, and Ve are differenced as 6,1 and 6(y where 6, and 6C are the same difference operators
used in the solution algorithm for (3), then the metric identities (10) exactly difference to

zero. The importance of satisfying these relations was pointed out in 12 in which three

point central spatial differences were used in the solution algorithm [31 as well as for the

metric quantities.

In three dimensions it becomes more difficult to exactly difference the metric identity

* Irelations. For steady or simple unsteady grid motion, Pulliam and Steger [41 introduced

an averaging process for the steady terms that works for any difference operator that can

be differenced in parts as

6(Uv) = (0vX u) + (PuX6v) (20)

where p is an averaging operator. An example of (20) is given by

= u (p)Vtau) + (PV)Vv (21)

where Vu -= - ui_1, pu = ! , etc. In extended work Thomas and Lombard [51

correctly treated the unsteady metric variations and cleverly simplified the calculation of

the spacial metric terms. They also coined the term *metric conservation law" to describe

the fact that the metric relations (18) must be differenced to be zero.

As one introduces higher order central or one-sided spatial difference operators, or

uses predictor-corrector schemes, it becomes more and more difficult to correctly satisfy

4., .;
.I 
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the metric relations (18). This ultimately lead 141 to an approximate cancellation method

that relies on solving the differenced equations in a simple perturbation form:

S- 0.)1 + 60 - A.)1 + 64p - 1 0 (22)

In the far field - etc., and any consistent difference scheme is satisfied regardless of

how rapidly the metrics vary. When F appreciably varies from F., etc., it is assumed that

the grid is sufficiently smooth and refined so that the metric err,: is no greater than the

error of differencing the flux terms. In external flow applications this process has worked

quite well, including successful use with the potential flow equation (cf. 16]).

A direct means of cancelling the metric errors is the straightforward one of subtracting

the error, for example, for a stationary grid

. + b(P + 6,G F(6tiv - 6,vy) + G(-6fz, + 6,,ze) (23)

This puts the equation into a weak conservation law form that in principle does not degrade

the shock capturing properties of the scheme. It could, however, contribute to a mild

source-term weak instability that would be alleviated somewhat by spatial averaging of

the right-hand side F and G flux terms. These right-hand-side flux terms can also be

; Iapproximately evaluated at oo in somewhat duplication of (22) above.

The whole problem of differencing the metrics has been avoided in 17-101. In this

approach the Cartesian equations are expanded by chain rule and then simply left that

way. That is

O.Q + ftfQ + q,OIQ + &OeF + ,.Z8F + CsOCG + lJ^F = 0 (24)

and is called the quasi-linear form by Shamorth and Gibeling (101 or chr- ,-rule conservation

form by Hindman 191. Although the Jacobian is never divided through, this form is

somewhat similar to the weak conservation law form (23) just discussed, particularly so

with averaging of F and G. It should also properly capture the correct jump relations.

The chain-rule conservation form may well be a good compromise to differencing the

transformed equations in conservative form. For certain algorithms (e.g., Beam-Warming

[3) it appears to require more work than using the strong conservation law form with free

stream correction.

Sig.-VP
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c) Perturbation Form Digression

The above idea of subtracting out the free stream metric variation, equation (22),

discussed previously is a special case of perturbing the solution about a known function

which in some sense is also a nearby or approximate solution. Let Q = Qo + Q' where

Qo is the nearby or approximate solution and let Q' be the perturbation. The terms of

equation (3) can be rewritten as,

8'0 = M).Q + 0

4~1M =~(Q 8ae'(Q) + 8le(P(Q) - ,'(Qo))
etc.

Then assuming functions of Qo are sufficiently simple to be very accurately (or exactly

differentiated) with operators 6, the differencing of equation (3) can be represented as
pI

64 +64f(Q) - (QO) 1 + ,,'(Q) C(Qo)] (25)

k - [w + iF(Qo + ,OQo)]

where 6,, 6, and 6,, represent the algorithm diference operators and 6,, 6 , 6,, represent

the very accurate differencing. In the case Qo = Qw the right-hand side is analytically )
,* zero and equation (25) is identical to equation (22).

Such a perturbation form of the differenced equation has been proposed in internal

spin-up problems to remove the axisymmetric variation from the dependent Cartesian

velocity variable 111,121. It might also be used in problems in which certain fine details

, might be otherwise lost in a coarse grid. For example, a nonuniform incoming flow profile

can be represented in Qo that would otherwise be lost in a far field coarse grid. Assuming

in this case that Qo satisfies the Euler equations, the right-hand side of (25) is identically

zero. Calculations using this particular technique for incoming inviscid shear flows have

been tested by Buning and Steger 113. Although not yet tried, Qo might be chosen as

an approximate solution, in which case the right hand side of (25) would not be zero. In

. regions in which Q -- Qo, one could hope to use a much coarser grid without losing solution

accuracy.

_ _ _ _ _ _ _ _ _ _ __ -ago"..~
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II. CALCULATIONS ON CURVILINEAR GRIDS

Finite difference and related finite volume calculations using body fitted curvilinear ,

grid systems have been carried out for some time. Solution variables have included

velocity potential, stream function, and the primitive variables. Computed results include

incompressible and compressible flow around airfoils, projectiles, cascades, inlets, wings,

wing-body combinations, etc. In some cases the body deforms with time (e.g., airfoil

with moving aileron) and occasionally solutions for multiple non-connected bodies appear

(e.g., airfoil with detached flap). No attempt will be made to review this work-the

interested reader will find much of the material in the AIAA Journal, the Proceedings of

the International Conference on Numerical Methods in Fluid Mechanics, Computers and

Fluids, and the Journal of Computational Physics. What is apparent from this literature is

that while we are becoming more adept at solving the flow about complex configurations,

considerable computational efficiencies are yet to be obtained.

In order to illustrate points to be discussed later, the results of a finite difference

simulation, due to Nicolet et al. 1141 for flow about an X-24C configuration is reproduced

in Figs. 1 to 3. A head-on view of the X-24C is indicated in Fig. 1, while Fig. 2 shows

typical views of the grid fit between the body surface and an analytically fit outer bow

shock. The grid in this case is generated with a hyperbolic partial differential equation grid

generation scheme (151. The overall three dimensional grid is formed by generating two

dimensional grids at each station along the body as the solution progresses by marching

the steady parabolized Navier-Stokes (PNS) equations. The hyperbolic grid generation

scheme is fast enough to be used within the flow field marching scheme. Moreover, each

two dimensional grid is itself generated using the same kind of numerical algorithm used

for solving the PNS equations-a sort of conservation of numerical algorithm knowledge. . -

Computed surface pressure and heat transfer at a station just prior to the beginning of

the wing are compared to experimental data in Fig. 3.

In carrying out the preceding calculation or any similar calculation on a generalized

grid it is found that the solution accuracy depends on the grid. This is not surprising

because unless one has a very fine mesh throughout the field, an accurate solution will

require that grid points be clustered to the flow field action regions-the change of gradient

1*4
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regions. The grid in Fig. 2, for example, is exceedingly fine near the body surface in order

to resolve viscous gradients along the wall. (The less than perfect agreement with the

experimental heating rate shown in Fig. 3 is apparently not due to inadequate resolution

in this direction). The outer grid line also coincides with the bow shock, and points are

clustered along the body, for example to resolve the cross flow expansion around the chime

(i.e., lower right corner in Fig. 2) when the vehicle is at angle of attack (here at 68).

Otherwise no other attempt was made in this calculation to adapt the grid to computed

flow field gradients.

Besides proper grid clustering, the smoothness of the grid, the skewness of the grid,

and sometimes the aspect ratio of the grid can affect the accuracy of a numerical solution

or the efficiency with which it is obtained. The grids shown in Fig. 2 are nearly orthogonal

close to the body surface and they have a smooth, gradual variation. These grids would

be judged felicitously. However, the quality of a grid seems to be hard to quantify be.

cause various numerical algorithms appear to behave differently to the properties of grid

smoothness, skewness, and stretching. Numerical algorithms that use a very compact

* stencil of points to evaluate fluxes and metrics, for example, generally seem to be less sen-

the MacCormack finite volume method for Navier-Stokes equations sometimes change the

grid spacing by a factor or 2 or 4 in a given region. Such a change is not allowed, for

example, when using high order central spacial differencing operators.

Some numerical algorithms appear very sensitive to mesh cell aspect ratio, i.e., the

ratio of Az to Ay or (zI + V4)p12 to (z, + 1)1/2. Thus Jameson 1161 in developing

a mult?xrid relaxation algorithm for the transonic potential equation abandoned SLOR

iterative methods. In its place he used an alternating-direction-implicit scheme as the

multigrid iterative solver because it is less sensitive to cell aspect ratio. The very efficient "

approximate-factorization-implicit relaxation scheme of Hoist 1171 appears to degrade if

uniform fine grid spacing is used along the body, prompting Hoist to generate his grids

with this constraint in mind. For his appradmate-factorization scheme the grid shown in

Fig. 4 is much preferred to that shown in Fig. 5. A user of a standard alternating-direction-

implicit relaxation scheme, however, may very well opt instead for the grid of Fig. 5 over

II
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that of Fig. 4 simply because of its finer grid spacing near the body and presumably greater

accuracy.

Avoiding certain undesirable grid properties such as skewness can lead to more com-

plex computer programs and perhaps other difficulties. The cascade C-grid shown in Fig.

6 for example is too highly skewed. While the implicit Beam-Warming algorithm for the

* .Euler or Navier-Stokes equations functions on such a grid, it runs far from optimum. An

alternative grid to that shown in Fig. 6 might use an overlapped or patched grid system.

For example, the overlapped grid system shown schematically in Fig. 7 is suggested because

each grid is easy to generate and has minimum Zistortion. However, such a grid system
' requires extensive modification of existing numerical algorithms and computer programs. '

This is because certain grid points will have to be flagged off, and grid interfaces will have to

be joined without degrading numerical stability. Nevertheless, overlapped or patched grid

systems will ultimately be needed as body boundary configurations become more complex,

for example, in computing flow about a wing with engine nacelles.

Finally, it should be remarked that the effect of a poorly spaced grid will sometimes

not be observed until the data is displayed or utilized in a different way. The unpublished

result due to Seidel [181 that is shown in Fig. 8 is an example. The plots of generalized

pitching moment versus reduced frequency show an essentially exact solution (dashed line)

and a low frequency transonic small disturbance finite difference solution with the nonlinear

terms removed. The flow is about a fiat plate subjected to an angle of attack pulse. The

small oscillations shown in the finite difference result are a significant error in a flutter

calculation. They were traced back to a discontinuous change of grid stretching more

than a chord away from the airfoil, and were eliminated by using a smoothly stretched

grid throughout.

IV. CONCLUDING REMARKS

VFinite difference methods coupled with body conforming curvilinear grid systems are

being used to solve a variety of complex flow fields. Current numerical algorithms and

grids are tuned to flow field applications that can be computed in reasonable times on

. .
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present day machines. These numerical algorithms rely on sparse-equation time-accurate

or iterative-solution methods that function best on well ordered grids.

Curvilinear body conforming grids have made modern finite difference schemes into

practical engineering tools. They simplify the application of boundary conditions and allow

flow field gradients to be resolved in an orderly manner. However, one must be careful in

differencing transformed equations, especially when the equations are in conservative form

. and transform metrics are brought inside the difference operators. Finite difference algo-

rithms are also sensitive to grid smoothness, skewness and stretching with some algorithms

- being much more adversely affected than others.

As finite difference methods are extended to more complex geometries, it becomes

obvious that more than one grid system will have to be used. Exactly how multiple

grids should best be joined, patched, or overset together remains a research topic, but a

number of approaches will likely give satisfactory results. The simultaneous development of

** multiple grid systems and finite difference schemes suitable for multiple grids is underway

* - and will be a major pacing item in computational fluid dynamics.
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THE USE OF SOLUTION ADAPTIVE GRIDS IN SOLVING PARTIAL DIFFERENTIAL EQUATIONS

DALE A. ANDERSON AND M. M. RAI
Department of Aerospace Engineering and Computational Fluid Dynamics Institute,
Iowa State University, Ames, Iowa

ABSTRACT

" The grid point distribution used in solving a partial differential equation

using a numerical method has a substantial influence on the quality of the

solution. An adaptive grid which adjusts as the solution changes provides the

best results when the number of grid points available for use during the calcu-

lation is fixed. Basic concepts used in generating and applying adaptive grids

are reviewed in this paper, and examples illustrating applications of these

concepts are presented.

INTRODUCTION

One of the first steps in computing the numerical solution of a partial

differential equation is that of choosing a coordinate system. Using this

R.- coordinate system, a grid is generated providing placement of mesh points on

the region of interest in physical space. The numerical solution is usually .
calculated in a computational space which is related to the physical domain by

a transformation. This transformation is shown schematically in Fig. 1. For

simplicity, the computational domain s usually rectangular, although the

region under consideration in physical space may be of arbitrary shape. When-

ever possible, the physical boundaries are selected to simplify application of

boundary conditions or provide some other advantage in the computation.

The distribution of grid points in physical space is established initially

and usually doesn't change during the course of the cal mulations. However,

the grid can always be restructured by interrupting the calculations after any

number of steps. In order to construct a mesh which is appropriate for a

specific problem, a knowledge of the solution is required at the outset. For

example, high mesh point densities are desirable in high gradient regions, but

if the locations of these regions are unknown, it is difficult to establish a

* suitable grid. Unfortunately, we seldom know the exact details of a solution

*before it is computed and even for cases where approximate results are known,

unexpected behavior frequently occurs. Construction of an appropriate grid

without an a priori knowledge of the solution is an uncertain job at best.

Since the best grid for a given problem depends on the solution, a technique

M ?
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for moving grid points as the solution changes is desirable. In the ideal case,

an adaptive grid scheme which provides the grid as part of the solution would

be best. Numerous methods for generating grids have been developed and

recently, new techniques for constructing adaptive grids have been used. A

comprehensive review of all of these techniques will not be presented here.

The purpose of this paper is to review in detail the methods of Rai and
1,2,3 4

Anderson and Anderson and Rai and demonstrate the application of these

schemes to various problems.

A number of different approaches can be used to construct solution adaptive

grids. However, all schemes can be classified as methods which determine grid

speeds or methods which determine the transformation metrics or physical coor-

dinates. An example demonstrating the transformation of the first-order linear

wave equation can be used to illustrate this point. Consider the equation

au au
-+ c- 0 (1)
at ax

where (x,t) are the independent variables and c is the constant wave speed.

Suppose a real nonsingular mapping to computational space, ( ,T), is given by

the relationships

T t (2) .

• - t(xt)

The linear wave equation in computational coordinates is of the form

au u
5- + ( t + C~x) - - 0 (3)

When Eq. (3) is solved using a numerical method, the solution is obtained in

the computational plare and the equation is integrated with respect to T. Some

means of evaluating the &t and Cx terms is required before this integration can

be carried out. The central problem of adaptive grid generation is that of

establishing the transformation - (x,t) required in the integration of

Eq. (3).

The two terms in Eq. (3) related to the transformation from physical to

computatiomal space have a distinctly different nature. The Et term is the

grid speed. While it is true t1'-it the values of C do not change in computa-

itional space, this partial derivative is evaluated at a fixed x position and is
related to the grid speed in physical space. This relationship is given by the

expression

- - t/Fx (4)
XT

rk
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which is much easier to visualize as the x-component of the grid speed. The

metric coefficient, Cx' is also the Jacobian of the transformation in this

simple example end we note that

xE -= x  (5) A

In view of the fact that both the grid speed and the transformation metric

appear in Eq. (3), two ways of establishing the mapping C - (x,t) are avail-

able. The first is to evaluate the metric by using some law governing the

stretching or compression in the mapping and determine the corresponding point

- locations in physical space by integrating the metric. This approach is easy

to understand since the Jacobian relates the arc length elements in this one-

dimensional example. Once the new point locations are known, the grid speed is

determined by using the past history of the grid point positions. The second

approach is to directly evaluate the grid speed. This is done by using an

auxiliary equation for the grid speed which provides the desired control on

point motion. Once the grid speed is determined, the new grid point positions

in physical space are obtained by integration, and the metrics are computed by

simply using the arc length ratios.
Both methods of establishing (x,t) have advantages and disadvantages. Tech-

niques which determine &x initially are easier to understand because the meaning

of the metric is clear. The coupling of the grid dynamics to the solution of

the partial differential equation lags in time although positive control over

point location is always maintained. It is also difficult to extend these

schemes to multidimensional problems unless grid generators, such as that of
5

4- Thompson et al. , are used. Techniques which directly provide the grid speed

are easy to use in multidimensional problems, and the dynamic motion of the

grid does not lag the solution of the partial differential equation. On the

other hand, control of grid point motion is not easily maintained. The choice

of which technique to use depends on the philosophy employed by the investiga-

tor in viewing the grid generation problem.

C' The problem addressed in this paper using the concept of an adaptive grid

scheme may be stated as follows: How should a fixed number of grid points be

distributed to reduce the error, improve resolution, or otherwise enhance the

quality of the numerical solution of a partial differential equation?

The approach favored here for use in redistributing mesh points is to deter-

mine the grid speeds directly. Once these grid speeds are known, the coordi-

nates at the next level are easily found by integration. In addition to the

choice of technique for moving points, a number of other considerations must be

7,T i, - -
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made when considertng construction of an adaptive grid.

1. The grid must evolve as part of te solution of the problem.

2. Grid points must move due to both boundary motion and changes in the

interior solution.

3. The grid speed equations should be as simple as possible.

4. The grid speed equations must account for the elliptic nature of the

problem.

5. The resulting grid m'.-t reduce error, provide better resolution, or

otherwise improve the solution.

6. The adaptive grid scheme must be easily extended to any number of

dimensions.

With these thoughts in mind, we now consider the development of a technique

for moving grid points.

THE BASIC METHOD

In order to describe the basic adaptive grid technique as simply as possible,

we consider a one-dimensional problem with the transformation from physical to

computational space given by Eq. (2). Let lel represent the absolute value of

any quantity to be reduced at a point such as the truncation error and let the

average value over all mesh points be denoted by av.The quantity lei will

be referred to as the error even though it may represent any variable used to

drive the adaptive grid. When a numerical solution is computed on a grid with

a fixed number of mesh points, we assume the error can be reduced by using more

points in regions of large error and assigning fewer points to regions of small

error. Assume that the best grid is one that has the same error at each mesh

point. This grid can be constructed in the computational domain by assuming

that points where lei is larger than lela v attract other points and points

where lei is less than le av repel other points. Every point is assumed to

induce a velocity at every other point where the magnitude and direction depend

upon the local excess error. We also assume that the greater the distance

between two points, the less they influence each other. This can be achieved

by assuming a l/r law as an attenuation factor.

For two points, A and B, we write the grid velocity at B due to error at

point A in computational space as

Sej IA - letav
BRA nrBA

* where rBA is the distance from B to A, n is the power controlling the

.44
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attenuation, and K is a proportionality factor. Figure 2 shows the points A

and B along with the velocity induced at point B. The grid speed in physical

space is obtained from VBA by using the expressions

BA t I
(6)

x - -l~ -;
x I x

For a problem with N points we may write

"-x e av • - (jel.- let n)/r, (7)
j i+l ', il v ,

The summation is split and a sign change occurs because the positive direction

for induced velocity switches depending on whether the point is to the left or

- .right of point J. Equation (7) can be viewed like a gravitational force equa-

tion where the grid speed plays the role of force and the excess error divided

by E plays the role of mass. This may also be compared to the force on a test

charge in an electrostatic field.

In constructing either a fixed or adaptive grid, it is important that grid

lines do not cross. In this example, two points in computational space will

.v. not collapse into a single point In physical space for two reasons.
1. The force which drives the grid

g - let- let (8)

switches signs when two points approach each other at close range and

this creates a repulsive effect.

2. The x term becomes very large as two points get close together leading
x

to a very stiff system. For this reason, even if points continue to

attract each other, they will never reach the same physical point.I The term lei has been referred to as a truncation error in the above dis-

cussion. The truncation error for a numerical solution depends on the order

;t of the numerical method used. If a quantity other than truncation error is

used, the grid generation scheme can be applied in exactly the same way by

using a different choice for tel. It resolution of high gradient regions is

desired, then the gradient may be used. This flexibility in selecting the

driving force is an advantage of the technique.

The scaling factor K in the grid speed equation is necessary because no

physical law relates grid speed, excess error, and distance. This factor is

chosen so the velocity at "ny point does not exceed a preset maximum IEt lx."

,?. . * _.".>
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In order to calculate K, we compute the grid speed at all points assuming K - 1,

then recalculate K using the expression

K- 'Ittmax(9
' •,comtputed max

The grid speeds at every point are now rescaled and written as

(trescaled t Kt)calculated (10)

During the calculations, the driving force, Eq. (8), at each point becomes

smaller, and K must be increased in order to maintain the preset maximum grid

speed. The maximum value of K is also preset and once this maximum is reached,

the grid point velocities die out very rapidly. Specifying a large value of

Kmax results in small values of the excess error in the grid. The selection of

- aK is done on an empirical basis. If a value of K which is too large is.: * "axmax

used, the result is an oscillation of the grid, while a small value severely

restricts the grid point speeds. The maximum grid speed is also determined in

a somewhat arbitrary fashion. The most common value of (Et)max used is 1.0.

An example of results produced using the adaptive grid ideas presented here

is given by the numerical solution of the unsteady viscous Burgers' equation

ut + uux - )Ux (11)

with initial conditions

1 x"0

u(0,x) - (12)
0 0< x<.

and the boundary conditions

u(t,O) -.
(13)

u(tl) " 0

This problem has the steady-state solution

u- tanh-0 (1- x)] (14)

where

1(15

and 6 is a solution of the equation

T-1- - ex -6)(16).

" + 21p-Oie
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Figure 3 presents resul-ts obtained for this problem with Re - 4. The error

measure used to drive the grid in this case was either u or u&/ x . Using

first derivative information directly addresses the question of resolution and

less directly the error reduction issue. In this example, MacCormack's6 second-

order scheme was used to integrate Burgers' equation. If the finite-difference

equation is expanded using Taylor series, we obtain the modified partial differ-

ential equation which explicitly includes the truncation error terms due to the

discretization. The form of the lowest-order error term depends on the order

of the finite-difference method being used. The lowest-order truncation error

term in this case includes both a third derivative and fourth derivative term.

If higher derivatives of the solution are formed using finite-difference

methods, the result is a very noisy error estimate. As a result, large amounts

- . .of smoothing or some other means of avoiding wild swings in data used to drive

the grid must be employed. Grid oscillations and excessive clustering of

points can be prevented by damping the grid speeds permitted by limiting the
change in the Jacobian at each point. Application of this idea prevents

excessive stretching of the mesh and the associated errors in the transforma-
tion metrics.

Such a method for controlling the mesh can be implemented by computing the ' 4
Jacobian at all points initially and storing these values. At the end of each

integration step, the Jacobian JK is formed at every point, and the ratio R.

is formed.

Xl 1K 1Ji/Ji if ii > 1

Ri  (17)

S1K / 1
Sif i/i

If the ratio Rj at any point exceeds a preset maximum value, Rn * the grid o.

speeds are exponentially damped. If

Ri - maximum(R i ) over all points (18)

then

* t " D t (19)

i calculated

where

XP [ (ax) (20)
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The use of this damping factor provides strong control over grid point aotion.

In the results using u& shown in Fig. 3, there is a simpler way of preventing

excess stretching. In this case, smoothing can be applied by using

u =fu ( - f)(l - x) 0 < f < 1 (21)

and

julI - 1 Elv(22)

This provides excellent grid point control for this problem. Using this
. v approach requires that the best value of f be computed. It is also apparent

that the technique is problem dependent. However, the Jacobian damping scheme

is not problem dependent and is highly recommended.

The results using uE/Cx as an error estimate are also shown in Fig. 3. No

damping of any kind was used to obtain the error curves shown. The grid

*driving force used was of the form

g ! - *u A 1 (23)

This particular form of the driving force results from considering the trunca-

tion error in the second-order central difference approximation to a first

derivative in physical space. This error may be written in the form

error(u A u + 3&xu + 3 u (24)

x 6 (rX Xr

" This is similar to the truncation error tern which appears in the modified

* partial differential equation and should represent a good error estimate. If

it is assumed that 4(x,t) is nearly linear in x, second and third derivatives

of t may be neglected. Suppose we also assume that Iu,,,I can be replaced by

.lulI in the error estimate. Using these approximations, the error in computing

ux may be written as

lerror(u) Ju 4/Cx (25)

Consistent with these assumptions, the larger the Reynolds numbar, the more

results deteriorate when Eq. (23) is used.as a grid driving force. In the high

gradient regions at the viscous front, the grid stretching is very nonlinear

and the higher derivatives of the mapping are important. However, the use of

the driving force given by Eq. (23) provides significant reduction in error

without any smoothing. This eliminates any empiricism in arriving at an

optimum smoothing technique. .

7~ 7-
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EXTENSION TO 14ULTIDIMENSIONAL PROBLEM

* The grid generation scheme presented above f or a one-dimensional problem can

easily be extended to two or three space dimensions with no difficulty. Con-

sider a problem in two space dimensions and time, and let the physical coordi-

nates be (x.y,t) and the computational coordinates be (E,n,T) where

T t

C E(X,y,t) (26)

n fl(x,y,t)

As in the one-dimensional problem, we assume that the grid speeds in computa-

-tional space are given by Et and r) and are determined by prescribing a certain

-jxid driving function. Onice these quantities are known, the grid speeds in

physical space can be determined from the transformation equations and may be

written

where -(7

* J ~ %Efl (28)

The collapse of two mesh points into one and the overlap of grid lines are

prevented for the same reasons noted in the one-dimensional case.

in order to compute the grid speeds in computational space, we require the

calculation of le~I and jenj for each point where a& and en' represent error

estimates in the f and Yn directions. The quantities jt o vr
nj - constant line and lenla, for every E~ constant line must also be computed.

The grid speed equations then become

1 1 ,t - 'avt i-lIkaw

14 -0 Ikj-c*)ak -I"'k

(-n) t i, j K2 n n
k-l L+1 r r-

(29)
where

jr -) W 2+ (Jt)2 (30)
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assuming A& = Aq I 1 in the computational domain. Point motion can be con-

trolled and excessive stretching or compression of the grid is avoided by using

damping based upon the forms given in Eq. (19) with the D factor for both Et

and nt determined from the Jacobian of the transformation. In two space 4

dimensions, the Jacobian represents the mesh area ratios rather than the arc

lengths noted in the one-dimensional case.

BOUMNDARY POINT SPEEDS

Points near the boundaries and the boundary points need special treatment

when an adaptive grid is used. Points can be made to move along a constant n

line by specifying nt - 0. A similar procedure can be used for - constant

lines. This permits grid points to move along boundaries or selected surfaces.

*If this procedure is followed on boundaries, undesirable behavior appears in

the resulting grid. This is most easily demonstrated by an example.

The two-dimensional linearized viscous Burgers' equation is of the form

ut + u x  +U (uxx + U) (31)
X y Xx yy

If this equation is solved on the unit square with the boundary conditions

U(,~ )- 1 + [1 - exp(R(,- MI)
0J .!I - exp(-Re)

l[ - exp(Re(y - I))]
u(-,y.t) 1 1 - exp(-Re)

U(x,l,t) - u(l,y,t) = 1 (32)

an analytic solution for the steady state is known and is given by

u- 1+ (1 - exp(Re(x- 1))1- exp(Re(y - I))]
(1 - exp(-Re))

2

where

An adaptive grid was generated for this two-dimensional problem. Gradients

were used to drive the grid and the first derivatives were calculated directly

from the given analytical solution. The grid obtained using this approach is

shown in Fig. 4. The distortion near the boundaries is evident. These

*results were computed by forcing grid points to move tangential to the bound-

aries by setting either Et or nt equal to 0. While the grid produced using

this boundary procedure in shaped as expected, motion of the points near the " ;

boundary requires more careful study.

t4 .. ,
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Consider a one-dimensional problem where the quantity le -ea v is nearly

constant close to the boundary. If we compute the velocity of the second grid

point with K - 1 and n - 1, [see Eq. (7)],

t2 e - ej (34)
t 2 a r 2r 3ri

which results in a nonzero grid speed. This places an unnatural constraint on

grid speed which produces the grid distortion shown in Fig. 4. This problem

is eliminated by introducing a set of pseudo points outside the boundary and

setting - Ii2  - 0,-, ... (35)

and including the pseudo points in calculating the grid speeds. The condition

(E -)l - 0 (36)

on the boundary is automatically satisfied by this scheme. This procedure was

used to compute the grid for the same Burgers' equation problem where grid

distortion was noted. Figure 5 shows the result. While the results in this

case are not grossly different, the addition of the reflected boundary with

pseudo points certainly produces a smoother grid. This boundary point treat-

ment is necessary when an adaptive grid is used in more complex problems. An

.1 exact solution for Burgers' equation is known for this example and comparison

of error for adaptive vs. nonadaptive grids can be made. However, these cam-
parisons will be omitted in the interest of brevity. They show the same trends

as the one-dimensional problem and results are presented in detail in Rails
7

Ph.D. dissertation.

The two simple examples outlined above demonstrate the technique used for

constructing an adaptive grid. When a fluid dynamics problem is solved,

numerous complexities that are not present in simple examples always appear.

A good test case to demonstrate this is the inviscid supersonic flow over a

cylinder. In computing the results for this problem, the unsteady equations

of motion are integrated in time until the steady-state solution is achieved.

The bow shock is fit as a boundary and the flow field was computed using the

SC4a method for solving hyperbolic partial differential equations. Results

were computed on 10 x 10 point fixed and adaptive grids ard comared to a

19 x 19 point fixed grid solution. The fixed grids were generated by equally

spacing points along the cylinder, drawing rays perpendicular to the cylinder

to the boundary shock wave, and then dividing each ray into equal segments.

This example provides a number of new complexities which must be accounted

,(, . -*
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for when using an adaptive grid. These include fixed curved boundaries, moving

boundaries, solution of a system of partial differential equations, and the

associated difficulty of not having a predominant variable that can be used to

drive the grid. In order to understand these differences, it is worthwhile to

examine this problem in some detail.

The Euler equations in two space dimensions and time may be written in the

form

W + [Awx+ -BWy 0 (37)

where 1 o
u 0 u 0 1/p 0 v 0 0

- .v 0 0 u 0 0 0 v i/P

L JL P 0 u L0 0 p v

In these expressions, p and p are the jLcssure and density, u and v represent

the velocity components in the x and y diructions, and y is the ratio of

specific heats. If a transformation such is- that specified in Eqs. (26) is

made, the governing equations may be written

.- ' W + [A)"W + [B)]n 0 ( 38) t.

where

[A) - yt[I] + X[A] + y [B] (39)

[B] - nt[I] + TxIA] + ny[B] (40)

and I is the identity matrix.

The SCM scheme used to calculate a. steady-state solution to this problem is

second-order accurate except at the solid surface boundaries where it is a

first-order scheme. Since this renders the solution formally first-order

accurate, the second derivative of V represents a good estimate of the trunca-

tion error. If we assume that errors in calculating the metrics are small,

the error in calculating V T may be represented as

"(WTe -e) 1 - [e(W n) (41)

where e ( ) represents the error in calculating its argmesnt. fe let

(42) .. .

e - -,~7
\:, ]%,
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and note that

le(-_)1 < I[Ale() I + I[ie( I < eE + en (43)

In these expressions e and e represent the errors that are used to produce

grid motion in the respective directions and the X1 norm is used where noted.

*The truncation error is assumed to be proportional to the second derivative

which is consistent with the first-order accuracy (overall) of the method used

to solve the problem. We write this as

e( aW

e(W )W

which provides the error terms for driving the grid as

. (44)

This analysis assumes that excessive stretching is avoided in the transfor-

mation. This is assured by using the Jacobian damping outlined in Eqs. (17) -

(20) for both grid speeds. The use of this technique prevents both excessive

stretching and contraction and provides a means of exerting positive control

over the grid point motion. For the cylinder problem, a value of R of 1.03
max

was used. For this value of R max , only small distortions of the grid occur.

If a larger value of R is used, the adaptive grid changes significantly.

Figure 6 shows the fixed grid used in computing the flow field. This grid

also forms the initial mesh for the adaptive grid calculations. Figure 7 shows

the converged adaptive grid. As noted, there are only small changes in the

grid geometry for this problem and the similarity of Figs. 6 and 7 verifies

this. Figure 8 shows the converged adaptive grid using a 16 x 10 point mesh

and an R of 6.0. The increase in clustering for larger values of R is

evident. Figure 9 shows the error in total enthalpy along the body surface for

grids. In the solution for inviscid supersonic flow over a cylinder, the

correct total enthalpy is known. Consequently, the comparison of the total

enthalpy computed from the numerical result with the correct known value is a

good measure of the quality of the solution. An can be seen, the adaptive

grid does significantly reduce the error on the body.

The motion of the shock boundary does not require any special treatment in . .

the adaptive grid routine. The shock is propagated separately using the

correct jump and shock speed equations, and the adaptive grid scheme is applied .

I. .

Ali I
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independently. Since the body boundary is curved some special considerations

must be given to point motion on the surface. Using the pseudo point idea

described earlier provides a zero grid point speed normal to the body. However,

integration of the tangential velocity will slightly displace the grid points

* * from the body. At the end of each integration of the grid speed equations,

the position of the boundary points must be corrected to insure that they

continue to lie on the curved body.

SHOCK ALIGNING SCHEMES

The technique for moving grid points presented in the previous seclieons can

be used to create a grid using a variety of driving mechanims. The flexibility

afforded by directly establishing the grid speed, as opposed to otPer adaptive

grid schemes, provides a way of moving points to satisfy any des'ad require-

ment. A demonstration of shock aligning grids for use with shock-capturing

methods will demonstrate this point.

When numerical solutions of systems of hyperbolic partial differential equa-

tions are obtained, provision must be made for the occurrence of discontinu-t ities. in inviscid high speed flow problems. these discontinuities are shock
waves. Lax

9 
proposed that numerical solutions of fluid flow problems with

shocks should be computed by using the conservation law farm of the governing

equations. The solution for the flow across any shocks can then be ccmputed

without any special treatment. This approach has been used with success since

Lax originally proposed the idea. However, solutions for flow through shock

waves obtained using shock-capturing techniques are characterized by dispersive

errors when second-order finite-difference methods are used, and the solution

is spread over several mesh intervals when dissipative schemes are used. The

typical oscillations which occur are due primarily to the fact that the mesh

is not aligned with the shock. Under these conditions, the conservative

variables are not continuous across the shock and differencing these quan-

tities across the shock gives rise to oscillations. In order to understand

this phenomena, we need to examine the conditions which must hold across shock

waves.

The conservative form of the inviscid equations for two-dimensional steady

supersonic flow may be written

+ ay

where

. [pu, pu 2 , pUv] T -

.,.

A hSue * *
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and

- v, uv, + Pv I

The fluid variables have the same meaning as before. In addition to Eq. (45),

the integrated form of the energy equation is used. When Eq. (45) is solved

using finite-difference methods, the solution exhibits dispersive behavior at

shock waves because the conservative variables are discontinuous. Since a

solution with a shock mathematically represents a weak solution of Eq. (45), the

condition which must be satisfied at the shock may be writtenlO
4 4 _

[Elcosac + [F]cos 2 - 0 (46)
1 2

where the square brackets represent the jump in the function across the discon-

tinuity. The direction cosines of the normal to the shock and the x and y axes

are denoted by cosac and cosa 2 as shown in Fig. 10. If a coordinate system is

selected in such a way as to align one of the coordinates with the shock, say

a2 90', the jump condition given in Uq. (46) becomes

[E]cosci - 0 (47)

This shows that the E vector is continuous across the shock since the jump in

B is xero for cosoil 10 0. For any other coordinate orientation, E is discon-

* tinuous and we would not expect finite differences across such a discontinuity

*to yield a well-behaved result. If an adaptive grid system can be constructed

that automatically aligns one of the coordinates with the shock, better solu-

tions of Eq. (45) would be expected.

Consider a line segment on a = constant line between two points A and R

(see Fig. 11). Let the midpoint of this segment be 0 and suppose a shock wave 0

occurs between points A and B. Let h be any variable which changes discontinu-

ously through the shock. An adaptive grid which aligns with the shock can be

constructed using this information. If C is another point in computational

space, we define

KI hC IIh (l-k'
h-Et~l n 0 0 (48)

* where (Et)C is the grid speed at C due to the changes in h along line AD,

1h Io and Ihi)o am the absolute values of the gradients in h at point 0 in the
and ni directions, K and n are constants, and ro is the distance between

points 0 and C in cmputational space. The integer, k, determines the direc- .

tin of point motion and is given by

.W ... .. - * %I* .. ..... . ,. V
.- ~, M,

a W > -~ %
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1 sgnlhe/h)sgn(nO - nc ) < 0
k =. (49)

k 2 sgn(h /hn)sgn(n O - > 0

As in the previous adaptive grid schemes, the rn term limits the radius of
OC

influence of various points and restricts the grid alignment to a limited

region. As a line segment rotates more nearly parallel to h - constant sur-

faces, the gradient in one direction decreases, and we must increase the value

of K in order to maintain reasonable grid speeds. As previously noted, K is

increased to maintain a maximum grid speed until a maximum value of K is

reached. This maximum value is usually chosen to be 5 to 10 times the value

of K for the initial calculations. If K is too large, the grid may oscillate

and the oscillations die out very slowly.

j The effectiveness of the aligning grid scheme was evaluated by solving a

- -unit problem. This consisted of specifying the dependent variable, h, on the

unit square by the expression

tanh( (x - x lyl) 0 < x < I((so-
h(xy) I + aj2 (50)

2tanh(2) -' Oy 1S :

where 8 is a constant and x is a prescribed function of y. Along any y = con-Uj
stant line, h increases monotonically and over 95% of the change in h occurs

in the region given by

x (y) - /2 < x < x(y) + 8/2 (51)

Different shock-like regions can be obtained by choosing different functions

for x (y). Figures 12 and 13 show the grid created using x as a linear
m

function or a quadratic function of y. The shaded regions correspond to those

defined by Eq. (51). The alignment of the grid is excellent near the center

of the regions where the maximum gradients of h occur and not as good near the

boundaries. From these curves it is apparent that the alignment is a local

effect which quickly attenuates with distance from the high gradient region.

To demonstrate the effectiveness of the shock aligning scheme in conjunction

with shock-capturing finite-difference methods, the flow field due to a

.. straight oblique shock in a uniform supersonic freestrem was computed.

Figure 14 shows the location of the shock wave in a uniform grid. The angle

* of misalignment is twenty degrees. The flow is from the upper part of the

picture toward the bottom at a freestrean Mach number of 2.0 with the angle

between the freestrem and the shock wave set at 50.

The two-dimensional unsteady Euler equations govern inviscid supersonic

A
. . ..• v-.:,. ..., .
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flow. In the interest of conserving space, they will not be repeated here.

The Euler equations in conservation form were written in (x,y,t) coordinates

and transformed to ( ,n,) using a transformation

=(xyt)

1= cty (52)

T=t

where a is a constant. The Euler equations in this transformed system were

integrated in time using MacCormack's method until the steady-state solution

was obtained. The grid points were moved using the shock aligning expression

given in Eq. (47) using the static pressure as the h variable. The position

of the shock wave in the converged grid is shown in Fig. 15. Again the

alignment is excellent. Figures 16 and 17 show the pressure distributions at

y = 0.208 and y = n.0 for both aligning and nonaligning grids. The solutions

using the shock aligning grid are much better than those computed on a uniform

*mesh. The absence of dispersive oscillations and the resolution of the shock

are striking. These results show that the grid can be aligned with a high

*9 gradient region as well as clustered by using a slightly different form of the

grid speed equation. The results for the simple aligning problems studied

offer encouragement in applying aligning schemes to more sophisticated problems

. with multiple shocks.

TIME REQUIREMENTS

.The computer time required to solve a problem using an adaptive grid is

usually higher than that required using a fixed mesh when explicit techniques

are employed. This is because the allowable step sizes are reduced where fine

mesh clustering occurs. In the solution of the one-dimensional Burgers' equa-
tion, the high Re cases take roughly three times longer than the fixed mesh

solutions while the two-dimensional problems differ by approximately a factor

of two. Since the problem under consideration in these cases is very simple, a

large portion of the computer time is consumed by the grid calculation. As the

complexity of the problem increases and systems of equations are solved, the

o , time spent on grid generation compared to that solving the equations is drasti-

cally reduced. It should also be noted that the time required to compute a

solution does not always increase. In many cases, we observe more rapid

convergence when an adaptive grid is used resulting in lower overall computer

time requirements. This behavior is limited to the more sophisticated examples

such as the blunt body problem. When these types of problems are solved,

L
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uncertainty exists concerning the total time required. Sometimes the fixed

mesh solution is faster, and sometimes the adaptive grid solution takes less

time.

CONCLUDING REMARKS t
Methods for constructing solution adaptive grids which directly determine

grid speeds have been reviewed. The grid speed is assumed to depend upon local

*truncation errors throughout the mesh and the new grid point locations are

obtained by integrating the grid speed equations.

Results presented show that significant error reduction is achieved when

adaptive grids are used. Solutions for simple one- and two-d4mensional prob-

leams as well as more complex fluid flows were presented. The flexibility of

the grid generation technique was demonstrated by constructing a shock aligning

grid for use with shock-capturing methods. Solutions obtained with this scheme

alleviated the dispersive error, usually associated with calculations through

shock waves.

Although the results obtained using the adaptive grid schemes reviewed in

this paper are satisfactory, significant improvements remain to be made. One

area where improvements are needed is in establishing error estimates. Since

the quality of an adaptive grid is usually based at least to se extent on

local truncation errors, better grids can be constructed if better error

*,estimates are available. better techniques for deriving grid speeds are also

needed. These techniques should be more responsive to local solution changes

and still provide a stable, error reducing grid. The empiricism required in

using adaptive grid schemes should also be eliminated and methods that are

completely automated should be developed.

Since the adaptive grid field is new, everyone should be encouraged to

develop new ideas and techniques which look promising. New concepts should be

1 carefully studied with the hope of constructing better methods for computing

solutions to partial differential equations.

Figures 6, 7, 9, 12-17 from AZAA papers 81-0114 and 81-1012 are reproduced

* with the permission of the American Institute of Aeronautics and Astronautics.

Preparation of this paper was supported by NASA Langley Research Center

through NASA Cooperative Agreement NCCI-17.
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ADAPTI'E GRIDDING FOR FINITE DIFFERENCE SOLUTIONS TO HEAT AND MASS
TRANSFER PROBLEMS*

* HARRY A. DWYERt, MITCHELL D. SMOOKE t AND ROBERT J. KEEt

tUniversity or California, Mechanical Engineering Department, Davis, CA 95616, USA; ISandia
National Laboratories, Applied Mathematics Division, Livermore, CA 94550, USA

INTRlODUCTION .t ,j

- $'.rprpose in writing this paper is to review some of-our recent work in the calculation

of optimal meshes for the solution of parabolic and elliptic partial differential equations ,(PDE).
-W first explain our strategies for the adaptive placement of mesh points. In addition W- make
some speculation as to promising avenues for future research in mesh adaptation. Finally, we fAy
discuss examples of the application of adaptive gridding to problems of heat and mass transfer.

- ". W We draw these examples from our work in combustion modeling.

In obtaining numerical solutions to PDEs, the spatial derivatives are often approximated
.J by discrete representations on a mesh network. The accuracy of any numerical solution depends ...

in an important way on the relationship of the location of the mesh points to changes in the

dependent variables. Out-objective is to investigate finite difference methods in which the mesh

networks adapt. themselves dynamically to obtain accurate solutions. Such methods represent

an important advance in overcoming a major shortcoming of traditional fixed mesh methods

which are often unable to resolve accurately steep fronts or sharp peaks. &*-

Our research in adaptive meshing follows two avenues. One is to employ a fixed number of

mesh points and to move their location by coordinate transformations. The other is to add or
subtract mesh points as needed. In either case the positioning of the mesh depends on one or
more important characteristic of the solution. We attempt to equidistribute this characteristic

between each mesh interval. For example, equidistribution of the are-length of the solution has

the effect of concentrating mesh points in steep gradients. Taking the coordinate transformation

approach, the original equations are recast so that the new independent variable becomes the

arc-length. Then, in addition to solving the original equations in the transformed variables, a set
of equations is also solved to describe the movement of the original physical coordinates relative

to the new transformed variables. When adding and subtracting grid points (the variable node

approach) we specify the maximum value of the equidistributed characteristic (say arc-length)

allowed over any mesh interval, and continue to add points until this criterion is satisfied. The

latter approach is closer to that used in ODE software where as many timesteps as needed are

Research sponsored by the United States Department of Energy, Office of Basic Energy
Sciences.
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taken to bring the local truncation error to within prespeciled tolerances. However, while this

approach may be needed to insure high accuracy for PDEs, it can suffer from limitations of

computer storage and time. While we are developing two approaches for adaptive meshing, we

believe that the research will ultimately lead to a combination of the methods.

S,.Our variable node method stems largely from our development of methods to solve sys-

tems of stiff and unstable nonlinear boundary value problems. Such systems occur frequently

in modeling energy systems. Our applications have been principally in combustion chemistry,

particularly in the investigation of complex chemical kinetics in premixed flames. Our coor-

dinate transformation work was initially used to track moving flame fronts, and more recently

# to investigate droplet combustion. In all our work we are concerned with solving simultaneously

a relatively large number of PDEs; in the case of the premixed flames, 30 coupled PDEs are

typical.

Our work draws on earlier work in both the aeronautical and the boundary value problem

literature. From the former we take the ideas of generalized non-orthogonal coordinate trans-

formations and boundary-fitted coordinate systems. ,2 From the latter we take the ideas of

equidistribution of weight functions and error control strategies. Generally speaking, the boun-

dary value problem literature has more theory on which to base methods, but the problems

are simpler inasmuch as they are one-dimensional.

• BASIC SYSTEM OF EQUATIONS
The solutions to the physical problems which are presented in this paper cover a range of

flow and chemical systems. However, in all of the problems there is the common simplification

of uncoupling the fluid mechanics from the heat and mass transfer. For some systems, such

as steady flame propagation, the simplification is natural to the problem, while in others, it is

more artificial. In either ease, it does allow for a clear understanding of the problems caused

in grid adaptation, when beat and mass transfer as well as chemical reactions are considered.

The system of reaction-diffusion equations which describe the problems In tlhs paper are:

.,~m + (puZ,,) + 57P m .~(D. + -.-4 m ) + ) (1+oyPz)+ (pvz.) ffi - ay e

where Z is the dependent variable vector (temperature, and species mass fractions), and tm is

i the vector representing the the chemical source terms:

Z - (T, YI, Y2,..., YK)' (2)

-.' - | -- ( 0,, ( .... 410 ' (3)

In these equations the following notation has been employed: p - mass density, u - velocity

In z-direction, v - velocity In the u-direction and Dm- the diffusive transport coefcient for

41,1 .... A ,| *' : : . - , : ' " ,' : ." . .' .:, ., '"-. . .. . ' . .. . #.'-, "< , ,L _ _ "' , " " .-.,-,
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he the equation. The details of the source terms and velocity Belds are described when the

physical examples and results are presented later in the paper.

For some of the results presented, the above equation set. is transformed into generalized

non-orthogonal coordinates (r, and i)):

o+ -+ = T + TV +/ (4)
- $-'

where,
Zm

* = ( + Pouf, + Pvc,)

= (Nt + pun. + ptnl,)

'- +W oz-

J oz O

The transformation metrics, or areas and volumes, are given by:

--

•G , - . ', Cy --- -JX',, ft = - zfx - Yf,
X - JYC, fl = JX(, 1h1= -- Xt, - YONi

We readily see that the resulting equations are more complex; however, with some addi-
tional programming a much more valuable tool is obtained. In the above form it is quite easy

to implement body-oriented coordinates for arbitrary-shaped bodies, as is often done for flow
over airfoils. However, the major advantage of these transformations in our work is the ease
with which coordinate adaptation can be utilized.

Even though the governing equations are somewhat simplified compared with the Navier-
Stokes equations, they still encompass a large selection of Important problems. Moreover, they

include a rich and disparate collection of physical time scales. As a result, they are likely
to have solutions with regions which need adaptive gridding to be resolved accurately. For

example, the effects of the following time scales will be illustrated in the results presented

Atu = L/U, Velocity convection scale
At, = L 2 1/v, Viscous diffusion scale

At, = L2 /a, Heat conduction scale

AtDm L/Dvn, Mass diffusion scale

WI..- . . ..
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At,;,m Reaction rate scale

As these scales become disparate (depending on the particular problem), steep gradients in

space and time develop. Without adaptation, the numerical integration methods can be pushed

to dramatic failure. It is our purpose to present methods which resolve these scales in space

and time in an effcient and accurate manner.

ADAPTIVE GRID METHODS
We consider both steady and transient problems. The steady problems are elliptic boun-

dary value problems, while the transient problems are parabolic initial-boundary value problems.

At each time step of a transient problem, however, an elliptic boundary value problem must be

solved. Therefore, our meshing strategies share the same essential features regardless if the ap-
plication is steady or time-dependent.

During the last fifteen years many varied methods have been developed to attempt to

choose optimal grid spacings on which to solve two-point boundary value problems. When these

problems are solved using an initial value method (such as shooting), the adaptive meshing

is done automatically and accurately. Variable-step initial value problem software is used

to adjust the step size as the integration proceeds in order to control the local truncation

error. Unfortunately, many problems in combustion are unstable to initial value methods,3

and therefore global solution methods must be used.
Kautsky and Nichols4 point out that many of the adaptive mesh selection procedures used

A -for global solution methods can be interpreted as equidistributing a positive weight function.

On the interval I0,L), one attempts to determine a mesh A

M =(0fX1 <X2 < ... < xM--L)
I

such that the weight function achieves a given constant value over each subinterval. Among
the various approaches developed, White5 has discussed equidistribution of the arc-length of

the solution; Pereyra and Sewell$ have equidistributed the local truncation error and Smooke3

has chosen to equidistribute both the change in the discrete solution and its gradient. Other

methods for choosing appropriate meshes for two-point boundary value problems have been " "

investigated, for example, by Russell and Christlansen, 7 Ablow and Schecter, s de Rivas,s and

Denny and Landis.1
0

Positive Weight Function Concept
Following the notation of Kautsky and Nichols, we say that the mesh M is equldistributed

on [0,L) with respect to the non-negative weight function f and the constant W if

i z -w, jml,2,...,M-I (5)

A k.

k,,'. .-"
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Similarly A is called sub-equidistributing on 1O,L] with respect to f and W if

f dz<W, -- 1,2,... M- 1 (6)

Strategies for determining an optimal mesh for two-point boundary value problems can

be implemented either implicitly or explicitly. In the implicit approach, the weight function

depends directly upon the solution. As a result, the original boundary value problem is

converted into an augmented system in which the dependent variables and the mesh are

computed simultaneously. In the explicit approach, the weight function does not depend upon-" the current solution. Instead, it depends upon a previously calculated solution. For both

• " linear and nonlinear boundary value problems, the implicit approach requires that one solve a

nonlinear two-point boundary value problem. Thus implicit equidistribution techniques do not
• ". .preserve the linear-nonlinear character of the original problem. Moreover, even for nonlinear

problems the augmented system is usually more difficult to solve than the original problem.

Explicit equidistribution techniques, on the other hand, preserve the linear-nonlinear character

of the original two-point boundary value problem.

Our experience has led us to consider explicit equidistrlbution methods. We have found

that as the number of dependent variables Increases, or the problem becomes more nonlinear,

the selection of a mesh by equidistributing an implicit weight function is less practical than by
. ~ ~~equidistributing a weight function based on the solution from a previous grid. The approach we":-'

have chosen to determine an adaptive grid for premixed flame problems is similar to the method

used by Pearson" in solving scalar boundary layer problems. We attempt to equidistribute the

difference in the components of the discrete solution and the difference in the gradient of the

components of the discrete solution between adjacent mesh points. That is we seek to obtain

Sa mesh JK such that
-zJ+" dzil.f .Z' 1,2..... M- I

I -Idx<6( max il(Tf,, +
3 ' ' - O0< s ,- ) j= l,2,..., M - I' ('7)

hdz
* and

Y +1
1 d

2 Z ( zi) j.=,2,...,M-I (8

J,,'gL dx i'. dx I l2,...,K + I

where Z Is the dependent variable vector, 6 and y are small numbers less than one and the

values of maxlZ4 and maldZj/dzl are obtained from a converged numerical solution on a
: :; previously determined mesh. -

.rvA potential disadvmntage of the method described so far Is that the mesh may not be

• , smoothly varying. For example, the ratio of consecutive mesh Intervals may differ by several

orders of magnitude. This can adversly affect the accuracy of the solution as well as the .
convergence properties of the method. As a result, we impose the added constraint that the

mesh be locally bounded, i.e., the ratio of adjacent mesh intervals must be bounded above and

-
.. o.*'
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below by constants. We require that

. ±< hj < .C, 23,.., (9)hi- -

where hI = - z- I and C is a constant less than one. Such a "buffering" of the mesh tends

to smooth out rapid changes in the size of the mesh intervals.
We note here an analogy to the approach followed for time step selection in predictor-

corrector ODE software. In these codes some estimate of the local truncation error is made.

One way to measure the error is by comparing the difference between a certain order predictor
-and the same order corrector. Their difference is related to the local truncation error incurred
-.in taking a time step. The time step is then adjusted such that this error is below a prespecified
*level. Possible ways to measure truncation error are to use different differencing formulas, or

to use the same difference formulas but on different meshes.
- Certainly the equidistribution and control of local truncation error is the most conservative

and accurate approach to mesh adaptation. However, in many cases it may be more costly
than necessary. For instance, if only integrated properties of the solution are of interest (e.g.

flame speed or surface drag) then perhaps less attention need be paid to truncation error
everywhere in the flow field. For problems with strong nonlinearities it may even be preferable
to equidistribute something related to the local truncation error rather than the error itself.

In particular, we have seen that weight functions based on higher derivatives (to more closely -
match truncation error) have led to instabilities. Moreover, if the differencing scheme is first .
order then the local truncation error is proportional to second derivatives of the solution. Thus,
the weight function in Eq. (8) is proportional to the local truncation error. As a result we

believe that weight functions similar to those in Eqs. (7), (8) and (10). are perfectly adaquate

for many problems.

Steady-State Problems, Variable Node Method
After discretization, the governing equations form a nonlinear system of algebraic equn-

tions. We solve this system by a damped modified Newton method. 12 First the equations
are solved on a uniformly spaced coarse mesh (3-5 subintervals). The values of maxlZJ and

maxldZ,/dzl are then evaluated. We next test the inequalities in Eq. (7) and Eq. (8) for each 7
of the K + I components of Z at each node of the coarse mesh. if either of the inequalities is
noI atisfled, a grid point is inserted at the midpoint of the interval in question. Once a new

mesh has been obtained, we check to see whether it is locally bounded. If it is not, a grid point
is Inserted at the midpoint of the intervals in which the inequality in Eq. (9) Is not satisfied.

The previously converged numerical solution is interpolated onto this new mesh and the result .
serves as an Initial solution estimate for Newton's method on this finer grid. The governing
equations are solved on the new mesh and the process continues until the Inequalities In Eqs.

- . .. VA
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(7), (8) and (9) are satisfied. Note that if we had relined the mesh by using only the inequality

in Eq. (7), we would resolve high gradient regions but would have difficulty resolving regions

of high curvature (for example the local maxima of sharp peaks in the solution).

Most of the ideas discussed above can be extended to the solution of multi-dimensional

elliptic boundary value problems. We are just beginning to explore methods to obtain optimal

grids for two-dimensional nonlinear elliptic boundary value problems. In our initial attempts

we have made the logical extension of the one-dimensional ideas. That is, we start on a coarse

two-dimensional grid, and add grid pionts according to Eqs. (7), (8) and (9) in both the z and y

directions. In two-dimensions the Jacobian of the system is block penta-diagonal and we solve
the system by block line SOR iteration. If fronts in the solution align reasonably well with one

of the coordinates then the method is efficient. Of course if a front crosses the mesh on a bias

then a fine mesh results everywhere and the direct extension of the one-dimensional method is- 1 not really useful. In these cases either a coordinate rotation or a local mesh refinement 3 
must

usbe employed. i s

Time-Dependent Problems
y• The ideas used in solving one-dimensioua steady-state problems are readily adapted for

time-dependent mixed initial-boundary value problems. In particular, by considering the solu-

tion of a time dependent problem as the solution of an inhomogeneous two-point boundary )
value problem at each time level, the methods developed in the realm of steady-state problems

can be applied in a time-dependent setting. Both the implicit and the explicit equidistribu-

tion techniques have natural time-dependent analogues. In the case of the implicit methods,

the original equations are recast so that in addition to solving the original equations in the

transformed variables a set of equations is also solved to describe the movement of the original

physical coordinates relative to the new transformed variables. In general, one can expect the

difficulty with specifying an initial solution estimate for the dependent solution components

and the grid points to be less severe in the time-dependent setting than in the steady-state

one since the previous time level solution is often an excellent starting estimate. The explicit

equidistribution techniques can be used in a time-dependent setting by explicitly moving the

grid based upon solutions at previous time levels.

Coordinate Transformation Methods .. ""

* Our coordinate transformation technique has been tested extensively by Dwyer, et. al. .

for one-dimensional problems, and more recently, it has also performed quite well in two

dimensions.14 We note, however, that so far we have not implemented a general two-dimensional

adaptation procedure. Instead, we take advantage of some a prir physical knowledge of the

% ...
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solution to extend the one-dimensional method. Although the method is not yet fully adaptive

in two-dimensions, we believe that the solution to many important problems can benefit from

its use. Moreover, we believe that generalization of the method will follow from current work.

The solution technique in the two-dimensional problems is a non-iterative block-tridiagonal

ADI method' 5"6 in which the Jacobians are evaluated analytically.

In this method the lines of constant ql are fixed (forming arcs in space), and the adaptation

is done along these arcs. In effect, the method is quasi-one-dimensional, and it relies on the

modeler having sufficient qualitative knowledge about the solution to be able to fix a set of

coordinates which are roughly normal to any steep fronts in the solution. We typically take

the weight function (or transformation) for adaptation along the fixed arcs to be given by:

fS

- (, , t) -- (I + bJOT 1OSJ)dS (10)fos ' ."(I + bJ8T18SJ)dS

where S is the length along the fixed arc, and b is an adjustable constant used for "optimization"

* of the grid distribution. For the case b = 0 a uniform distribution of points along the fixed arc

results. For large values of b, the mesh intervals are determined so that the same change in the

dependent variable T occurs between mesh points. A typical value of b is 1/3. The coefficient

b can be thought of in terms of the "buffering" concept introduced earlier. That is, b is chosen

so that not all the mesh points are concentrated in the front region. Some are in regions ofJ .

relatively uniform T, and there is a smooth progression of mesh interial sizes in moving away

from a front.

-. 1 The weight function is evaluated explicitly, and the mesh transformation is held fixed

throughout the time step. In some cases, however, we have used a prediction of the solution

at t + At instead of the solution at t to form the basis of the transformation. In all cases the

integrals in Eq. (10) are evaluated using the trapezoidal rule. If At is large enough for the front

to move out of the fine-mesh region, then implicit or iterative coordinate generation schemes

would have to be considered. However, this was never the case in our problems, since the fast

chemical reactions prohibit the taking of large time steps. Also, the buffering effect of the b

parameter causes there to be adaquate resolution even if the front does move sway from its

optimal location.

Linear Algebra Considerations

We take as an assumption that for problems of interest (in combustion) the system of

' equations is stiff-they are characterized by widely disparate time and length scales. This

fact leads us to consider only implicit solution procedures.' 7 A salient characteristic of implicit

methods is that they require the simultaneous solution of nonlinear equations at each time .

step (or iteration). For multi-dimensional problems or problems involving many dependent

I.,.
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variables (e.g. species concentrations), these solutions lead to a need to form and solve systems
represented by large matrices. Therefore, the way in which this task is accomplished has a
major bearing on the structure of the computer codes which solve the systems.

Our approach currently for one-dimensional problems is to employ a modified Newton
method. The block tri-diagonal Jacobian matrix is formed numerically using finite differences
and its LU decomposition is computed immediately. The LU decomposition factors occupy the
same storage locations as the Jacobian did originally. The same decomposed matrix is then
used for several iterations (or time steps in transient problems). As long as the iterations are
convergent, a sizable cost savings is realized by not re-evaluating and factoring the Jacobian.
This approach is commonly used for solving systems of stiff nonlinear ODEs.

In two-dimensional problems we take two approaches. For the fixed-number-or-grids
*coordinate transformation problems we employ a standard alternating direction implicit (ADI)

method. Here the block tri-diagonal Jacobian is formed and LU decomposed, and the linear
S.system is solved along each row and column of the mesh at each time step. No iteration is done.

Justification for the approach follows the well-known arguments that the error incurred by the
* ADI splitting is of the same order as the truncation error already incurred by the discretization

" - - of the time derivative. 5 , 6

We take a different approach in solving the nonlinear equations in the variable node
formulation. Here the full Jacobian, a block five-diagonal matrix, is formed at once. A modified

Newton method is used to solve the nonlinear system. At each stage of the Newton iteration
an iterative block-line-SOR method is employed to solve the linear system. The LU factors
are stored and re-used for successive iterations. However, after the solution is completed on a
given mesh and new mesh points are added as needed, a new Jacobian must be.computed on
the new mesh.

We expect that significant computational gains will result from rerearch on and develop-
ment of incomplete Jacobian factorizations or matrix splittings. The objective here is to avoid
solving the original equations directly, and instead to solve a related, and approximately equiv-
alent, system that is much easier to solve. The best known example of such splitting is the
ADI method, which can be thought of as an incomplete factorization of the full Jacobian. Even
though the factorization is incomplete, the error which it introduces is of the same order as
that introduced by the time discretization. Therefore, the approximation does not degrade the
accuracy of the solution but it increases significantly the efficiency of the computation.

The ADI factorization is only one of a large family of related splittings which can take
-; 1advantage of some particular characteristic of a problem. For example, it is often the case in

systems of PDEs that. some of the equations are weakly coupled to the others. In such cases,
solving the equations sequentially (instead of fully coupled) is known to result in significant
savings. Instead of solving systems of block tri-diagonal equations, one is able to solve a V
sequence of scalar tri-diagonal equations with far fewer operations required. Similarly, in some

4
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combustion problems, considerable savings are realized through operator splitting algorithms
in which the chemical rate terms are handled separately from the transport terms. These

methods are equivalent to matrix splittings of the system's Jacobian. However, in both cases,

application of the procedures has been ad-hoc, i.e. with little theory to help determine the rate
of convergence, or whether the process converges or not. By studying pre-eoaditionings and

. incomplete factorizations of the Jacobians, rather than ad-hot; splittings of i be equations, such

methods can be put on a firmer theoretical footing and thus more reliable Lnd effective PDE
methods should result.

The cost of evaluating the Jacobian is usually very high in our problems (up to 95% of the

computer time in some flame problems). Therefore, it is natural to seek methods which require

as few Jacobian evaluations as possible. Based on the success of the modified Newton method, is

where we have applied it, and its success in the ODE software, we expect that similar approaches

- - ,will ultimately find wider application in the solution of PDEs. The dilemma is that in order

to use a modified Newton method, the full Jacobian must be stored. For multi-dimensional

problems this storage requirement is usually too large for the memory of any computer in use

S ttoday. Therefore, effective use of a modified Newton method requires development of algorithms
which quickly move Jacobian information between computer memory and peripheral storage.

We note here also that some splitting methods, as discussed above, lead to fewer function

evaluations to complete a Jacobian evaluation.

EXAMPLE PROBLEMS

Steady Premixed Flames
The method we have implemented in the calculation of premixed flame structure equl-

distributes the difference in the components of the solution and its gradient between consecutive

grid points. To illustrate the importance of adaptively placing grid points in the flame zone to
the accuracy and efficiency of the flame calculation, we have performed several calculations for

an acetylene-oxygen flame using equi-spaced and adaptively placed grids. (For these problems

a system of 21 species and 72 reactions was used.) Figure I shows the molecular hydrogen

profiles for a series of calculations using 20, 40, 80, and 160 equi-spaced points. We Include the

experimental data for reference. We secure not only a much smoother solution but one which

agrees better with the experimental data as a finer and finer grid is used.

Figure 2 shows the molecular hydrogen profile for the same flame but solved using adaptive

meshing. In this case 41 adaptively placed points are used to obtain three significant figures
of accuracy in the solution. As expected, the adaptive calculation secures a highly resolved
species profile with far fewer points than are required using the equ-spaced grid. -

In the adaptive calclation, 19 of the 41 grid points are located in the "flame zone," or

region of fast chemical reaction. Note that a relatively large region of the computation has
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** " .. relatively little chemical reaction. Either the temperature is too low, or the fuel is almost

all consumed. The smallest mesh interval is 640 times smaller than the total interval of the Si.problem. So to obtain the same resolution over 600 equ-spaced grids would be required. The

i adaptive calculation took 275 seconds of CPU time on a CRAY-IS computer. The equi-spaced
-* .icalculation with 160 subintervals took 585 seconds of CPU time.

In the next example we compare the effects of adaptive and equi-spaced grids in the
prediction of flame speeds in a one-atmosphere, stoichiometric, hydrogen-air flame.19 The

accurate placement of grid points in regions where the solution varies rapidly leads to a
significant reduction in the number of subintervals needed to obtain accurate flame speeds.

As a result, the overall cost of a flame speed computation can be substantially reduced. In the
first set of calculatons we determined flame speeds on grids consistng of 20, 40, 80, 160, 320,
and 640 equi-spaced points. The results of the calculatons are listed in Table I.

The second set of calculations was performed using the adaptive grid procedure. In this
case we used grids of 20, 30, 40, 50, and 60 adaptively placed points. The results are listed in

Table Ii.
Several points merit further discussion. First, for both the equi-spaced and adaptively

placed grids, we see that as the number of mesh intervals increases, the flame speeds decrease.
Second, the sequence of flame velocities obtained in the adaptive calculations approach a
limiting value with only 40 to 50 grid points, while flame velocities obtained in the equi-spaced

calculations are still changing by almost 15 percent as we go from 80 to 160 grid points. In fact,

It was not until 640 equi-spaced points were used that the flame speed was within 2 percent
of the result calculated on the 50 point adaptive grid. Like the previous example, the ratio of
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TABLE I

HYDROGEN-AIR FLAME SPEEDS, EQUI-SPACED GRIDS (cm/sec)

No. of Points 20 40 80 160 320 640

Flame .-peed 445 289 244 211 193 184

TABLE 11.

HYDROGEN-AIR FLAME SPEEDS, ADAPTIVE GRIDS (cm/sec)

No. of Points 20 30 40 50 60

Flame Speed 248 212 185 181 181

minimum mesh size to the domain of integration was 625. Also, as expected, the adaptive grid
computation is less expensive. The 50 point adaptive calclation took 45 seconds of CPU time

' * iwhile the 640 point equi-spaced calculation took 32T seconds. A savings of about a factor ofseven resulted in going from equi-spared to adaptive grids.

Two-Dimensional Elliptic Boundary Value Problem

We demonstrate here our two-dimensional extension of the variable node method. The

equation we have chosen is the nonlinear Poisson equation on the unit square:

o2 + + Z2 = f(x,y)

Z = 9(x, y) on the boundary

We have chosen f(x, y) and g(z, y) so that the solution is Z = exp-30(z 2 + y2). The initial

equi-spaced grid was 2 x 2. After five mesh refinements the nonuniform 18 x 18 mesh shown

in Fig. 3 evolved. Note the high resolution of the solution in the regions of high slope and

curvature.

Unsteady Two-Dimensional Flame Propagation, Coordinate Transformation Method

In this section we demonstrate coordinate transformation adaptive grid techniques by

disecussing several examples. First we present solutions for unsteady flame propagation about

spherical particles. In these examples the time scales for convection and reaction are small

"OP
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figure 3. Solution to the elliptic test problem with a two-dimensional variable node adaptive
grid.

compared to conduction and diffusion, or

Atc, and At,;,,,c At2, and &tDm L
A one-step chemical reaction is used and the vector of dependent variables and rate terms are

4,(T, pA)

(PA-t -exp(-A/T), -pAAf- exp(-#A/T))

where T, PA and #A, the nondlinensional temperature, prenmixed fuel concentration and actIva-
tion energy, have been normalized by reference values.14 The calculation is simplified so that

*the overall density remains constant and thus the flow field is independent ot the combustion
*process. The velocity field Is given as a low Reynolds number Stokes flow.

The results of an interesting calculation are shown in Figs. 4 through 9. The following
ratiox of time wales are used:

at AtD Pe (Peciet Number) =200
at, At,

A. 2.2 x 1

Figures 4 and 5 illustrate unsteady flame propagation after surface ignition, when using a
unifnrm grid. (These figures are divided into two parts. the top shows the coordinate system

V~



352

and the bottom Plots the isothermf. There art ten normalized isotherms plotted which rawg
in values between 0.2 and 1.2) The figures show that the grid is uniform and the isotherm
distribution exhibits signilicant oscillation. Note that the oscillation in the isothernms becomes
larger in amplitude as the flame moves into the large cell regions awoky from the body. These
oscillations are a result at the large cell Peclet number and. the cenutral difference approximation
for the spatial derivatives. 20 The cell Peclet number is large because of the increasing velocity
and cell size as the grid moves away from the body. If we bad used windward differences,
the numerical viscosity would have increased significantly, ad thus introduce significant errors
such as an the increase in flame thickness. Use of a refned uniform grid is unreasonable because

- of the additional computational requirements of time and storage.
Now consider the problem using an adaptive grd as shown in Figs. 6 and 7. These figures

show the coordinate and isotherm distributions for the same times as shown in Figs. 4 and S.
Notice that the flame has a new and more accurate velocity and position and that there are
no oscillations. By resolving the flame, the cell Peclet number is reduced to values less than
one. This guarantees that the solution will be oscillation tree. To illustrate our point further,
the radial temperature distributions at similar angular positions are shown in Fig. 8 for both
the uniform and adaptive grid solution. The oseillations in the uniform grid solution are quite

-&.0 -2.0 -tO o.0 to 2.0 .3.0 -3.0 -2.0 -1.0 OA L0 2.0 -.0

-3.0 -2.0 410 0,0 to 2.0 &.0 -3.0 -2.0 -1.0 0.0 to0 2.0 0
X X

?ipur 4C Coerdlost a,'tku aW Isotherm Flguau S. Coornte systam &ad Isotherm
0106but6m about a bu=WSa pusticis wit a distribution about a burnin pwares wit a

ua W *0 .Uniform PMi, later times.-
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-3.0 -2.0 -to 0.0 to 2.0 30 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

X XqI
, . 3-->-

-3.0 -2.0 -tO 0.0 1.0 2.0 3.0 -3.0 -2.0 -1.0 0.0 to 2.0 3.0 1
X X

4,..- Figure 6. CoordInate qetm and isthermn Figure T. Coordinate System and Isotherm I
dsrilbution about a buning particle with distribution about a burning partile with~a codtie o . trnsformatio adaptivegrid, la c m.•orinat trandormation adaptive gid,

onlytime. late .m

S apparent. Also, it should be mentioned that the uniform grid solution terminated at the next

time step because of negative temperatures caused by the oscillations.

With the same number of grid points we have been able to convert an unusable calculation

to an efficient and accurate one. However, we have introduced some new, but minor, problems
with the remedy. One of these problems is caused when the thin flame passes out of the

boundaries of the system and there are no longer any gradients along some of the fixed arcs.

The grid then reverts back to a uniform grid over one time step. In the present calculation
this does not cause a problem because the dependent variable is uniform and the rapid change

in metrics is unimportant because the solution isn't changing. However, if another variable
such as velocity was being calculated in this region it would be extremely difficult to obtain an
accurate solution for that variable. In this case the other variables (besides temperature) should

be considered In the formation of the weight function and the grid transformation. A possible

solution to this problem is shown in Fig. 9 where the grid distribution has been frozen at the
value it had when the flame left the computational region. With this strategy the metrics are

smooth but the mesh is wastefully fine near the outer boundary.
Another potential problem exists when different regions of high gradient exist. within

the same problem. This Is particularly troublesome when the regions have incompatible
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sgeometries for grid stretching, as is the case in our next example. he a flam surroud s
a burning spherical particle over which the flow (Reynolds number o 100) ha sepaoft d. In
this calculation both the flow field in separation region and the temperature gadients in the
fiame must be resolved, and the boundary conditions must be applied far from tu fo The
coordinale system used for the game is not well suited for the low, sad we have tamn the
approach of usinl two different coordinate systems and interpolating between them. igure

: 10 shows the vorticity pattern together with the grid used to compute the Row field. The

. ~temperature disribution and its rid are shown In Fig. 11. Cerainly the use of two coordinate i'.

systems increases storae and computation time, but the one order of maglnitude improvement f

of grid resolution achieved by the adaptive lriddingl method, more than makes up for the

additional effort. However, It Is essily seen that this approach to rid adaptation Introduces

many new problems, which should prove fertile ground for new solution procedures.

CONCLUSIONS
We believe that we have achieved considerable success in applying adaptive grid methods

to solve a variety of problems, but It Is also true that the results ae not complete. We have
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seen clearly that adaptive gridding is necessary for a wide range of heat and mass transer

*applications. Our examples demonstrated a strong dependence of flame shape, flame speed,

IV and numerical stability on the mesh spacing. In regions such as flame fronts, the grid has to be
so fine that uniform meshing is completely impractical. However, using the adaptive approach,
we have kept cell Reynolds and Peclet numbers less than one with relatively few grid point.!

We discussed the concept of equidistributon of a positive weight function and we regard

it as a useful framework from which to develop adaptive grid methods. The variable node

approach is analogous to ODE initial value problem software, and, because It attempts to bring

the weight function within pre-specified bounds, it is potentially the most accurate approach to

adaptive meshing. However, due to the number of grid points which may be needed, it is often
inefficient in computer time and storage. On the other hand, using generalized coordinates

and adaptive gridding through coordinate transformations allows for god resolution of body
shapes and slame structure In separated flows at moderate Reynolds Number. In this case,

however, the weight function is equidistributed, but not driven below a prespecifled bound. We
have successfully applied both the coordinate transformation approach and the variable node

approach in one- and two-dimensions. Full two-dimensional generalisation$ are yet to come.
Although adaptive gIrdding is required for accurate resolution in many problems its use

I'k
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can introduce new problems. For example, we see problems caused when high gradient regions
intersect boundaries or leave the computational zone by convective processes. Also, when more
than one physical variable causes scaling problems, such as in flame propagation and flom
separation, It may be difficult to use one grid system for the entire problem. Instead. it may
be avantageous to use more than one adaptive coordinate system simultaneously. So far the
"'fix" to many of these problems has been problem dependent. Generalisations are needed.
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IN APPLICATION OF CURVILINEAR COORDINATE GENERATION TECHNIQUES TO THE COMPUTATION

s-. F INTERNAL FLOWS

DOYLE D. KNIGHT
Department of Mechanical and Aerospace Engineering
Rutgers University
New Brunswick, New Jersey 08903

\'INTRODUCTION

)NIn recent years, considerable effort has been focused on the development of

techniques for the generation of curvilinear coordinates to facilitate

computation of fluid flows in a variety of complex configurations. heI-present

paper focuses on the application of such techniques to the computation of j
internal flows. tba apeais divided into three major sections. First, a

brief review of applications of grid generation techniques in internal flows _'Q.

is presented. -Due to the impending publication of a major review articler on

,- grid generation covering up to mid-1981, the present discussion focuses on a

number of recent publications. Second, a simple method for generating

orthogonal or nearly orthogonal curvilinear grids with controlled mesh spacing

is presented. Third, a current research problem in generation of three-

dimensional internal flow grids is discussed. -- .

Characteristics of Internal Flows

Prior to a discussion of grid generation techniques, it is instructive to

broadly characterize internal fluid flow problems. First, internal flows are

characterized by lateral physical boundaries which are contained within a

finite region. An obvious example is the simple rectangular-to-round diffuser

shown in Figure 1, for which the lateral boundaries are solid walls. The

cascade in Figure 1 is another example, for which periodic boundary conditions

are applied on a portion of the lateral boundaries of a chosen computational

domain.2 Second, the computational domain may be singly- or multiply-connected.

The diffuser is an example of a singly-connected flow. The shell-and-tube heat

exchanger of Figure 2 illustrates a complex, three-dimensional, multiply-

connected domain. Third, internal flows are often characterized by high

Reynolds number turbulent flow, thereby requiring refined grid resolution near

solid boundaries.

IIF
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Desirable Characteristics of Curvilinear Coordinates

Although the requirements on curvilinear coordinates are dependent to a

certain extent upon the particular physical application, a number of desirable

attributes can be enunciated. First, the coordinate transformation should be

boundary-oriented, i.e., the boundaries of the physical domain should coincide

with a portion (or all) of a curvilinear coordinate line or surface. This

concept is illustrated in Figure 3, where upstream and downstream boundaries

r1 and r2 , respectively, coincide with lines of constant & (i.e., segments y1

and y 2 ) in the transformed plane, and lateral boundaries F3 and r4 coincide

with lines of constant n (i.e., segments y 3 and y 4 ) in the transformed plane.

This simplifies the coding of the fluid dynamic algorithm and application of

the boundary conditions. Although non-boundary conforming coordinate systems

(typically cartesian) are currently employed, their application requires

Sspecial treatment of the fluid dynamic algorithm near the boundaries. A

slightly different treatment is illustrated in Figure 4, where a "C"-type grid

for a cascade flow is shown. A branch cut AB is introduced, and the curve ABCD,

- .which includes the airfoil surface, is mapped into a segment of the & axis.

In a more complicated geometries, a cut may be introduced into the transformed
plane as illustrated in the branching circuit of Figure 5. Further interesting
examples are presented in the paper by Kumar et al. 5

Second, the coordinate transformation should be orthogonal or nearly

orthogonal within boundary-layer regions in order to provide accurat6 resolution

of the viscous stresses. Also, the use of a two-layer zero-equation turbulence

model such as Cebeci-Smith6 or Baldwin-Lomax 7 requires the local normal to the

boundary to be defined in order to determine, among other items, the point at

which the eddy viscosity switches from the "inner" to the "outer" formulation.

Clearly, an orthogonal or nearly orthogonal grid within the boundary layers

eliminates the need for interpolation among the grid points to determine the

inner and outer eddy viscosity profiles along the local normal. It should be
emphasized, however, that there is no universal d pkLok. reason for requiring

the grid to be orthogonal within the inviscid region of the flow. For example,

MacCormack and Paullay, using the explicit finite-difference algorithm of

MacCormack, demonstrate that a non-orthogonal grid, which aligns one family

of coordinate lines with a shock surface, yields a more accurate solution than

* a grid which has no coordinate lines aligned with the shock.

Third, the coordinate generation technique must provide the capability for

some degree of control on grid spacing. For computations utilizing zero-

equation turbulent eddy viscosity models and solid wall boundary conditions,

Ix
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the normal mesh spacing An adjacent to the solid boundary should satisfy

An+ -An u./v < 2 to 5, where u, = r , Tw is the local wall shear stress,

Pw is the density at the wall, and Vw is the kinematic viscosity at the

wall.10 ,11 ,1 2  For computations employing a multi-equation turbulence model, a

* more stringent mesh spacing requirement is usually required, 10,11,13 typically

An c 0.2 to 0.5. Since these requirements imply a physical mesh spacing An

much smaller than the local boundary layer thickness 6 (typically much less

than 1% of 6), it is clear that grid control is important.

Fourth, the curvilinear coordinates should display smoothly varying metric

coefficients. Grid smoothness criteria have not been generally developed, and

can be expected to depend on the nature of the flow (e.g., ;iscous or

inviscid) and numerical algorithm. For example, Forester14 suggests the

following rough guidelines for compressible potential flow calculations, namely,

a) the stretching factor for successive grid cells should be less than two,

-and b) the rate of mesh twisting should be less than about one half radian.

Also, a discussion of the relationship between coordinate grids and numerical

fluid dynamics algorithms is presented in the papers of Hindman 1 5 and Thomas

The above list of desirable coordinate attributes is certainly incomplete,

and experience in particular types of flow computation have added further

information. For example, computations of high Reynolds number viscous cascade

flows have demonstrated a superiority of the "C"-type grid shown in Figure 4

over the sheared-type and "O"-type grids.17-19 The "C"-type grid provides good

resolution of the stagnation region near the leading edge, an attribute which

is lacking in the sheared-type. It also provides a natural set of coordinates

for the wake region, which is less easily achieved in the "O"-type.

BRIEF REVIEW OF RECENT APPLICATIONS

Since a major review of grid generation techniques is pending publication,
1

our attention is focused on presenting a representative sample of Itcent

applications to internal flow computations. Although in the author's opinion

it is too early in the development of the field of grid generation techniques

to attempt a comprehensive categorization of methods, it is nonetheless

instructive to discuss recent work in an approximate framework. The

categorizing parameter has been arbitrarily chosen to be the nature or type of

the mesh generation algorithm (e.g., elliptic partial differential equations,

conformal transformation, etc.) as opposed to, say, the character of the

resultant grid (e.g., orthogonal, non-orthogonal, controllable mesh spacing,

446
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etc.). It is emphasized that this discussion is intended to highlight a

selection of recent applications in internal flows, and the reader is referred

to the other papers in this Conference and the recent workshop at NASA Langley
2 0

'. for additional discussion in the following categories.

Elliptic Partial Differential Equations

Although the idea of curvilinear coordinate generation by means of elliptic

partial differential equations has a considerable history (see, for example,

Refs. 21 to 23), the popularity of the concept was substantially increased by

the contributions of Thompson, Thames and Mastin.24 '2 5 Several improvements

were added by Ghia et al.2 6'2 7 and the technique was applied to generation of

curvilinear grids for cascade flows. The technique was utilized by Knight
2 8- 31

32in computations of supersonic aircraft inlets, and Kumar for hypersonic

scramjet flows. Johnson and Thompson33 treated the confluence of several

waterways in Charleston Harbor, and Kumar et al. 5 computed the flowfield in

several multi-channel configurations. The technique was also applied to

turbomachinery flows by Camamero and Younis,34 Camamero and Reggio 35 using the

multi-grid technique for the solution of the non-linear partial differential

-:. equations. The method was utilized for grid generation in three-dimensional 4;
* : :ducts by Roberts and Forester.36

. A number of modifications of the method of Thompson, Thames and Mastin have

been developed in order to improve grid orthogonality, mesh spacing control,

and other features. Sorenson and Steger introduced direct control of the grid

spacing and grid orthogonality near boundaries. 37- 39 Their method was

* employed by Chausee et al.4 0 and Biringen et al. 4 1 ' 4 2 for the computation of

two-dimensional high speed aircraft inlet flowfields. Visbal and Knight4 3 '4 4

developed a general technique to generate orthogonal or nearly orthogonal

curvilinear grids with direct control of grid spacing, which is discussed in

detail in a later section. The technique was applied to the generation of

curvilinear grids for a variety of internal flw configurations including

inlets, diffusers and cascades. Mobley and Stewart4 5 developed an orthogonal

grid generation scheme based on the method of Thompson, Thames and Mastin and

the technique of Pope4 6 and applied the method to several internal flow

geometries. Thomas and iddlecoff developed techniques for approximate

co.itrol of grid spacing, and applied them to generation of coordinates for

three-dimensional internal flowv. Roach and Sankar19 introduced a formulation

for the source terms to help improve grid orthogonality.

4, f
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Conformal Transformations

The method of grid generation by conformal transformation has a rich and

varied history (see, for example, Ref. 48), with substantial emphasis on

aerodynamic applications. The generalized Schwartz-Christoffel transformation
4 9

for curvilinear boundaries was applied by Davis50 to the generation of ortho-

gonal coordinates for a selection of internal and external flow configurations.
51The technique was extended by Sridhar and Davis to the construction of

orthogonal grids for a greater variety of two-dimensional internal flow

geometries including ducts, nozzles and cascades. The conformal mapping

procedure of Anderson5 2 was employed in the computation of the flowfield in a

turbofan forced mixer nozzle by Anderson and Hawkins.53 Aircraft inlet

configurations including centerbodies have been treated by Ives and Menor.54

NE- A double conformal mapping procedure was employed by Sockol55 for the generation

" - of C-type cascade grids. Transonic potential flow past an airfoil in a wind
56

tunnel was treated by Doria and South using curvilinear coordinates

generated by a combination of shearing and Schwartz-Christoffel transformations

following the approach of Caughey. 57

* . .Algebraic Techniques

In recent years, a significant effort hP.s been focused on the application of

algebraic methods to the generation of curvilinear grids for internal and
external flows. A general algebraic scheme was introduced by Eiseman 5 8 for

two-dimensional flows, and employed for the generation of curvilinear

coordinates for airfoil cascades. The technique was later extended to three-

dimensional geometries,5 9 and additional control of grid spacing and
60 61orthogonality was devised. The method was utilized by Shamroth et al. for

the computation of viscous cascade flows. Eiseman and his colleagues also

developed a general "tube-like" coordinate treatment of three-dimensional duct

flows. 6 2 '6 3 The approach was utilized by Levy et al. 6 4 in the computation of

J? three-diensional turbulent subsonic flow in ducts of super-elliptic and

elliptic cross-section. The algebraic approach of Eiseman wap extended by

Smith and Weigel 65, and Smith et al.6 6  The technique was applied to turbofan

lobed mixers and inlets by Kowalski,67 and to non-axisymuetric nozzles by

Swanson.68  In addition, Drunmond and Weidner69 utilized the P'gebraic mapping

formulation of Roberts 70 and Holst 7 1 in the computation of scramjet engine

*' flows.

The inherent flexibility of algebraic methods is an important feature.

However, unlike conformal transformations and certain elliptic formulations
2 4- 27
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which possess a maximum principle, the algebraic methods do not necessarily

always generate a one-to-one transformation (i.e., there can be crossing of

grid lines of the same family6 1'
67 ), and therefore the coordinate transformation

must be carefully evaluated a p06teA4. by, for example, interactive

66. . ' graphics. 5

Other Methods

Although the majority of coordinate transformation techniques applied to

internal flows can be classified according to the above three categories,

* several additional approaches have been employed. McNally72 developed a simple

predictor-corrector method for constructing two-dimensional orthogonal grids
between two arbitrary boundaries. The method was utilized by Graves 73 for
axisymmetric blunt bodies, and is extendable to certain internal flow

configurations as well. Steger and Sorensen74 developed a hyperbolic grid

*generation scheme for two- and three-dimensional flows. The technique, however,

* does not guarantee that a one-to-one mapping will be obtained, and cross-over

* .of grid lines of the same family can occur. Modest success has also been

achieved in the development of flow-adaptive grids. For example, the method

of Hirt et al. has been employed by Hasen, Perry,7 , and Kowalski et al.

"* for the alignment of one family of grid lines with the local flow direction

*for nozzle and aftbody flows.

A METHOD FOR GENERATING TWO-DIMENSIONAL ORTHOGONAL OR NEARLY ORTHOGONAL GRIDS

WITH DIRECT CONTROL OF MESH SPACING

Introduction

The purpose of this section is to present the method developed by Visbal

'and Knight4 3 '44 for the generation of orthogonal or nearly orthogonal curvi-

linear grids and to demonstrate its application to two-dimensional internal -"

flows. In Figure 3, a flow region ABCD is shown. The region is taken to be

bounded by two straight line segments F1 and F2 of arbitrary length and two

arbitrary curvilinear boundaries F3 and F4 . The boundaries F3 and F4 need not

be known analytically nor have a continuous slope. The general flow region is

typical of the geometries of two-dimensional diffusers, ducts and inlets. The

configuration also incorporates the "C"-type grid utilized for airfoil

cascades as shown in Figure 4, where rl, F2 , r3 and F4 are identified as curves

AF, DE, ABCD and FE,' respectively.

The method is characterized by four major features, which are indicated in

I"
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Table 1, and can be operated in two modes. In Mode 1, an orthogonal grid is

constructed with weak control of grid spacing in the n-direction near r and
3

r

TABLE 1

OPERATIONAL MODES OF GRID GENERATION TECHNIQUE OF VISBAL AND KNIGHT

4 F-:ature Mode 1 Mode 2

1. Orthogonal Grid Yes Nearly-
Orthogonal

2. Control of grid spacing in Weak Control Strong Control
n-direction near r 3 and r

3. Arbitrary user-specified grid Yes Yes
spacing along r 3 or r4

4. User manipulation of forcing Not required Not required
functions

In Mode 2, strong control over grid spacing in the n-direction near r3 and
r 4 is obtained at the expense of achieving a less orthogonal grid. Both modes

permit arbitrary specification of grid points along r3 or r 4 . Also, the method

is fully automatic for both modes, i.e., user manipulation of forcing functions

"~ is not required.
The method is based upon the use of Poisson's equation, and represents an

24extension of the technique of Thompson, Thames and Mastin. Although the

method of Thompson et al. provides control of grid spacing along both curvi-

linear coordinate directions by inclusion of a general class of forcing

functions (i.e., inhomogeneous terms in the governing elliptic equations), the

A parameters in the forcing functions are not known a p'u Ot except in certain

simple geometries and must therefore be adjusted repeatedly by the user until

the desired mesh spacing is achieved. In addition, the transformation is
37-39generally non-orthogonal. Sorenson and Steger incorporated a dynamic

adjustment of the forcing functions with the method of Thompson et al. to

provide orthogonality and control of the a,-id spacing in the vicinity of

selected physical boundaries. Their method, however, does not achieve near-

orthogonality within the en2tM flow region and highly skewed grids can

result.
4 1'4 2  In the techniques of Ghia et al.

26 '27 and Thomas and Middlecoff,
4 7

the forcing functions were evaluated along the boundaries employing simplified

forms of the governing equations and the prescribed Dirichlet boundary

conditions. Interpolation was used to obtain the corresponding values at the

A'- 7',.
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interior of the region. The resulting forcing functions, however, are not A

consistent with orthogonality and significant skewness can occur depending upon

the curvature of the physical domain and the specified distribution of mesh

points along the boundaries.4 3 In the work of Mobley and Stewart,4 5 some

measure of control of the mesh spacing in orthogonal grids was achieved through

the use of user-specified stretching functions. However, the stretching

function corresponding to an aAbi.t'Ay distribution of mesh points along a

particular boundary (ffc example, r3 in Figure 3) is in general unknown,
19which constitutes a serious practical disadvantage. Roach proposed a form

for one of the forcing functions which is consistent with orthogonality only

under certain particular conditions and assuming an appropriate treatment of

the boundary conditions is given; consequently, the transformation is in

general non-orthogonal.

The method of Visbal and Knight is a two-part procedure consisting of an

intermediate and final transformation. In the intermediate transformation, an

orthogonal grid is generated with a user-specified distribution of mesh points

on r3 (see Figure 3). The final transformation can be operated in two modes.

In Mode 1, an ot0ogona grid is obtained with a user-specified distribution

of mesh points along F1 and r3 . Grid orthogonality is achieved, however, at !

the expense of precise control over mesh spacing in the n-direction. For

example, the spacing in the n-direction adjacent to r3 and r4 is determined by
the governing elliptic equations and cannot be specified by the user (e.g.,

for a diverging duct, the grid spacing in the n-direction will increase

downstream in a manner similar to Figure 7 of Ref. 46). In Mode 2, a nea

orthogonal grid is obtained with a user-specified distribution of mesh points

on rI, r2 and r3 and with direct control of the mesh spacing in the

n-direction adjacent to r3 and r4 . This second mode is particularly important

in turbulent flow computations where the requirement of resolution of the

viscous sublayer is more important than strict orthogonality. Finally, the

entire method is fully automatic and does not require iterative adjustment of

forcing functions by the user.

Intermediate Transformation

In the first step an orthogonal grid is generated with a user-specified
' distribution of the mesh points along r3 (see Figure 3). The purpose of this

intermediate step will be discussed at the end of this subsection. The

intermediate transformation (&(x,y), X(x,y)) satisfies the Poisson equations
4 3 ,44
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. v € = *(€,x 1 = h( )~ (la)

V V2X =0 (lb)

Sa 2 2

where V - + 2- The quantities h and h are the scale factors.
2  

y2 "X

h = (x y2( 12a)

h .(x2+y 2 )1/2  (2b)
hx XX

where x- 2, etc. The boundary conditions on are (see Figure 6)

* -0 on r (3a)

=1 on r (3b)

C = F3 t) on r (3c)

0 on r (3d)an 4n
where t is the arc length along r 3 measured from r and n is the normal

distance measured from ri. Equation (3c) simply indicates that the user has

distributed the mesh points along r3 in an a Olbit'tay monotonic fashion as

desired and no analytic expression for F3 (t) is required. The boundary

conditions on X are

0 on r1, r2 (4a,b)an 2

x' 0  onr 3  (4c)

X - on r4 . (4d)

* The forcing function * in Equation (la) is consistent with the generation of an
orthogonal grid through Equation (1) and the boundary conditions (3) and (4).

The form of # results from the general expression for the Laplacian in

orthogonal curvilinear coordinates

v2  1 a h a + x ." , "
"4N
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The intermediate transformation is obtained by inverting Equations (1) to

yield

-.L(x) = -,J2xC* (Sa)

L(y) YE (5b)

where

2 - a2  2 ~ 2

at2  atx X2

2 2
a x + yX X

Sx x + Y

2 2' 7Y = xC + 'C

J = xy x- xYC

and the forcing function * is

"€= x xX x+ X ) (x~xcC+YCYCC) 1/v 2  (Sc)

The transformed boundary conditions are prescribed on the boundaries Y1, Y2. Y3 ,

Y4 of the unit square in the (&,X) plane, as indicated in Figure 7. The

expressions obtained from Equations (3) and (4) are

x x + ytyx 0 and Gl(x,y) -0 on y (6a)

• xx + YYx =0 and G2 (x,y) =0 on (6b)

t . F3() and G3 (x,y) = 0 on y3  (6c)

Xx + y x ,0 and G4 (x,y) =0 on Y4  (6d)

As indicated previously, the function F3 (&) in Equation (6c) denotes that the

mesh points are arbitrarily distributed by the user along r3 and no analytic

expression for F3 (C) is required. The functions Gl(x,y) O...,G 4 (xy) - 0

'S •__•__.______ **.

.. - - . , ,'.-y~. * S -, 5



367

simply indicate that the shape of the boundaries rl,... , 4 is known either

analytically or through specification of a discrete number of points.

The inverted intermediate transformation equations are solved using a two-

step iterative procedure. First, the point successive overrelaxation (SOR)

method is applied for typically one to five times at all interior points to the

finite-difference form of Equation (5) which are obtained using second-order

accurate centered difference approximations for the derivatives. Second, the

forcing function * is updated by the use of Equation (5c), and the mesh points

are redistributed along rI, r2 and r4 according to Equations (6a), (6b) and

(6d), which are approximated using second order accurate centered or one-side

differences as required. This results in three systems of simultaneous non-

linear equations which are solved by Newton's method. In thos cases where the

shape of the boundaries r3 and r4 are defined by a suitable discrete set of

points, piecewise cubic spline interpolation is used to determine the functions

G3 and G4 . These two steps are repeated until the following requirements are

m satisfied:

(a) The maximum displacement of the interior mesh points in the

physical plane during a given SOR iteration is a small fractionA'
of the local mesh size in the & and X directions. A value of

K' 1% was found to be satisfactory and was used in all cases

presented here.

(b) The condition of orthogonality at rl, r2 and r4 is effectively

satisfied, i.e.,

Iil/;;I / 2 < E

for all points on yI , Y2 and y4 . This implies that the

absolute value of the cosine of the intersection angles formed

by the coordinate lines at the boundaries r,, r2 and r4 are

less than the specified parameter e. For the results presented

here, the value chosen for £ is 0.01. This corresponds to a

maximum deviation from orthogonality of 0.57 degrees (i.e., the

intersection angles are between 89.43 and 90.57 degrees).

It is important to note that SOR was used for simplicity and other numerical

techniques could be employed if additional efficiency is desired.

The purpose of the intermediate transformation is to e -6iSaent obtain the

forcing function # and distribution of mesh points along r4 which are -.

consistent with orthogonality. As indicated in the next section, this

distribution of mesh points along r3 and r4 are then prescribed as Dirichlet

3 4

je5
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boundary conditions in the solution of the final transformation. Also, the

intermediate grid is employed in the determination of the forcing functions and

the initial guess for the solution of the final transformation equations (the

intermediate mesh must be stored for this purpose). Our experience indicates

* that the intermediate transformation is a very efficient technique particularly

when highly refined grids near r 3 and r4 are required in the final mesh. In

the intermediate transformation a relatively coarse grid in the X direction is
employed. This improves the efficiency of the implementation of the Neumann

boundary condition on r and also the dynamic adjustment of the forcing function

*. Past experience indicates that the use of a Neumann boundary condition on

r4 in the presence of a highly refined grid is very time consuming. In

addition, updating the forcing functions in a highly clustered mesh may result

in numerical instabilities. 38 ,39 This does not occur in a coarse grid, even
when a poor initial guess is prescribed.

Final Transformation

Although the intermediate transformation exhibits the desirable charac-

teristics of orthogonality and arbitrary specification of mesh points along

the boundary r3, it does not provide control over the mesh spacing in the
x-direction as desired. The final transformationl is then introduced to-,-
generate a grid which manifests the features of orthogonality or near-ortho-

gonality, and weak or strong control of the grid spacing in the n-direction

near r3 and r as desired (features #1 and #2 in Table 1).
The final transformation is motivated by the simple observation that a

transformation

x - x(n) (7)

can be introduced to allow a concentration or stretching of the grid points in *'..
the il direction. The governing equation for becomes 4 3  ..a)

hi

2 1 3(e

and the equation for in is28'45'47'79

22 2 ..
SQ('i) a (in) (nny) (Sb)

a (S:"1c) . .
d72 dn - . .
dn

tom
44.
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and the scale factors h and h are

h N ( 2+y 2) 1
/

2  (9a)

h n (x n+Y2 )n1  (9b)

t The boundary conditions on E (see Figure 8) along r1 , r 2 and r3are given by

Equations (3a), (3b) and (3c), respectively. The boundary condition on r4 is

F F4 (t) (10)

where F 4 (t) denotes the distribution of the C-lines along r4 obtained from

the intermediate transformation and t is the arc length along T4 . The boundary

1 . conditions on qi for orthogonal grids (Mode 1) are

F F1 (s) on r1(Ila)

0~= on r (llb)
Dn2

n .O on r3  (llc)

Tj . on r4  (ld)

where s is the arc length along r1 measured from r 3 Equation (Ila) indicates

*that the rI-lines are arbitrarily distributed along r1 as desired by the user,

and no analytic expression for P 1 (s) is required. For nearly orthogonal grids

with direct control of the normal distance of the ni - constant lines from r3
and r(i.e., Mode 2), the boundary condition on r2 becomes n - F (a)

indicating a user-specified distribution on ri-lines on r
2'..

The final transformation is obtained by inverting Equations (8) to yield .-

2QLX 20%, +y Y J (X P+x Q) (12a)

01 2y + yy, j -2 (Y P+y Q) 1b

where

4.4

'77' T

"w'-x *y 2
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'5 X x n + yET
= x 2n + Y r

2 Cy = x y

J= xty n- x TA

The transformed boundary conditions for the final transformation for orthogonal

grids (Mode 1) are given by (see Figure 9)

S = F(n) and G1 (x,y) = 0 on (13a)

x x + ygyn 0 and G2(x,y) = 0 on (2 (13b)

t F3 (M) and G3 (x,y) = 0 on y3 (13c)

t F4 (g) and G4 (x,y) = 0 on Y4 (13d)

Equation (13a) implies that the user has distributed the mesh points on r 1
• * as desired. Equation (13c) denotes the same user-specified distribution of.

grid points on F3 as employed in the intermediate transformation. Equation

- (13d) denotes the grid point distribution on F4 obtained from the intermediate

transformation. For operation in Mode 2, Equation (13b) is replaced by

s= F2 () and G2 (x,y) = 0 on (13e)

which denotes a user-supplied grid distribution on r 2.
The forcing function P(&,n) is determined from the intermediate transformation

according to

P(gn) f &(gX(n)) (14)

In general, the function X(n) is not known a priori. However, since ,

usually varies smoothly with X, satisfactory results are obtained when the

• - i initial guess for x and y (used in the numerical solution of the inverted final .

transformation equations) and linear interpolation in the physical plane along .,.

' . the &-lines (obtained in the intermediate transformation) are employed. For

operation in Mode 1, the function P(C,n) may be updated during the solution

although experience with highly curved and clustered grids indicates that such
adjustmnt is unnecesary. For operation in Mode 2, iterative adjustment of P ... .".

41.. .
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in the final transformation according to the OXthogOnaL expression (8a) is

inconsistent and is therefore not performed.

The forcing function Q is determined as follows. Application of the

condition of local orthogonality 8 = 0 in Equations (12) gives

Q = yS/J2 where (15a)

ynf R x 0S - T - -- i 0 (15b)
N Y

S T + if yE (15c)

where CYi C90

T -(x x /y 2  162
S=- n+ynynn /n n

= xEYCE-YeX (17)

It can be simply shown that S = a (see Equation (8b)). For an orthogonal grid

(ode 1). therefore, S is a function of n alone (see Equation (7)), and is

evaluated at - 0 according to Equations (15)-(17) with the C-derivatives

approximated using the intermediate solution and linear interpolation. These

derivatives can be updated during the solution, although experience indicates

* that such adjustment is unnecessary.

For a nearly orthogonal grid with controlled spacing of the r-lines (Mode 2),

the function R is obtained from the intermediate transformation using linear

interpolation. Further iterative adjustment of R is inconsistent with the

expressions for Q in Equations (15) obtained using the assumption of

orthogonality and is therefore not performed. If the distribution of the

r-lines is specified in terms of the distance s(Q,) measured from r3 along

the C-lines, then "

2 e2 a271 n Yn(1a

and
as S n +yTyln (18b)

Prcm Equations (15) and (17), the function T becomes
0.

T -(19)

"- A.A. :, .'. ... - ., .. -.. 1~ * 07s.
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Therefore, T can be determined for any arbitrary distribution of the n-lines.

In this research, the ri-lines are distributed exponentially near the boundaries

r 3 and r4 , and uniformly in between. This distribution would be appropriate

for numerical simulation of high Reynolds number flows with thin boundary

layers along r3 and r4. The resulting expression for T is

:,. -Cl/n 0 < nl f n1
,1 1

T 0 In1 
< 
n

<  
2  (20)

C2 /(l-in2 ) n2 < 1

where CI, C2 , n, and n2 are slowly varying functions of C. This formulation

permits control of the normal distance of selected n-lines n and n*

(0 < n < I1 , T2 < nT1 < 1) from the respective boundaries r3 and r4 . Equation

(20) may be integrated along each E-line to determine s(t,n) as a function of

Ci, C2 , nI and n 2 . The specified control of the n - i and in - ! lines

provides a pair of nonlinear coupled equations for CI and C2 for each &-line

which are easily solved by Newton's method.

The inverted final transformation Equations (12) and boundary conditions ".

(13) are solved using point SOR. Convergence was assumed when criteria (a)

discussed in the previous subsection was achieved. Again, it is noted that

SOR was employed for simplicity and other techniques could be employed to

improve computational efficiency.

Results

The capabilities of the method are illustrated for the various flow regions

shown in Figures 10, 12 and 13. The results are summarized in Table 2 and

discussed in detail below.

Example 1: Diffuser/Nozzle Using Mode 2

In this example, the capability of the method is demonstrated for

generating a very nearly-orthogonal mesh with an arbitrary non-uniform 4.

distribution of C-lines along r3 and with direct control of the spacing of

selected i-lines throughout the entire domain (Node 2). The physical region,

shown in Figure l0a is representative of a diffuser or nozzle. The upper

boundary is formed by two horizontal segments and a sinusoidal curve. The

ratio of the heights of the right and left boundaries is four to one. The '-

mesh points are arbitrarily distributed along r 3 and are clustered in the

•d
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TABLE 2

CHARACTERISTICS OF COORDINATE TRANSFORMATIONS

Example No.
1 2 3 4 5

V. Intermediate Mesh

No. of C-lines 52 31 31 59 59

A No. of x-lines 8 8 11 11 11
Final Mesh

No. of C-lines 52 31 31 59 59

No. of t-lines 31 31 31 31 31
Maximum 1 4.60 4.3' 2.80 10.9' 2.30

Maximum eL 1.90 0.70 0.70 3.3' 2.30
Ik Maximum U  1.50 1.4' 0.50 1.00 1.5'

8I 1.0' 1.00 0.7' 2.5' 0.60

6L 0.6 0.40 0.40 1.0' 0.70

0.40 0.4* 0.3' 0.4' 0.60

Computer time (sec) 16.0 19.0 19.0 32.0 36.0
* . using IBM 370/168 : .

Fortran G Compiler)

Legend- 6 deviation from orthogonality (i.e., the absolute value of the
amount by which the angle of intersection of the coordinate lines
differs from 90')j 6 ,average deviation from orthogonality

Subscripts: I - Interior mesh points
L - Mesh points on r3
U Mesh points on F4

vicinity of the center of the flow region, as illustrated in Figure lOa. The

ratio of maximum and minimum physical grid spacing on F3 is 2.7. The expression

(20) was employed for T with nI a 1/3 and n2 ' 2/3. The values of C1 and C2  I.-

at each C-line were determined by the requirements that the normal distance of

the n , , 2/15 line from F be constant, and the normal distance of the
3

n - 13/15 line from r4 increase smoothly to twice its value on Fl over the
length of the flow region. The minimum and maximm values of C1 are 0.582 and

2.817, respectively, and the corresponding values for C2 are 0.579 and 1.916.

The initial guess is shown in Figure lOa, and the intermediate transformation

is shown in Figure lOb. The final transformation is shown in Figure 10c, . , •

where only the odd numbered n-lines have been plotted. The results in Table 2 " -

indicate that the transformation is very nearly-orthogonal, with an average

pw44i

. ,,-. : - -- , . . .:. k , , , ,,: ,': . -., ' * ': ',- . f Y. ',
. . ... = . ,. . . ,' , . . . . . : : : ;. . '.
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deviation from orthogonality of 1.00 in the interior. The average absolute

deviation of the qr1 line from the specified normal distance to r3 is 3.8%, and
the maximum absolute deviation is 10.5%. The corresponding figures for the n

line relative to r4 are 9.6% and 35.0%, respectively. The maximum deviations

occur in the vicinity of the x-station where the slope of the upper surface is

a maximum. In evaluating the success of the control of the spacing of the j

and n; lines, it is worthwhile to note that when the condition of strict

orthogonality was imposed (i.e., Mode 1), the normal distance of the n and n

lines increased by 300% between r1 and r2 as expected from the overall change
in shape of the flow region. The results of Example 1 indicate .that direct

control of the n-lines can be accomplished with a very slight increase in
deviation of the transformation from orthogonality.

Example 2: Diffuser/Nozzle with P(E,n) = 0 Using Mode 2

The purpose of this example is to illustrate the capability of generating

a nearly-orthogonal transformation (Mode 2) with a specified forcing function

P(t,q). The flow region is the same as in Example 1. For the purposes of 4"

simplicity, P was taken to be zero. The E-lines were redistributed along both

r and r in the intermediate mesh in order to satisfy orthogonality. The3 r4
expression (20) was used for T. The values of nit n2 and C1 and C2 at r1 are
the same as for Example 1. The normal distance of the nl = n* - 2/15 and

n* - 13/15 lines were controlled in the same manner as for Example 1.
The final transformation is shown in Figure 11, where only the odd numbered

n-lines are shown. The transformation is very nearly orthogonal, as indicated

in Table 2, with an average deviation from orthogonality of 1.00 in the

interior. The average absolute deviation of the n* line from the specified

normal distance to r3 is 2.9%, and the maximum absolute deviation is 11.3%.

The corresponding figures for the n line referenced to F are 6.4% and 34.8%,
2* 4

respectively. The final transformation also demonstrates the mesh spacing
*along r 3 corresponding to P - 0 increases monotonically with the height of the

" "flow region as expected.

S ." Exaple 3: Asymmetric Half Annulus Using Mode 2 4 *

In this example, the capability is deonstrated for generating a very

nearly orthogonal grid (Mode 2) with controllable mesh spacing (in the C and rk
directions) in a highly curved region. The physical region is shown in

Figures 12a,b. The boundaries r3 and r4 are two non-concentric circles of

radius 1.0 and 2.5, respectively. The ratio of the lengths of the boundaries

F1 and r2 is five to one. The C-lines are redistributed along r3 with equal ., .

increments in arc length. The expression (20) was employed for T with

W
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n,= 7/15 and n2 = 2/3. The values of C1 and C2 at each C-line were determined

by the requirements that the normal distance of the n = n* = 1/30 line from r

be constant, and the normal distance of n = 29/30 from r4 increase

smoothly to four times its value on r over the length of the flow region.

The final mesh is shown in Figure 12b. The results in Table 2 indicate

that the transformation is very nearly orthogonal, with an average deviation

from orthogonality of 0.70 in the interior. The average absolute deviation of

the nt line from the specified normal distance to r is 2.4%, and the maximum j3
absolute deviation is 5.7%. The corresponding figures for the n line

relative to r4 are 3.4% and 5.7%, respectively. It was found in this example

that for highly curved regions, the term R in Equations (15) is of great

importance if near-orthogonality is desired. The forms of the forcing function
26,27 47

Q suggested by Ghia et al. and Thomas and Middlecoff, which assume

*-R E 0, produce skewed grids for this type of domains.

Example 4: Airfoil Using Mode 2

In this example a C-grid was generated about an airfoil, as shown in

* ,Figure 13, using Mode 2 operation. For the purpose of simplicity the boundary

r is formed by a symmetric Joukowsky airfoil with a straight cut, and the3J
boundary r4 is elliptical with major and minor semi-axes of 2.87 and 1.5,

respectively. The mesh points were arbitrarily distributed along r3 with some .?

clustering near the leading and trailing edges and a geometric-stretching

along the cut. The term T was evaluated according to Equation (20) with

nl = 7/15 and n2 = 2/3. The values of C1 and C2 were determined by the

requirements that the normal distance of the n n* = 1/30 line from r3 , and

of the n - n* = 29/30 line from r be constant.

As shown in Table 2, a nearly orthogonal grid was obtained with an average

deviation from orthogonality of 2.50 in the interior. The average absolute

deviation of the specified normal distance for the n = and n = n! lines

are 3.9% and 2.7%, respectively. f.

Example 5: Airfoil Using Mode 1

The previous case was also computed using the condition of strict

orthogonality (Mode 1). A very nearly orthogonal grid was achieved (see

Table 2), with an average deviation from orthogonality of 0.60 in the interior.

The maximm deviation from the specified normal distance of the ) = J line

from r3 is 85.8%, which compares very unfavorably with 20.5% for the grid of
Example 4. It is therefore clear that if strict orthogonality is imposed,

direct control of the spacing of the n-lines cannot be enforced. It is

however possible, as the present example shows, to achieve direct control of

4o4
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the mesh spacing with only a slight deviation from orthogonality away from the

boundaries.

A CURRENT RESEARCH PROBLEM IN GRID GENERATION FOR INTERNAL FLOWS

Despite the notable recent successes in developing grid generation techniques

for internal flows, a number of important problems remain. The focus of this

section is the description of one particular problem, namely the generation

of a suitable grid for simply-connected three-dimensional internal flows.

A straightforward approach to grid generation for 3-D internal flows is to

develop a sequence of 2-D curvilinear grids in planes normal to some prescribed

centerline of the duct.6 2 Each plane intersects the duct boundary along some

continuous closed curve as shown in Figure 14. The problem of 3-D grid

generation thereby reduces to the task of generating a sequence of 2-D body-

oriented curvilinear grids.

Two basic approaches have been employed. The first method, which may be

denoted the "single-focus" technique, introduces a polar-like curvilinear grid

as illustrated in Figure 14. A branch cut is introduced, and the two sides of

the cut F1 and r2 are mapped into the left and right boundaries y1 and '2 in
1 2Y

the transformed plane. The focus F3 is a singularity of the transformation

(i.e., the Jacobian vanishes at the focus), and is mapped into the segment y73'

while the entire outer boundary F4 of the duct is mapped into the segment y 4 .
The presence of the singularity requires special treatments in the fluid

dynamic calculation.36 The single-focus technique, however, is not well-suited

for duct cross-sections whose boundary is convex (relative to the duct

interior) over a large extent. This problem is illustrated in Figure 15,

which represents, for example, a cross-section of a half-axisymmetric aircraft

inlet upstream of the inlet throat. Clearly, the curvilinear grid is highly

distorted near the upper and lower corners, and the single-focus approach -.

hinders the achievement of resolution of the boundary layers in the vicinity

of the corners. The extension of the focus into a "slit"4 , as illustrated in

Figure 16, alleviates the aforementioned difficulty albeit at an increase in

the complexity of the fluid dynamic algorithm (i.e., the Jacobian is now

singular at two points, namely b and c).

The second method, which maybe denoted the "artificial corner" technique,4 7

introduces one or more fictitious corner points along the duct boundary. For

a duct boundary with continuous tangent, four artificial corners are added as

shown in Figure 17. The Jacobian vanishes at the artificial corners, however,

IThis technique was also suggested to the author by G. Paynter.
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which requires special treatment in the fluid dynamic algorithm. Also, the

necessity of resolving the boundary layer on the entire boundary implies that

the curvilinear coordinates, although possibly intersecting the boundary at

right angles, must rapidly bend towards the adjacent section of the duct

boundary (e.g., the E-lines emanating from y 3 near point A must rapidly bend

towards y in order to resolve the boundary layer on y1 ). Thus, the grid lines

emanating from the duct boundary do not follow the normal to the boundary, and

therefore interpolation is required when utilizing a zero-equation turbulence

model as discussed in the first section.

Numerous additional problems in grid generation for internal flows can be

-: cited. It is clear that the field is open to innovative techniques.
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* SOLUTION OF NONLINEAR WATER WAVE PROBLEMS USING BOUNDARY - FITTED

COORDINATE SYSTEMS

Henry J. Haussling
• 'David V. Taylor Naval Ship Research and Development Center,

Bethesda, Maryland 20084

INTRODUCTION

The mathematical study of wave motion in water with a free surface dates

- back at least as far as Lagrange around 1800. Since then, steady progress

has been made in this field by many researchers through the application of

many of the tools of mathematical physics. Two important approximate theories

have evolved: the linear theory for small amplitude water waves, and the

nonlinear theory for waves in shallow water. Some progress has even been made

in the solution of the general nonlinear problem by the use of perturbation

4theory. However, the application of analytical mathematical techniques to

* these general problems has been hindered by the nonlinear difficulties, notpj
the least of which is the fact that the flow domain is not known a priori but

" ! is part of the solution. The challenging nature of the nonlinear problems and

'If even of the more complex of the linearized problems has led to considerable

effort to apply the power of modern computers to facilitate their solution.

Computers have been of tremendous help in obtaining meaningful numbers from

fairly complex closed form solutions for simplified problems. Perhaps more

importantly computers are also being used to directly attack the unsimplified

equations through the use of numerical techniques which have been and are

being developed specifically for this purpose. Among these techniques are

finite-difference, finite-element, and panel methods.

Many of the impressive numerical solutions of water wave problems have

been obtained with the so-called marker-and-cell finite-difference technique

(Ref.[lJ). In such an endeavor, physical space is divided into a number of

rectangular cells. The cells are divided into three sets the elements of

which can change with time; (1) those which are completely filled with fluid,

(2) those through which the free surface passes and hence which are only

partially filled with fluid, and (3) those which are outside the flow domain.

Through appropriate application of the governing equations and boundary

conditions the movement of the free surface through such a cell structure can

be followed. However, tracking a boundary movement through such a fixed grid

.5*' I' " " " - " - -. " -I I I I I ~ I
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can be quite difficult and error prone. Provision must be made for
finite-difference stars of changing arbitrary shape, and boundary-conditions

involving derivatives normal to and tangential to the surface can be difficult

to apply. Even so, many such solutions have been and are being obtained and

they have contributed considerably to the progress of computational fluid

dynamics.

The difficulties and deficiencies of the marker-and-cell techniques have

motivated many improvements and alternative approaches for the numerical

solution of free surface problems. Boundary-fitted curvilinear coordinate

systems offer one such alternative. Mapping of the physical region to a fixed

computational region enables the calculation to be carried out on a

time-independent grid even when the flow is time-dependent. Since the

boundaries are always constant-coordinate surfaces, some of the possible

difficulties in applying boundary conditions at curved boundaries are

eliminated. In recent years these coordinate systems have been applied to

water wave problems, and the possibilities and limitations of these

applications are still being investigated. / , ,

2 At the David W. Taylor Naval Ship lAD CenterMs have been Investigating

the application of numerically generated curvilinear coordinate systems to

ship wave problems. These are water wave problems with a body present, and

this investigation is part of a broader effort over the past few years to

develop and test numerical techniques for use In ship performance prediction.

Since no one numerical method is best for all problems, and a wide variety of

promising methods is available, the work has involved the investigation of the

capabilities of various methods.

This paper presents an account of 9dr experience in applying numerically-

generated coordinate systems to water wave problems and a brief discussion - -.

of closely-related efforts underway elsewhere. Application to free-surface "

potential flow is highlighted since most of our work so far has focussed on
such inviscid flow. Similar coordinate generation techniques could be used

for viscous free-surface problems.

MATHEMATICAL THEORY OF FRE-SURFACE POTENTIAL FLOW

For the purposes of this review we limit the discussion essentially to

flow of water for which the effects of viscosity (friction) and compressi-

bility can be neglected. For detailed descriptions of such Inviscid free-

IY
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surface flows see Ref. 121 or Ref. 131. With the neglect of viscosity, we can

consider the Euler equations

dv/dt - --Vp - g (1)

where v is the velocity vector describing the flow, t is time, p is density

(assumed constant), p is pressure, g is the gravitational acceleration, and k

is a unit vector parallel to the local direction of the Earth's gravitational

field. Eq. (1) is merely Newton's law of conservation of momentum, where

the left side is the acceleration of a fluid particle and the right side con-

sists of the forces acting on such a particle - the internal pressure force

and the external gravitational force. Note that shear stresses are absent

here since they are among the neglected frictional effects. To Eq. (1) must
be added the equation of continuity

V * ~-O (2) '

to form a system which is sufficient, with initial and boundary conditions,

* to solve for the velocity field v and the pressure p. Eq. (2) represents

conservation of mass and can be derived from the fact that for an incompress-
ible, constant density fluid the flux of mass is zero across the boundary

surface of any region in which liquid cannot be created or destroyed. Ex-

pressing this flux condition in integral form and making use of Gauss'

divergence theorem leads to Eq. (2).

A measure of the local rotationality of a fluid is the vorticity V x v.

A flow for which

SX v 0 (3)

is said to be irrotational. It can be shown, using Eq. (1), that a flow of

an inviscid fluid which Is Irrotatlonal at one time remains irrotational for

all time. Since many flow are for practical purposes nearly IrrotatIonal

throughout much of the flow field, and since the assumption of irrotational

flow results in major simplifications, such an assumption is often made and L,
It is convenient to do so for the purposes of this paper. . .

4 7
" ', . " - .
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The vanishing of V x v ensures that the function

*(x,y,z) - ff(x~yz) v.ds (4)
-f

0

is well-defined where the line integral is over any path from a fixed point

f 0 to an arbitrary point f. Since Eq. (4) implies that

v (5)

the assumption of irrotationality implies that the velocity field can be

represented as the gradient of a potential.

Eq. (2) and (5) yield

V 2 . 0 (6)

* 4. and thus the potential satisfies the well-known Laplace equation. The

pressure does not appear in this equation for the velocity potential. It can

be computed from the velocity field by using the momentum equations (Eq. (1))

which can be rewritten, using Eq. (5) with some manipulation, as

3t/at - - (V/.V*) /2 - p/p - gy, (7)

where y is the vertical coordinate. Eq. (7) is known as Bernoulli's law.

* A free surface S is a boundary surface of unprescribed shape which sepa-

rates the fluid from another medium. For water wave problem the pressure on

the surface is the constant atmospheric pressure which can be taken to be xero

since only pressure gradients affect the flow field. According to Eq. (7) we

then have the dynamical free surface boundary condition

-3/3t = - (v#.v#) /2 - gy on S (8)

Since the location of the surface is unknown, an additional boundary condition

is needed. It is the kinematic condition which results from a basic

assumption of continuum mechanics and states merely that any fluid particle on

the free surface remains on the free surface. The kinematic condition has

sore than one mathematical representation th.at Is useful for computations. < .

I 4'
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One useful form can be derived by considering the surface S as represented by

an equation f (x,y,z;t) - 0. The fact that the derivative of f following a

fluid particle on the surface is zero means that

dfIdt - Zfl3t + vf 0 (9)

holds on S. If the surface can be represented by specifying the vertical

coordinate as a single-valued function of the horizontal coordinates

y - Y(xz;t) (10)

it follows that f - y - T(x,z;t) and hence from Eq. (9) that

Yt - ¢zYz +¢ onS (UA)

Eq. (Ila) is comsonly used form of the kinematic free surface boundary

condition but is useful only for simple surfaces for which Eq. (10) retains j
its single-valued property. For more general surfaces it can be helpful to

" use
use d /dt - on S, (lib)

where x is the position vector of a fluid particle on the surface. Eq. (lib)

Is just the mathematical representation of the fact that the surface moves

with the local fluid velocity.

The free surface boundary conditions must be supplemented by appropriate

conditions at other boundaries. The most commonly encountered condition on

l . solid boundaries such as ship hulls or rigid walls is . " *

V n v, (12)

where n is a unit vector normal to the boundary and V is the normal component

of the velocity of the boundary. Eq. (12) states that fluid cannot pass

through such a solid boundary. Far away from disturbances the fluid is often

!'ii
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assumed to be at rest. That is

(13)
4

To sumarize, the solution of free surface potential flow problems

usually amounts to solving Eq. (6) subject to the free-surface boundary condi-

v . tions of Eq. (8) and Eq. (Ila) or Eq. (lib), along with other appropriate

conditions such as those of Eqs. (12) and (13).

COORDINATE SYSTEM TRANSFORMATION

The coordinate system construction techniques that we have used to date

at DTNSRDC are based on the Poisson generating equations

V 2 (14)
V2€ -2
V 2 -R

which map the flow region in (x,y,z)-space to a computational region in

(,n, )-space according to a transformation of the form

- (x,y,Z;t)

. - n(x,y,z;t) (15)

; =(x,y,;t)

In Eq. (14) the source terms, P, Q, and R, csn be used to control the coordi-

nate system. The time dependence of the transformation is a result of the

boundary movement. These methods are extensions of the methods first

successfully employed by Thompson (Ref. [4). As usual the techniques are

capable of treating arbitrary flow regions. This capability has been enhanced

by the introduction of computational regions which are constructed from an

arbitrary number of rectangles (boxes in 3-d) which are fit together so as to

yield a suitable set of coordinates. Details on constructing such

computational regions are given in another paper at this conference (Ref. (S1)

which describes a recently-developed program for generating such arbitrary

• . - ->.
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transformations in two dimensions.

For computational purposes the generating system of Eq. (15) is

transformed to the computational space by interchanging the dependent and

independent variables. For the two-dimensional case (which for simplicity is

discussed hereafter) the transformed generating equations are

ayF 28x Tiyxn 
2  n (16)ny 2 +y -02 +O

'0 02 n + YYTin + J2(Py + Qy) 0

where
2 2

a x + yn xy + yY" x2 n 2 n n(17)
y + y x xY n - XnY

~n n~

and subscripts indicate differentiation. The transformation can then be de-

termined by solving Eq. (16) subject to appropriate boundary conditions.
4-"

These conditions usually specify the dependence of x and y on and n along

the boundaries. Alternative conditions, such as the requirement that coordi- V

nate lines be orthogonal in physical space at a specified boundary, can also
. ~ b applied...

The governing equations of the fluid flow must also be transformed to the

(C,n) coordinate system. Eq. (6) is rewritten as

C - 204 n + Ynn+ O n+ = 0 (18)

* where

O , J2 Qj2 P (19)

The 2-d version of Eq. (8) transforms to

t to - constant xt gy I n t n n

(Yn# - Y )2 + (x. ol - x 14)21/(2J2) (20)

-gy cn n a nL

where n. Is the coordinate line that coincides with the water surface. The

i' ,*- - .. '*.12
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kinematic free-surface condition of Eq. (Ila) can be written in the form

(Y dx - constant . (y - yt T1)y 10Jx) (21a)
+ (x* -X* &)/J at n n

while Eq. (lib) takes the form

dx/dt - (x X Vn I
on n= r (21b)

dy/dt - (y* - Y T)/J

Other boundary conditions such as Eqs. (12) and (13) can be applied by using

the expression for the derivative of f normal to any boundary

*V • n - [$ (g'yn + x ) - *(g'y + x )I/ [DO( + g')211/2 (22)

where g' - dy/dx is the slope of the boundary.

Since the coordinate system is needed for the solution of the flow problem

and yet the coordinates cannot be computed before the free-surface location is

known, the determination of the flow and of the coordinate system must be

carried out simultaneously. This can be done with a fairly straightforward
marching procedure. If the solution is known at any time, the free-surface

position can be advanced in time according to Eq. (21a) or Eq. (21b).

Similarly, the potential on the surface can be advanced according to Eq. (20).

A coordinate system can be computed at the advanced time according to Eq. (16)

and the new surface geometry. Finally the complete flow field can be computed

by solving Eq. (18) with the aid of the new coordinates and with already-

computed surface values of t as a boundary condition. Of course, such a time

integration is impossible to carry out exactly, so numerical techniques must

be used.

t NUMERICAL TECHNIQUES

This section presents the basic details of the numerical aspects of both

the coordinate generation and flow problem solution techniques that we have
been using at DTNSDC. The domain of integration in the (E ,T) - plane is -

covered by a uniform network of points (Ci- i,ni- J), with i - 1,..., It and
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J - 1,..., JE. If the computational region is a rectangle, all these points

are included in the region. However, if the shape of the region is more corn-

plicated, many of the points may not be involved in the computations. The

differential equations are replaced by difference equations involving the

values of the variables at the grid points of interest.

To compute the coordinates, Eq. (16) is replaced by central difference

formulae yielding

-! Y i,j 1 !

}+ = [(, +J P ~/2) ilx xi+l 

+j ( (a¥1 2,P /2)Y -J Yi+I

,. ~ ~ix.'- (2) l.
" +(a i'j-j i P i'J/2) 1xYlj

i+l,j+ I +Xi-l,j I - i-l,j+l

+i 2 + Yi-l,j-I -Y

-K

+- -Y l ]/2(cij + ) 'j)

where aiJ $1J ?l, and J3, are central difference approximations to Eq. .

,: (17). Source terms Piu and i, are specified to yield suitable grids for ;.

the prticular applications.

For convenience, Eq. (23) is solved by successive overrelaxaton (SOR).

Opdlmui overrelaxation factora are determined through omerical

experimentation. It has been found (Ref. [6]) that on vector processing

computers mesh g[eneration equations such as theae can be solved very

efficiently with 50K by sweeping the mesh in the so-called "red-black" or
"four-color" manner.

F4

-(S.~ 12. ' 
li-'- -,~

- , , ." .-
(17). Source terms P and j are s

the~~~ patcua ppiatos
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Eq. (18) in replaced by the difference equation

+i,-'1,1 /2)# i-l,j + (Y ~+0 ~/2)#ij~
* .j ipi iii i~l+j

(24)+(Ytilj-O Wj/2)# i,j.1- ( 1i 1/2)(# i~ llj+ l

"*il'jl _ -i+ljlt- I_1,+l) / 2(ci,1 + Yi~l)

which is also solved with SL

Euler's modified method of time differencing is used to replace the

free-surface boundary conditions of Eq. (20) and Eq. (21a) or Eq.(21b) with

difference equations of the form
n+ l  f n  At(Fl + F n)/2 (25)

where the superscripts refer to time levels, At is the time increment, f.

represents a quantity to be advanced in time at the i free-surface grid

point, and F Is a finite-difference approximation to the right-hand side of

the corresponding free-surface condition.

The implicit system of Eq. (25) Is solved iteratively for the surface

values of # and the surface location at the advanced time level. The

iterative solution of these equations is combined with the iterative solution

for the velocity potential and the coordinate system. Thus the new coordinate

system and flow field are computed simultaneously. The iterative procedure at

each time advancement can be started with initial estimates of surface

location, potential, and coordinates obtained by extrapolation from previous

time levels. The iterations are halted when the precentage change from

iteration to iteration of one or more of the dependent variables Is less than

some specified small number.

Numerical solutions of nonlinear free-surface problems are highly suscep-

tible to numerical instability, leading to oscillation from grid point to

grid point at the surface. Such instability seems to be a standard feature

of the numerical solution of nonlinear water wave problems, independent of

the numerical technique. The standard method for eliminating the instability

is to apply a filtering technique described by Shapiro in Ref. (7). After

. ....=.
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each time advancement, new free surface quantities are computed according to

smoothing formulae, such as

fi a [fi+2-f1-2+(fi+l+fi f /16  (26)

Such filtering has been found necessary by many researchers (e.g., Ref. [8

and Ref. [9j), However, in a recent private communication, S. Orozag

described some work on his generalised vortex method in which he found that,

if numerical errors are carefully minimized, filtering is not necessary.

SELECTED RULTS
Some of the earliest work on the use of boundary-fitted coordinates for

the solution of nonlinear water wave problems was carried out by Thompson

and his colleagues at Nississippi State University (e.g. Ref. [101). Previ-

ously they had carried out viscous and potential flow calculations for flows

about arbitrary bodies in an unbounded fluid using a transformation to a

rectangular computational region. The far-field boundary conditions were

applied on one side of the rectangle. To handle the free-surface flows

part of this boundary was converted to a free boundary. Impressive results

were obtained for viscous free surface flown about hydrofoils, although the

coordinate system, which was well-suited for infinite fluids, had obvious

deficiencies for the water wave problems. To overcome some of the defi-

ciencies, a T-shaped computational region was also used. Although this

c' yielded even better results, further improvements were necessary.

For the free-surface potential flow problems being studied at the time

at DTNSRDC an H-shaped computational region was used as shown in Figs. 1 - 5,

taken from Ref. [11. The resulting coordinates have the good properties that

coordinate lines wrap around the body, yet away from the body the lines

conform well to the free surface and bottom boundary. In addition, the number

of points on the body is independent of the number used to define the water

surface. Two problem areas in which the transformation is singular and

six-sided cells are generated can be noted in Fig. 3. Source terns P and 0

are used in the Poisson generating system of Eq. (16) to Improve the

resolution in these regions. Grid points are not placed at the singular

points. We have seen no indication of fundamental problems from such

slngularities, although further study seen warranted on whether a numerical

tl 4
, ".j

* L A&



--... t5--!

396

solution will converge to the exact solution in such a situation as the mesh

is refined. We now know how to construct a better coordinate system which has

* ,- less of a resolution problem from these singularities. A suitable mesh can be

constructed without any attraction near the singularities. Such a system is

currently being used for a submerged hydrofoil and is described in Ref. 151.

4Y

Lj
1X

Pig. 1. Translating circular cylinder below a free water surface.

€B
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Fig. 2. Computational region for translating circular cylinder.
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The coordinate system of Fig. 3 was applied to translating and oscil-

lating circular cylinders. Typical results are presented in Figs. 4 ad 5

Fig. 3. Coordinate system for submerged cylinder at rest.

0.01 11J

-0.5

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0
x

Fig. 4. Computed evolution of the water surface after an abrupt
acceleration to the left of a submerged circular cylinder (at x-0).

nonlinear, steady-state linear.
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(lef. 1111). The cylinder Is centered at x - o, and at time t - o is accel-

*rated leftward abruptly to a constant speed. Calculations are carried out

in a moving reference frame. The nonlinear numerical results are compared

with a computed linear solution in fig. 4. It is apparent that nonlinear

effects are significant. A wave grove behind the cylinder to a point at

which the computations cease to converge. In reality the wave would break,

but the numerics are unable to continue farther into the breaking process.

A few shortcomings are apparent in Fig. 5. As the wave grows-, the distance

• J j

Fig. 5. Coordinate system for submerged translating cylinder
showing wave development.

between grid points on the free surface increases, because the x-coordinate "

of each grid point is held constant while the y-coordinate is computed

according to Sq. (2Ia). Also the grid lines below the surface do not move far
t enough upward with the surface to maintain adequate resolution. Further

problems with the singularities in the transformation can be seen in fig. 6,

where results for the oscillating cylinder are presented. These calculations

were carried out as the cylinder oscillated horisontally in a fixed reference

frame. The source term attraction which was chosen for the cylinder at rest

', *
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is not suitable for maintaining good grid point distribution at all times.

Time-dependent attraction such as that used in Ref. (6) probably would have

helped.

Many improvements were obviously called for in the coordinate systems

that were used up to that time. Fortunately such improvements were regularly

appearing at DTNSRDC and elsewhere. About that time the interesting results

of Longuet-Higgins and Cokelet (Ref. [81) came to our attention. Using an

t

1.

i

~t= 1.5

i

I I = Iffi l 8

Fig. 6. Time dependent coordinate system for swaying cylinder.

45
a. - -



-v-

400

exact mapping they studied the problem of the breaking of a large-amplitude

periodic wave. They were eventually able to continue the calculationa until

a jet of water shooting outward and downward from the breaking wave tip just

contacted the water surface. We applied the boundary-fitted coordinate system

finite-difference method to the same problem to see how much of their result

v could reproduce. A rectangular computational region was used. Previously

unpublished results are presented in Fig. 7, which is a superposition of

* computed wave profiles at several times. The calculations accurately

- ;reproduced the previous results until about the time that the water surface

became vertical; then the computations broke down. It can be seen that at

that time the coordinate system was becoming quite distorted, vith large

deviations from orthogonality. Even so, these results represent a consider-

able advancement over the submerged circular cylinder effort and were achieved

by applying improved techniques. A fixed frame of reference was used and the

°'4 4

Fig. 7. Computed two-dimensional breaking wave development.
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surface grid points moved with the fluid acccording to Eq. (21b). This led

naturally to a clustering of grid points near the wave peak. A source term

used by Plant (Ref. [131) and similar to those derived by Thompson (Ref. [14])

and Chia, et al (Ref. [15!) was used to attract horizontal grid lines toward

the free surface. The effect of the source term is to maintain boundary

coordinate spacing throughout the fluid and thus overcome the tendency of

Laplace-generated systems to yield uniform spacing in the interior independent

of boundary distribution. Grid lines are concentrated near the free-surface

- at the upstream and downstream boundaries, and the source term attraction

serves to maintain this concentration beneath the entire free surface.

However, even with these improvemento, calculations could not be continued

beyond the time at which the surface became vertical. In fact, it is not yet

clear whether the boundary-fitted coordinates can efficiently handle the

curling over of such a wave. A possible technique for carrying the

computation farther was proposed by Ghia et al in Ref. [16). It was suggested

*that, as the wave grows, the computational region be modified to that pictured

in Fig. 8 to yield a coordinate system fitted to the breaking wave as

A' I' Oc

I.

E F

Fig. 8. Computational domain for breaking wave proposed by
U. Ghia and K. Ghia.
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displayed in Fig. 9.

E F

Fig. 9. Coordinate system for breaking wave.

After the breaking periodic wave calcujlation was completed, we chose to

apply the improved tqtchniques to breaking waves associated with a ship-like

body in the water surface. One of the simplest such problems In for an infi-

j nitely wide (2-d), infinitely long (no how) transom stern. in Ref. [171

results were reported on the generation of breaking waves behind such a body

after acceleration from rest as displayed schematically in Fig. 10. Results

Y

U4.: 89110) -

+ sW - y --d

SQ3  *x 0QIt

O4

PIg. 10. Two-dimensional transom stern moving over water surface.
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are presented in Fig. 11. Important details about transom stern flows were

t :52.0

. t =63.8
4h

... ... ...

iI

Fig. 11. Computed breaking wave behind transom stern -

moving to the left.

revealed. Again, a simple rectangular computational region was used.

However, the upper boundary was divided into two parts, the free surface and

the hull bottom. Since grid points moved with the water, many points under-

went a transition from the hull boundary condition to the free-surface condi-

tions. Such a transition posed no problem for the techniques.

Coordinate systems have also been developed for 2-d ship hull cross

. - . 4 , .. - ., - , -
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sections, and an example is presented in Fig. 12. Preliminary ship motion

calculations have been carried out in which these bulls are oscillating

-aM

Fig. 12. Coordinate system for ship hull cross section.
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vertically (heaving). But in such an application we run into a difficulty

which must be overcome before truly accurate and stable nonlinear numerical A

calculations can be carried out. The potential flow field contains singu-

larities at the intersections of the water surface with rigid boundaries.

These singularities have yet to be understood both mathematically and

numerically.

The coordinate generation techniques for free surfaces have also been

extended to three dimensions (Ref. 118]). They have been applied to a few

simple hull geometries such as those shown in Figs. 13 and 14. How best

• COMPUTATIONAL.

REGION

Fig. 14. Coordinate system for a finite circular cylinder.
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to apply the methods to 3-d, in particular, the kinds of computational

regions to use for complicated ship wave geometries, is not clear. So far

we have carried out only linearized 3-d flow calculations for which numer-

ical coordinate system generation is not necessary. Hovever, efforts
are currently underway to study the nonlinear 3-d equivalent of the transom

stern flow previously described in this section.

CONCLUSION

Over the past few years numerical coordinate system generation technol-

ogy has developed at a rapid pace. These techniques are a powerful addition

to the tools available for solving problems in physics. At the David W.

Taylor Naval Ship R&D Center contributions have been made to this development

and the methods are being applied to ship wave problems. Arbitrary

computational regions facilitate the treatment of arbitrary time dependent

physical flow domains. Such an approach resulted in considerable progress in

the solution of previously unsolved nonlinear free surface problems. Efforts

are continuing on the application to ever more difficult and realistic

configurations.
Considerable further research on coordinate system generation is warrant-

ed. Automated coordinate control is one important objective. It remains to

be seen how these techniques can be carried toward the ultimate goal of

numerically modeling the complete flow field about a ship as it moves in the

water. It is possible that other developing numerical methods will prove to

be more useful for certain problems. Even if this occurs, the boundary-fitted

coordinate system approach will still be available as a powerful, easy to

apply tool that has made a significant contribution to our understanding of

nonlinear free-surface flows and of ways to model them numerically.
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NUMERICAL MODELING OF ESTUARI IE HYDRODYNAMICS

ON A BOUDARY-FITTED COORDINATE SYSTEM

BILLY H. JOHNSON
U. S. Army Engineers Waterways Experiment Station, P. 0. Box 631,
Vicksburg, Mississippi. 4

INTRODUCTION

- Physical models of rivers, estuaries, and bays have been utilized for

years to model the hydrodynamics of those bodies of water. However,

physical models are more limited in addressing water quality problems

which have received more emphasis in recent years. With the advent of

• digital computers over the past 20-30 years it has become feasible to

develop numerical models to determine the chemical and biological changes

that occur if the physical character of an existing estuary is changed,

e.g. by dredging, diking, or permanently changing the freshwater inflow.

Solving such problems requires predictive models to compute the distribu-

tion of currents and circulation in the water body. These results are

then used to predict the distribution of quality parameters. - -

* Although all hydrodynamic models are similar in nature, estuarine

models pose additional problems of scope and complexity. Estuarine hy-

drodynamics are determined by the interaction of the tides from the ocean

and the influx of fresh water from the rivers, modified by the influence

of the semienclosed physiography containing islands, embayments, etc.

In addition, the hydrodynamics can be further altered by gravitational

circulations arising from density gradients.

There have been many numerical estuarine hydrodynamic models de-

veloped since the pioneering work of Leendertse I in the aid 1960's. The

majority of these models employ the method of finite differences to

solve the equations of motion on a rectangular grid with fixed-grid

spacing. As a result, irregular boundaries are represented in a "stair-

stepped" fashion. In addition with a fixed-grid spacing, if the spacing

is made small enough to represent islands, embayments and/or channels in

sufficient detail for currents induced by these features to be computed,

grids that are so large as to make computations uneconomical can result.

Over the past few years attempts have been made at more accurate

handling of irregular boundary and/or internal features. The development

PRE IOS P--

IS BLA141K

NO J



410

of hydrodynamic models employing the method of finite elements is one

approach that has been taken.2  Paralleling the development of finite

element hydrodynamic models has been the implementation of techniques

within the finite difference framework to address the problem of handling

irregular boundaries and/or variable grid spacing. Examples include
3 4Wanstrath's conformal mapping of storm surge areas, Waldrop's, et al.,

use of an orthogonal curvilinear grid in river studies, Rodenhuis', et

al.5 , implementation of embedded rectangular grids, and the use of grid
6 7

stretching by Waldrop, et al., and Butler. Over the past 3 years work

* has been conducted at the Waterways Experiment Station on the development

of a two-dimensional vertically averaged estuary model8 employing

Thompson's work on boundary-fitted coordinates. 9 Thompson'.s method

generates curvilinear coordinates as the solution of two elliptic partial

differential equations with Dirichlet boundary conditions. No restric-

tions are placed on the irregularity of the boundaries, and fields

containing multiple bodies or branches can be handled as easily as

simple geometries.

The above efforts have all been concerned with the more accurate

modeling of features in the horizontal plane, Lick's 0 three-dimensional

model employs a transformation of the vertical dimension that allows for

the water depth to be mapped between the values of 0 and I. Such a

transformation allows for bottom topographies to be more accurately

*handled.

} Although both three-dimensional and laterally averaged hydrodynamic

models have been developed, the discussion to follow concerns only the

numerical modeling of flow in estuaries that are classified as well

mixed, i.e., the vertically averaged approximation is appropriate. The

governing equations are first developed in cartesian form before being

*transformed for solution on a curvilinear grid. An example utilizing

the rticallyveragedydrodynamic odel (VAHN) serves to demonstrate

the practical aspects of generating an estuarine flow field on a

boundary-fitted coordinate system. -

VERTICALLY AVERAGED ESTUARINE HYDRODYNAMICS

Classification. Many physical'variations of natural estuaries exist .

and as a result various kinds of estuaries are often described in the

literature. Terms such as tidal, stratified, well mixed, etc. are often

IA
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found. Glenne has attempted to classify estuaries according to the ef-

fects on mixing by factors such as, depth, length, cross-sectional area,

tides, friction, and advective flow. Figure I is a schematic sketch of

this classification system. As indicated, the estuaries of concern here

are well mixed with large openings to the sea. A vertical averaging of

the governing equations is appropriate for such systems.

Governing Equations in Cartesian Coordinates. The Navier Stokes equa-

tions express the conservation of mass and momentum of a flow field and

are the basic governing equations for the solution of any fluid dynamics

problem. Written in tensor notation these equations are

Continuity:8t * +--p- = 0 (1)at ax. I

apu O(pu.u.) -aP aT..
Momentum: 3 . = +t Pg i -2c a puk + (2)

a8.' ixjk a x.

All symbols used in the text are defined in Appendix A.

If the effect of density gradients are considered, a conservation of

mass equation must also be written for the salinity.

as
as + (su i) (3D) x-Salinity: as "-axi ex.

This equation states that the salinity can change as a result of advec-

tion by the flow field and molecular diffusion.

Since the salinity is coupled to the flow equations through its in-

fluence on the density, one additional equation remains to be written in

order to close the system. An equation of state expressing the density

as a function of the temperature and salinity must be employed.

Equation of State: p = p(T,s) (4)

With the closure of the system, there exists six equations to be solved

for the six unknowns; density -p , three velocity components -u,v,w

pressure -p , and salinity -a.

, 4. .~ . " •.ip
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Time Averaging for Turbulent Flows. The above equations written with

molecular values of viscosity and diffusivity are only applicable in a

practical sense to laminar flow fields. However, most fluida in motion

exhibit random irregular fluctuations and are referred to an turbulent

flown.

Following Reynolds, the approach normally taken to make the equations

applicable to turbulent flows is to assume that the dependent variables

are composed of an average time-varying component plus a small randomly

varying component about the average value. Integration of the equations

over a time increment At then produces the same form as the previous

equations, but now written with the time-averaged components as the

dependent variables, plus additional terms involving products of the

4i randomly varying components. Boussinesq's concept of eddy viscosity

(diffusivity) is then used to relate these terms to the mean flow
- field. "

Depth Averaging for Nearly Horizontal Flow. A solution of the result-

in& set of equations for turbulent flow constitutes a fully-time varying,

three-dimensional model of the flow and salinity fields. However, when

modeling nearly horizontal flow in relatively shallow and well-mixed

water bodies the usual approach is to employ a spatial averaging to yield

a two-dimensional model.

The basic assumption in the spatial averaging of the time-averaged

three-dimensional equations is that the dependent variables can be

represented by an average value over the depth plus some small random

deviation. An integration over the water depth then yields a set of

equations with the time-averaged and depth-averaged components of the

flow and salinity as dependent variables plus additional ters involving

the random deviations. As in the time-averaged case, these term are

normally approximated through the use of eddy coefficients. These are
* - 12

referred to as eddy dispersion coefficients by Holley to distinguish

them from the turbulent eddy diffusion coefficients arising from the

time averaging. An excellent discussion of both time and space averaging

can be found in Reference 13.

The resulting vertically averaged equations are presented below. It

should be noted that the Boussineaq approximation has bees made, i.e.,

the effect of density variations is neglected in all terms except those

multiplied by the acceleration of gravity.

vim-
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Contiauity O~h (h (5)1
at ax by

K-momentum: 8(hu) I, a(hu2) = - ii a_

a t Bs y

ax i BY

+ -f~ f Xyu(y
By

x x

y-momentum b(bv) + BEhuv) + B(bvz) h S
at as By p 5y

ah & 8W h+ 1 + y ay
ax By

+ 'Es -TB -Thu (7) I ~ h

y y

8(ha)8 hhu Lavs - 8E a

Salinity: Byhs +-bs ax B y (B)
at -T by as B

The equation of state relating the water density to the salinity and

water temperature (aaaumd constant) has been taken from Leendertse 1
4

and is given as

p(s,T) 1000 A + AW P0 (9)

where

AL = 1779.5 +. 11.25T 0.0745T2 (3.80 + 0.01?).

MLO = 0.6980

PO0 5890.0 +. 38? - 0.375T2 + 3a

In the above equations the surface wind shear Is-
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W

x = c Pv cosa (10)

-pv sin o (11)Sy Po Pa

and the bottom shear is i
TB = gu j" 2, 2 (12)

I

B gv u + /C 2  (13)

The coriolis parameter, f , is computed from .

. f = 2u% sin A, (14) t

where w = earth's angular velocity and X is the angle of latitude of

the center of the area being modeled.

In order to finalize the above system of equations it remains to

*couple the salinity computations with those o. the flow field. Assuming

that the pressure is hydrostatic, it can be shown (see Reference 8) that

', the horizontal pressure gradient terms can be written as

O8  = a +Ih 2

e x8x 2 (15) " -

and

ap ap a.
h1 h + hpg + hg a (16)

Substituting Equations 10-16 into Equations 5-8 would then yield the

final form of the governing equations in cartesian coordinates.

Required Input Data. The vertically-averaged equations of mass

continuity, momentum, and salt balance, along with the equation of state,

represent a set of five equations which can be solved simultaneously for

C,-
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the five dependent variables u , v , , * and p provided the neces-

sary numerical values of the initial and boundary conditions along with

a description of the estuary are available. The required inputs for

numerical solution of the equations can be summarized as follows:

(a) The physical dimensions of the estuary;

(b) The temporal and spatial distribution of atmospheric pressure and

of surface wind over the computational period;

(c) The fresh water inflow to the estuary as a function of time;

(d) An average water temperature in the estuary;

(e) Values of the Chezy resistance coefficient as a function of

position in the estuary;

(f) Values of the various eddy diffusivity and viscosity coefficients

as a function of position in the estuary and of time;

/ (g) Values of the surface elevation # and the vertically-averaged

* . salinity s as a function of time along the seaward boundary;

(h) An initial set of values of the dependent variables at all posi-

tions in the estuary.

The primary focus of the remainder of the paper concerns the first, i.e.,

techniques for accurately handling the estuary geometry in the horizontal

directions.

HORIZONTAL GRIDS INPLOYED IN MYDIOOYNAHIC HODELS

The earliest developers of vertically averaged estuarine hydrodynamic

* .models all solved the basic mass continuity and momentum equations on

a rectangular grid with uniform grid mesh. The computation of the

salinity field and its coupling with the flow was not attempted. Al-

though the majority of estuarine models solve the governing equations

on such rectangular grids, there have been attempts at developing models ...k

that handle irregular boundaries in a more accurate fashion while re-

taining the method of finite differences for solution.

Confomal Curvilinear Grids. Vanstrath3 developed a vertically

averaged numerical model for computing storm surges at coastlines through

the use of conformal mapping. A spatial region of prototype space is

conformally mapped into a rectangle in a mathematical image plane. To

provide an evenly spaced computing grid an independent stretching of the

coordinates is thee performed.
4

Orthogonal Curvilinear Grids. Although the Waldrop, et &I. hydro-

dynamic model was developed to enlaynse hot water discharges from power

I
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plants rather than for application in an estuarine environment, it de-

serves mentioning due to its use of an orthogonal curvilinear grid which

is generated algebraically. As with the grids generated by Wanstrath

through conformal mapping, these grids lack generality in that boundary

point selection and grid spacing is not arbitrary. In addition, in-

terior bodies are not allowed in either the Wanatrath or the Waldrop

models.

Stretched Rectangular Grids. In addition to Wanstrath, others such
6 7as Waldrop, et a1. and Butler have employed the use of independent

stretching of the horizontal coordinates to improve grid spacing. For

example, the stretching transformation in Waldrop's buoyant plume compu-

tations is

X-Ltan- x

(17)

'A tY husIct-nc c 4

thus if c= n/2 then at x = , X = 1.0 . Even increments of AX

thus produce a close spacing of grid points near the plume entrance,

where the best resolution is desired, and yet extend the region of
computation far frm the origin so that boundary conditions can be more

* easily specified. Other researchers have employed different stretching

functions, e.g., Butler employs an exponential form of stretching.

Boundary-Fitted Coordinate Systems. Through coordinate transforms-

tions, irregular boundaries and variable grid spacing can be more

accurately handled while still making use of the simplicity of finite

differences to obtain solutions. An extremely general coordinate trans-
9formation results from a method developed by Thompson which generates

curvilinear coordinates as the solution of two elliptic partial differ-

ential equations with Dirichlet boundary conditions, one coordinate being

specified as constant on the boundaries, and a distribution of the other

specified along the boundaries. No restrictions are placed on the irregu-

larity of the boundaries, and fields containing multiple bodies or

branches can be handled as easily as simple geometries. Regardless of

PIT,
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the shape and number of bodies and regardless of the spacing of coordi-

nate lines, all numerical computations, both to generate the coordinate

system and to subsequently solve the fluid flow equations, are done on

a rectangular grid with square mesh.

Since the boundary-fitted coordinate system has a coordinate line

coincident with all boundaries, all boundary conditions may be expressed

at grid points, and normal derivatives may be represented using only

finite differences between grid points on coordinate lines. No interpo-

-lation is needed, even though the coordinate system is not orthogonal

at the boundary.

Since Thompson has discussed the basic development of boundary-fitted

coordinates earlier in these proceedings, only a few high points will be

presented here. A logical choice of the elliptic generating system is

Poisson's equation. Thus for a domain such as illustrated in Figure 2

the basic problem is to solve

Exx + Cyy = P

. io Q(18) '!nxx + rqyy MQ

awith boundary conditions

E= t(x,y) , l= coast on r; = 3 (x,y) ,n const on r3

t ( r,y) n = coast on r5 ; 7 (x,y) , q= const on r 7

rr= q2 (x,y) , coast on r 2 ; n =rn4 (x
'y) =costonF4  ( 4

n= %(x,y , = coast on r6  n = q8 (x,y) , = coast on r.

The functions P and Q my be chosen to cause the coordinate lines

to concentrate as desired. The form of these functions incorporated by

Thompson, based upon much computer experimentation, is that of decaying

exponentials.

++'+':" I m... .
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Since all numerical computations are to be performed in the rectangu-

lar transformed plane, it Is necessary to interchange the dependent and

independent variables in Equation 18. Using the expressions for

Env , rjxx and yy that have previously been presented by Thompson,

Equation 18 becomes

axa - 2pY - +n 4. J2(Px + Qxn) 0

(20)

2. iv... . 2 +y, ,n +, j (Py t Qyj O 0

where

2 2 ,""

~.J.p = XXrl y~yq(21)

2 2

J = Jacobian of the transformation = yn -Y4

with transformed boundary conditions from Equation 19.

Although the new system of equations is more complex than the original

system, the boundary conditions are specified on straight boundaries and ..

the coordinate spacing in the transformed plane is uniform. Compute-

tionally, these advantages outweigh disadvantages resulting from the

extra complexity of the equations to be solved.

The rectangular transformed grid is set up to be the size desired for

a particular problem. Since the values of t and q are meaninSless
in the transformed plane, the q lines are assumed to run from I to the

number of n lines desired in the physical plane. Likewise, the

lines are numbered 1 to the number specified on the boundaries of the

physical plane. The grid spacing in both the and q directions of

Van-r.. , " ' ' ~ ~~~~~~~~. " '" :'" 'J-'' *•.:,
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the transformed plane is taken as unity. Second order central differ-

ence expressions are used in Thompson's coordinate generation code,
TOMCAT, 15 to approximate all derivatives in Equations 20 and 21. The

resulting set of nonlinear difference equations, two for each point, are

solved in TOMCAT by Accelerated Gauss-Seidel iteration.

The sAme procedure may be extended to regions that are more than

doubly connected, i.e. have more than two closed boundaries, or equiva-

lently, more than one body within a single outer body. A river reach

containing more than one island is an example. As will be illustrated

later, the basic data required to generate a boundary-fitted coordinate

system are the physical coordinates of points on the boundaries. The

computing cost is trivial.

As a final note, both conformal and orthogonal coordinate systems

are special cases of boundary-fitted coordinates as generated from el-

liptic systems. Additional discussion is provided by Thompson, et al.16

TRANSFORMATION OF VERTICALLY AVERAGED EQUATIONS

B oundary-fitted coordinate systems generated from an elliptic system

-~ provide extremely general grids for computing flows in estuaries. As j
previously discussed, all computations are to be made in a transformedIrectangular plane. Therefore, Equations 5-9 must be transformed such

4 that ( q ) are the independent variables. To accomplish the trans-

formation, the following expressions are utilized

(22)

It should be noted that these expressions are written in a fully con-

servative form which should result in a more accurate solution in highly

irregular coordi,. ti systems.

Applying the above expressions, with the assumption that the coordi-

nate system is time invariant, the transformed set of equations to be

A
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solved for the computation of vertically averaged flows is given below.

Continuity: a+ j[(ut,1  vbx,)*(vz 0 (23)

r.-1omentum: at * -u Y, uvx,) + (huvx~ - hu yt)

-i(paoq\ (P.o,3~ [ * - (Ir

hp DhnPt j

__ I KUyn ( (Uy q

~~ - ~+ (uxt) )XI] ~ (~x~

(U t + paV, osa-4 fhV (4

r 0 * S~ 4
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7'Montuu + hv2x huvyt) +* (buq - hV2Xq),

at -

rr

- (y~ IiL Ilvylytl 
I I

i~ v''I/t

+pEPv2 $in ~a v,-2tiC2 -fbu (25)
0
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Salinit: 4. bu[swy. hvex.), t(hvsxt -husyt)

s (st ) t

rh

I,.."

(aq +(~))xnjt 1?/ ( sxq )t + ex 4 1 (26)

Eq. of State: p = p (•as.,),T) (27)

The above set of equations constitutes the set for which a numerical

solution is sought on a rectangular grid with square grid spacing (e.g.,
At a = z 1.0). It remmins, of course, to specify proper boundary con-

ditions along the sides of the rectangular grid. Depending upon whether

a side contains a solid boundary, an ocean, a river, or sa combination

of the three; a slip or no-slip condition, a tide curve, or a fresh water

inflow might be prescribed over the computational period.

VAIN - A VERTICALLY AVERAG !TC W)TN M M NOS.L
To obtain a solution of the governing set of Equations 23-27, finite

differences are employed. Finite difference schemes range from fully *'"',A
explicit to fully implicit, with a combination of an explicit-implicit

,o4
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scheme being employed in some cases. Such a scheme has been implemented
in the recent development of a vertically averaged model called VARK.8

Basically, the computational cycle consists of the following steps:

a. Solve for the water surface from the continuity equation in a

fully implicit fashion.

b. Using the most recent values of the water surface elevations,

solve for the u and v velocity components from the x and y

momentum equations in an explicit fashion.

c. Solve for the salinity from the salt transport equation in an

explicit fashion.

d. Compute the density from the equation of state, using the most

recently computed salinity field.

e. Step forward in time and repeat the sequence.

Such a scheme has the stability criterion associated with the speed of a

free surface gravity wave removed; although, diffusive criteria as well

as the Courant condition associated with the speed of a water particle

remain. However, these criteria are not normally overly restrictive.

Computational Grid. The grid in VAHN is rectangular with a grid

spacing of AE = bq = I . The u and v velocity components are com-
puted at the corners of each cell with the water surface elevation,

salinity, and density computed at the center of a cell. The (x,y) co-

ordinates are specified at the corners, the center, and at the midpoint

of each side of a cell. Diffusion coefficients are specified at the

velocity points while water depths and Chezy coefficients are located
at the cell center.

Differences. The basic difference equations solved in VAIN are de-

veloped using forward differences for all time derivatives. Centered

differences are used in all spatial derivatives except in the convective

terms. One has the option of requesting the use of either centered or

a form of upwind differencing in the momentum convective term while a
fourth order flux corrected transport scheme as outlined by Zalesk17

can be requested in the transport equation for salinity.

As previously noted, the water surface elevations are to be computed

using an implicit scheme. Thus, in writing the difference form of the

continuity equation all spatial derivatives are taken at the new time

level (nil). Equation 23 becomes

* -S
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.n+l . v , nt o
"+ te d en u e n n+l on+

..L uhynl - m - -ho + (vh,j

at ic (uhy.).W yE

I~ ~hx~~ * .ilI~ nl 1

In the x and y momentum equations, all terms are taken at the old

time step except the water surface slope term which is computed at the

new time step. Therefore, the difference form of the x and y

-t momentum equations becomes

*+1

*I(hu)"-(hu)c n \Vw (,Yon +

At 2P (yYon+I + \n4

+ Fn (29)

n+1 n
At "'o " )N .

+ Gn (30)

If one substitutes into Equation 28 for the values of (uh)'3 l and

(vb) on the faces (from Equations 29 and 30 with appropriate

• 1 , "s
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averaging) an equation containing only * at the (n+l) time level

results. This equation is. then solved for #c by using the Accelerated

Gauss-Seidel solution technique.

After the water surface elevation at the center of each cell is de-

ternined at the (n*l) time level, values of un l and vn+l at the

cell corners are explicitly determined from Equations 29 and 30 using

the new #'s at the (nil) time level. It might be noted that the ex-

pressions for F and G are only computed once during each time step.

These values are then used in first the iteration on the water surface

and then in the velocity computations.

* In the computations of * , u , and v , the density is taken at the

old time level. Its value at the new time level is computed from the

equation of state relating the density to the salinity at the new time

level. New salinities are computed from an explir't representation of

the salt transport equation (Equation 26).

Boundary Conditions. Three types of boundaries ao z.i.owed in VAHM;

walls, oceans, and rivers. Wall boundaries are characterized by the

specification of a no-slip condition, i.e., the velocity components u

and v are set to be zero at walls. Slip conditions would be imple-

mented by setting the normal component of the velocity equal to zero with

the tangential component computed from the expression for zero vorticity.

Ocean boundaries are characterized by the specification of a time

varying water surface elevation at the boundary. Velocities on the

ocean boundary are then computed from a simplified form of the momentum

equation where the diffusive terms have been neglected. One-sided dif-

ferences are used to replace derivatives that need points outside the

field.

When the flow is directed into the computational field, the boundary

condition on the salinity is prescribed as that of the ocean. lowever, "

when the flow is moving out of the computational field, the salinity at

an ocean boundary is set to be equal to its value at the next point

inside.

River boundaries are characterized by the specification of the veloc-

ity. The salinity is set to be zero and the water surface elevation at

the center of a river boundary cell is computed as in any interior cell.

EXMM PROBLEM ~
Generation of oundary-Fitted Coordinates. The first step in the

7 7 =!
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computation of a flow field is the generation of the boundary-fitted co-

ordinates. This is accomplished through a coordinate generation code,

e.g. Thompson's TOMCAT. Output from the coordinate code is then saved

on a file for subsequent use by VAHI. The basic input to the coordinate

code is the specification of the (x,y) coordinates of the boundary

points (see Figure 3). Although various degrees of coordinate control

can be exercised, the boundary-fitted coordinates shown in Figure 4a

that correspond to the boundary points selected in Figure 3 were co-

puted using no control. Figure 4b illustrates the corresponding compute-

- tional grid that is used in VAHI, where velocities are computed at the

cell corners and salinities and water elevations at the cell center.

* However, it should be remembered that VAHM requires that the (x,y)

coordinates be specified at not only the corners and center of a computa-

tional cell but also on the cell faces. With a geometrically conserve-

tive transformation, averaged values of the geometry derivatives should

not be used. This is the reason for generating the coordinate system

illustrated in Figure 4a.

* 'The coordinate system plotted in Figure 4a was the third attempt at

generating a useful grid system. Through the movement of boundary

points and/or coordinate control one attempts to compute boundary-fitted

coordinates such that the grid spacing does not vary rapidly and such

* that (Q,q) lines never approach being parallel to each other. As dis-

cussed earlier in these proceedings by Thompson, the reason for this is

because truncation errors related to the rate of change of the grid

spacing and to the nonorthogonality of the grid are present.

Flow Computations. After the boundary-fitted coordinates are de-

termined, the geometric elements in the transformation, e.g. x, , yq ,

J , etc., are computed and the flow model is then applied on the trans-

formed rectangular grid, e.g. the grid in Figure 4c corresponds to the

physical system in Figure Ab. VANN has been applied on the example grid

with a river at the top and an ocean on the bottom. A constant river

velocity of 0.40 m/s was prescribed while the tide curve presented in
Figure 5 was specified on the ocean boundary. Other input data are pre-

" sented in Table 1.

%I
S -,.
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TABLE I

INPUT DATA TO VAHM

Variable Units Value

at sec 600.0

D a 2/sec 10.0

Dxx ,2/sec 10.0

PyyE I2/sec 0.0
A.E m2Isec 0.0

m./sec 35.0
Initial depth 11.0
Initial velocity m/sec 0.0
Ocean salinity ppt 30.0

The effect of wind, atmospheric pressure variations and the Coriolis

force were all neglected. Although the example problem is an hypo-

thetical one, it is representative of an estuary such as the Delaware

estuary.

Figure 6 presents "snap shots" of the computed flow field. With the

flow field initialized to zero at a constant depth of 11.0 a, it can be

seen that the influence of the incoming tide and the river meet after

about 4 hours. After 6 hours, the ebb portion of the tide is experienced

and the flow near the ocean boundary begins to reverse. Figure 7 is

a plot of the time history of the water surface elevation at (= 6,

rl = 5) while Figure 8 presents the time history of the salinity at the

same point. Obviously if one was interested in using the computed flow

field in subsequent water quality computations, the flow model would be

run until the results over a tidal cycle had become repetitive.

SUIIARY AIM FUTUE RESEARCH RECOMM[NDATIONS

Numerical models for computing vertically averaged estuarine flow

fields are required to provide input to water quality models. By em-

ployinS the concept of boundary-fitted coordinates, irregular boundaries

can be accurately modeled in either simple- or smultiple-connected regions.

Even though the numerical grid is a nonorthogonal curvilinear grid in p .

the physical region being modeled, all numerical computations are carried .

out in a transformed rectangular grid with square grid spacing.

A:
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A feature of the particular model discussed is the solution technique

employed to numerically solve the governing equations. A combination

implicit-explicit finite difference scheme has been implemented to

remove the speed of a free surface gravity wave from stability restric-

tions on the computational time step while still retaining same of the

advantages of explicit schemes. With such a scheme, the water surface

elevation is computed implicitly using the Accelerated Gauss-Seidel

solution technique while the velocities and salinity are computed in an
explicit fashion.

The model has been developed for general applications. Any number

of river and/or ocean boundaries can be arbitrarily locate4 on the

transformed rectangular plane, as can the placement of islands in the

* interior of the computational field. Even though a treat deal of Sen-@4

erality does exist, a major restriction is that no flooding is allowed.

In most estuaries, tidal flats are alternately flooded and dried on the

be incorporated by allowing cells to flood and dry on a fixed curvilinear

grid as is done in cartesian grid models. However, a more elegant treat-

ment which deserves investigation would be to compute flows on a time-

varying grid that moves with the flooding boundaries. On such a grid,

the time derivative in the governing equations would be transformed as

follows:

Of ) =(Of

1 (f n-, - f... 
.&

One disadvantage would be that interpolation would be required to gem-

orate time series plots at fixed physical locations.

An additional problem deserving of future research concerns the at-

traction of grid points along physical lines in the domain rather than

coordinate lines that have been generated through only the specification

of boundary points. In estuarine modeling studies, sinuous channels

7 *" '
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within the estuary are often encountered. A means of forcing the com-

puted coordinate system to follow such channels is needed. As discussed

earlier by Thompson, some work has been done in this area.
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APPENDIX A- NOTATION

C Chezy coefficient

C1,C2,C C4  Constants in stretching transformation
21V

D Molecular diffusivity

D ,XD yy Diagonal components of eddy viscosity tensorf

*DxyDy Off diagonal components of eddy viscosity tensor

E ,E y Components of eddy dispersion tensor

*E(t) Tidal elevations

F Expression containing all terms in K-momentum equation
-~ except water surface slope

f Coriolis parameter; general function

G Expression containing all terms in y-momentum equation

except vater surface slope

g Acceleration of gravity J 1  .
*h Water depth

J Jacobian of the transformation

P,Q Coordinate control functions

P Pressure

Pa Atmospheric pressure

Q(t) Discharge

a Salinity

T Temperature

at Tie stop

u,v,v Components of velocity

ui~uUIL Tensor notation for velocity

v Wind speed

w~
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Vc Wind drag coefficient

X,Y Stretching coordinates

x~yoz Cartesian coordinates

&, Boundary-fitted coordinates

p Water density

00 Reference water density

pa Density of air

* Water surface elevation

T Stress tensor

E Cylit tensor

T T Componenxts of surface wind shear stress/p

ax sy

TI T B Components of bottom shear stress/p .I
x y

C9 Wind direction

X Latitude of center of modeled area

% Earth's angular velocity

fl Coriolis term

- -7-7
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INTRODUCTION

A persistent requirement in computational fluid dynamics (CFD) applications

to practical three-dimensional problem descriptions is a methodology for eco-

nomically generating three-dimensional solution grids. The basic demands for

. these grids are smooth progressions of non-uniformity in physical space and a

.7 : medium of regularity approaching orthogonality in computational space. When

accomplished, this permits algorithmic solution of the Navier-Stokes equations

in generalized coordinates, taking full advantage of efficient Jacobian factor-

imations and yielding a significant reduction in computer resource demands. "-.

, The proceedings1 of the recent NASA workshop on grid generation techniques sum-

marizes the breadth of procedures available for grid generation, including ana-

Ilytical and algebraic methods as well as numerical solution of hyperbolic and/

*. or elliptic partial differential equations.

*. Some of these procedures do not readily extend to three-dimensional space in

a natural way, especially for multiply-connected solution domains. Others can

place excessive demands on human and computer resources just to generate the

Vi mesh. A primary requirement, therefore, is an efficient interactive, three-

dimensional grid generation capability which is sufficiently flexible to adapt

* to a broad variety of geometric descriptions without requiring overly extensive

data preparation or machine resources useage.

" -_The method described herein, operates on a domain manually subdivided into

one or more subdomains called Macro Elements. This subdivision process pro- .

video generality 4o-fittingIhe method to geometric boundary shapes of high

complexity, including discontinuous surfaces. Each of the Macro Elements is

*,-" described by its associated vertex and side grid points, thus providing suffi-

cient definition for a bi-quadratic functional interpolation and admitting

simply curved boundaries. Generated grids are local to each Macro Element per-

sitting generation of hugh grids on memory limited mini computers and data spe-

cification is minimized through use of geometric progressions. 
4-.-

A methodology for piecing the Macro Element data together is described.

I!l

4

-" . .. . .... :, ... .- ::. • ., ., .,



438

The method is table driven and the table is dynamically generated from specified

Macro Element connection data. Connectivity is independent of Macro Element

orientation and the generated table locates exterior boundaries automatically

for boundary condition specification. The method is illustrated with genera-

tion of 26,460 grid points for a wind tunnel model support flow-field. Data

specification consists of 9 hexahedron shaped Macro Elements and 72 gridpoints.

MACRO ELEMENTS

Generally, grid refinement is accomplished by manually subdividing the solu-

tion domain into regular geometric subdomains called Macro Elements. In three-

dimensional space, the Macro Elements are six sided (hexahedrons),five sided

(pentahedrons) or four sided (tetrahedrons) as illustrated in Figure 1. The

Macro Elements are defined by vertex grid points and edge grid points such that
three points define any given edge. This provides sufficient information for

second degree hermitian polynomial approximation thus permitting Macro Elements

to accurately reflect simply curved boundary geometries2 .

A

a) Hexahedron b) Pentahedron c) Tetrahedron

Pig. 1. Three Dimensional Macro Elements

Each Macro-Element is arbitrarily subdivided three dimensionally to form a par-

tial grid. The partial grids are subsequently combined, eliminating dupiicate . " "

-" generated data at the boundaries, to form a singly connected, undirected loop

free mesh.

Partial grids are formed over a Macro Element utilizing a three dimensional-

second degree, hermite polynomial interpolation function. The functional

transformed space for'a hexahedron, for example, is a two unit cube on an orth-

. . ogonal coordinate system at the cube center (figure 2). Hence, the forward

" coordinate transformation is

* -- 
7
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X. X X(rn. ={r.)T {XI)(1

in equation (1) the elements of the parametric basis {N(ri.)) are for the caae

of figure 2 the bi-quadratic interpolation functions of n.i and U11) are the
coordinate criples of the vertex and edge grid points defining the hexahedron

boundaries.

'12

XI

Fig. 2. Hexahedron Transformation

As illustrative of the functional description (14(n.) consider the two dimen-

7. 4

2 51. 2

a) Physical Plane b) Transformed Plane

Fig. 3. Natural Coordinate Plane (nlqf2) Mapping of
a Quadrilateral.

For this case, (N(n.)} is evaluated at each of the vertex and side grid points

of figure 3 and appears as: 
,.

*IC ~
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(1 + 0) (U -X 1(€ )

S(l+) ( +n )( E+n-l)

(1 - c) (1 +n )(-E+n- 1)
{N(nj)} , 1/4 2(1 20 E_2) (1 -n ) (2)

2(1 *e ) (1 -n2)

2(1 -C2 ) (I +rn )
20 2(-c ) Ul-n 2 )

where E and n at the side grid points are specifically at mid-side and the

equations are ordered according to the grid point numbering noted in Figure

3(b). Substitution of equation (2) into (1) for a specific set of {x.} and

* .evaluating the equation over the limits of z and " (-l to 1) yields a biquad-

ratic approximation of x over the subdomain. Accuracy of the values of x. are

dependent upon the ability of the shape functions to approximate the physical

geometry. A curvature which is exactly biquadratic for instance will be inter-

polated exactly using equation (2). The side nodes in Figure 1(a) need not be

* . at exactly mid-side since it is not required in the definition of (N.

A rather unique by-product of the method (serendipity function family)

involves placement of the side grid points. The functional interpolation of

equation (1) is symmetric when a side grid point is at exactly mid-side in

. physical space. Hence, mid-side is the obvious location when a quarter circle

is to be approximated. Movement of the side point, however, causes a non-

symmetry to occur which becomes continuously more accentuated at less centroi-

dal locations. This effect provides a continuous selection of curvatures for

approximating boundaries of general shape, thus demonstrating broad applica-

bility of the method as a design tool.

The interpolating nature of equation (1) can be best illustrated by evalua-

ting equation (2) at the specified grid points and noting the results when

evaluating (1). For example at ni - (-1, -1), equation (2) becomes Ll, 0, 0,

': ,0, 0, 0, 0, OJ and evaliation of equation (1) for each Xi yields X1, X2, X3 at

grid point I in figure 3. Likewise, evaluation of equations (1) and (2) for

any nj point pair (-I < nj 1 ) will yield a corresponding point pair in physi-

cal space. Extension to 3D is direct.

A primary requirement for grid refinement in smooth variation of grid den-

sity for adaptation of the grid to match solution requirements. Evaluation of

equations (1) and (2) over Macro-Elements ensures this, since choice of inter-

L .
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polation points in ni is completely arbitrary. Specification must be simple,

however, and the suggested methodology is a geometric distribution function

y ranging (-1 < nj < 1).

P.
hi,j =i,j-_ i,_I  - 2,n (3)

In equation (3), n is the number of generated grid points (nodes) in an ni

direction and P. is the geometric progression ratio. Pi greater than 1, there-

fore, causes the grid to grow coarser as j increases and P. less than 1 causes

it to become finer.

Extending the above refinement scheme to two and three dimensions introduces

further complexity. Using figure 3(a) for visualization, it is intuitively

* obvious that PI can vary in the n2 direction and vice versa. Letting P1 have

* geometric variation yields an equation for P similar to that for n in equation

(3).• 4"
SQij 2nj (4)

Pij 
= 

i'j-1 " Pi, j-l1 , ,nj()..

in equation (4) Q. is the geometric progression ratio causing variation in P.
and for three dimensions, two equations are required (one for each orthogonal
direction). Using this method, grid variation over the domain is very general

and data specification is minimized. A three dimensional problem for example,

requires specification of 6 Q values, 3 p values and 3 n values for each Macro

Element. Proper selection of p and Q values for a required grid refinement

becomes intuitive with practice since values normally range between .7 and 1.4.

As noted later, however, interconnection of Macro Elements imposes the further

requirement that grids progress smoothly across coincident boundaries. This is

*. easily accomplished by solving equations (3) and (4) for p and Q from computed

or specified end condition grid spacings.

GENERATED GRID ANALYSIS

. The quality of a specified grid is measurable in a relative sense. The

above mentioned grid generation procqidure results in a non-uniform distribution

of finite elements over each Macro Element. The isoparametric functional

. representation for each finite element appears as in equation (I). For linear

finite element basis the (M(nj)) of equation (1) become the linear approxima-.3

tion set. The estimated error in the energy of a generated grid for each Macro

Element can be formed from evaluation of the H1 Sobolev (and L
2 ) norms. These

C.I rr-
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are derived from the inner products of grid and finite element approximation

function as

x~ h j MH T

where

[Me = he f (N.} {N. T dx
e Ie

. andaKe) = h. f V{N.) -V{N T dx 
(5)

e

In equation (4) the sumation is over all generated elements in each Macro

Element yielding partial values of scalar energy estimation. These partial

scalars are subsequently sumaed over all Macro Elements to form the total

energy estimate. Thus, distributed and overall energy levels are available

for comparison and are useful in determination of the quality of a particular

specified grid distribution.

GLOBAL CONNECTIVITY

Each of the Macro Elements is refined independently subject to its vertex

and edge grid point specifications in global coordinates. The second require-

ment of the method is to piece the refined grids together to form a global,

singly specified grid. The piecing is most efficiently accomplished using

Macro Element data information, since the data is sparse, can all fit in main

memory and requires minimal searching and comparison. A required data specifi-

* cation therefore, is a Macro Element connection table which specifies the glo-

belly defined vertex and side grid point numbers comprising each Macro Element. f'

The connection table is searched to locate adjacent Macro Element sides and a

side matching table 3 is formed "on the fly." The side matching table is sub-

sequently used to locate lines and planes of grid points to be eliminated

during grid refinement. In addition, the table is useful for locating exterior

boundaries since no adjacent sides are found and the table contains zeros 3 .

This is useful for locating and mapping boundary conditions on exterior gene-

rated grid points.

The memory resident side matching table provides the means for efficiently .

decoupling Macro Element refinement and, thus permitting huge grid generation

*AM
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on mini- or mid-sized machines. Macro Element refined data can be generated

and written to disk or efficiently paged (virtual systems) by dynamically maxi-

mizing array sizes to match rows, planes, or complete Macro Element generated

grids. The side matching table is interrogated "on the fly" and duplicate side

(2D) or planar (3D) data is never produced. The method in pseudo code is:

Loop over the Macro Elements
Loop over the subdivisions

Generate grid Pnd parameter
data subject to matching tables

Store generated data

End loop 1
End loop

Thus the method can be made efficient on any machine by maximizing the 1/0
block or page size.

Another consideration for Macro Element interconnection is orientation of

the local Macro Element qi coordinates and ordering of generated elements to

minimize Jacobian Matrix bandwidth. As was illustrated3 , Macro Element orien-

tation is completely arbitrary. Equations I and 2 yield identical results

regardless of Macro Element orientation, and as noted earlier, the side match-

ing table is useful for elimination of repeated boundary nodes. f

Generated node ordering for minimum bandwidth, however, is not guaranteed

unless the numbering and orientation of Macro Elements is carefully considered.

This is especially true for three dimensional geometries where matrix bandwidth

can become quite large. The tendency of the Macro Element grid generator

without node reordering treatment is to form a sparse block matrix. The matrix

can, however, be globally treated to narrow the bandwidth for efficient enve-

lope method solution6 .

A 3D EXAMPLE
As illustration of the method, an infinite flow-field surrounding a wind

tunnel model support was discretized (figure 4). The model support was approx- . -*

imated using two intersecting cones and the flow-field extends approximately

18 feet in all directions.

As illustrated in Figure 4, the flow-field was segmented into 9 hexahedron

shaped Macro Elements for grid refinement. Each Macro Element is defined by 20

grid points (8 vertex, 12 side) for a total of 76 grid points in all. A mesh

numbering 2744 hexahedron shaped finite elements was generated over each Macro

Element domain for a total of 24,696 generated finite elements (26,460 grid

points) over the entire flow-field. Figure 5 presents a coarse grid perspec-
tive view of a 72 element generated grid for 3D visualization.

A;
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Fig. 4. Model Support, Macro Element Data Description

Fig. 5. Model Support Coarse Grid Perspective View

* Planar sections of a generated grid on Macro Element boundaries are easily

extracted for visualization during generation using the side matching table.

Figure 6 presents the full grid generated in the base plane. Tho circular cone

is exactly approximated by the three dimensional equivalent of equations (1) and
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(2). Nonuniform grid distribution focuses the grid in the active cone region.

Generated grid in the plane of cone intersection is illustrated in Figure 7.

The cone radius is about half that of the base plane. Finally, Figure 8 illus-

trates a coarse grid in the vertical half plane of the model support. Grid

refinement is altered by simply modifying the three grid size integers for each

Macro Element.
33. eI

.. ft.

* .

O. 40. ft.

Fig. 6. Model Support Base Plane Discretization

The complete 26,460 grid point generation was performed on a PDPll-34 having

64K of memory and RK05 disk drives in approximately 4 hours. Time for solution

increases linearly with grid refinement, thus producing a 50,000 mesh on a rel-

atively slow machine in less than 8 hours. These timings are for a job obvi-

ously I/0 bound and include additional I/0 required for generation of graphical

output. Execution actually occurred within 26K of machine memory and due to

size limitations (the operating system and libraries require 32K) I/0 block

size was minimized and the number of 1/0 interrupts became extremely large.

It is anticipated that increasing array storage by doubling the memory capacity

of the machine will improve speed by a factor of 5.
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33.

ft.

0. 40. ft.

Fig. 7. Model Support, Cone Intersection Plane Discretization
-J
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AUTOMATIC ALGEBRAIC COORDINATE GENERATION

Peter R. Eiseman
Department of Applied Physics and Nuclear Engineering, Columbia University,
New York, New York 10027

INTRODUCTION

A computer software system has been developed to automatically generate

two-dimensional coordinates from algebraic transformations. For topologically

4 .complex regions, a smooth assembly of the transformations can be used to

automatically produce a composite mesh where a general gridded format is

retained. To readily obtain a desireable level of global mesh smoothness and

to permit a maximum amount of mesh control, the application of local multi-
surface transformations is emphasized. In the formation of the composite

Amesh, the boundaries for each transformation are either transmissive or the

prescribed gemoetry of given physical objects.

In addition to the boundaries, each multisurface transformation is con-

structed from a sequence of intermediate control surfaces. At each fixed

asurface parameter, the control is over the corresponding transverse coordinate

curve connecting boundaries. In the direction of the surface parameter, the

control is longitudinal. Whether longitudinal or transverse, the fundamental

properties are the geometry and pointwise distribution along coordinate

curves. With the local form of the multisurface transformation, these

controls can be precisely given at any location. For basic mesh patching,

derivative conditions are prescribed at boundaries. Away from boundaries, the

control is applied independently so that desireable mesh structures can be

smoothly embedded or boundary slope discontinuities can be kept at the

boundaries regardless of pointwise distributions along boundaries.

The algebraic mesh generation system consists of a collection of operator . - .

subroutines which are applied to an established data structure and which

* automatically perform the necessary parts of mesh construction from a sequence

of multisurface transformations. The system is split into operational modules

for surface definition, for transverse constructions, for discretization, for

mesh assembly, and for graphics. Surface definition and graphics modules are

applicable to all 2D coordinate generation techniquesu the remainder are

tailored to but not limited to multisurface transformations. The surfaces

here are curves a(t) = (x(t), y(t)) and their definition consists of both

their intrinsic geometry a and their parameterization t. The parameterization

is equivalent to the coordinte distribution for the one-dimensional surfaces.

.4
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Such coordinates are automatically generated with a general curvature

clustering mechanism and with the simultaneous capability to prescribe any

number of arbitrary clustering locations. When applied to line segments, a

general class of useful distribution functions is also obtained.

1ULTISURFACE TRANSFORMATIONS

To obtain the two-dimensional multisurface transformation, a sequence of

constructive one-dimensional surfaces ak(t) are prescribed with an ordering

from boundary al(t) to boundary aN(t) with the intermediate curves O2(t),
+ .1N
CL 3 (t), ... , aN_ 1 (t) available for control. At each value of t, a piecewise

linear connecting curve is determined by joining the successive points ak(t)

with straight line segments. In correspondence with the N-1 straight line

segments, a partition rI < r2  < < r< r 1  for the assumed transverse

coordinate r is prescribed. In further correspondence, a sequence of inter-

polation functions 0k(r) is defined to vanish at all partition points except

rk as k = 1,2, ..., N-1. With the functions, the line segment slopes are

* %interpolated. The general N-surface transformation is obtained by an

integration from a (t) and by a subsequent fit to an(t) from k normalizations.
1N

4.

In terms of the Cartesian locations c = (x,y), it is given by

4N-1 Gk (r) + (1)
c(r, t)= al(t) + I GL [k+l(t)_- k(t)])

X. k~l -1 N-

where r

Gk (r) = fk(z) dz
•r 1

The slope interpolation is evident when r-derivatives of both sides are
evaluated at rk. Upon a back substitution, the N-surface transformation can -

* then be expressed in a derivative form. In either form, it can also be

. expressed as a projector, under which, all coordinates that conform to the

given specified properties are projected into the multisurfa:e system. With

an interchange of r and t, a similar projector can be defined for the

t-direction which in turn can be used as a Boolean summand with the first

projector to get an extension of transfinite interpolation methods applicable

to function and derivative specifications at all levels. Since the simplest

case is with the basic building blocks in one direction and since one

direction is sufficient for many applications, the basic multisurface

[L ! [
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transformation will be directly applied here with the understanding that the

developed automation can also be carried over into the transfinite cases.

SYSTEM OPERATORS

The Data Base

The automation of algebraic transformations is accomplished with a system

of operators that are applied with respect to a fixed data base. The data

base is split into arrays which either need or need not be understood by

someone who wishes to apply the system. Those which do not require under-

standing typically communicate technical data between the various operator

subroutines in an internal automatic fashion. The remaining arrays are of

more interest since we are required to either load them for the input or to

unload them for the output. For all coordinate systems of the generally

* " - composite mesh, the primary input is the data required to define the

constructive l-D surfaces

(akt) for the transformation of Eq. 1. Each surface is represented as a

sequence of data points which are distributed well enough to adequately

describe its basic geometry and parameterization. Each data point in the

sequence consists of two Cartesian components x and y and a surface coordinate

t to form an ordered triple (x, y, t) for the parametric representation

" (x(t), ylt). The basic surface data array is given by

}.7 SD(I, J, 1) = x

SD(I, J, 2) - y (2)

SD(I, J, 3) = t

for surface number I and data point number J. For each coordinate system

number IC, the data point numbers J vary from 1 to NDATA and the surface

numbers I vary from NS(IC, 1) to NS(IC, 2) where the local surface number for

the transformation of Eq. 1 is given by K - I-NS(IC,l) + 1. The primary

output array is the coordinate mesh array given by

CM(2*IC-I. J, K) - x

CM(2*IC, J, K) - y (3)

for the Jth mesh point in r and the Kth mesh point in t. Specified quantities

are the number of r-mesh points MR(IC) and the number of t-mesh points MS(IC). *.

In the current system, the dimensions are given by NS(4,2), SD(40, 100, 3),

limp

. .,.: .mmmmmm mm mm mm m • mm m mm m4mssm
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and C (8, 30, 50) which imply that IC < 4, NS < 40, NDATA < 100, MR < 30, and

MS < 50. To save storage, the arrays SD and 04 are also equivalenced. The

dimensions can be readily changed, for example, to reduce the number of

possible coordinate systems and increase the number of mesh points.

The Order of Application

Relative to the established data structure, the system of operators are
applied in a sequential fashion to automatically generate a wide variety of

grids that conform to the specifications we desire. The entire process can be
given a general ordering. Surface parameterization clearly follows surface

.4 constructions which must first be in existencei similarly, transverse mesh

evaluations must fo. iw the transverse constructions for curve definition and

pointwise distribution. The transverse curve definition depends upon the

integrals Gk(r) of Eq. 1. With a new independent variable z, we get a

function r(z) which yields Gk(r(z)) to include both curve definition and
r* -p pointwise distribution. After both surface and transverse mesh data has been

computed, it is assembled to form a mesh from the transformation. Once all of
the coordinate meshes are assembled individually, the grand assembly of the

global patched together mesh can be viewed either numerically or as a plot.

The system of operators for coordinte generation are written as FORTRAN

subroutines and are separated into the categories which are illustrated in

Figure I along with their sequential interdependence. The categories on the

*top of the figure are related to surface definition, and consequently, are the
* primary parts of the mesh generation process. Each category is described

*separately in the following sections.

Direct Surface Generators '

The category of direct surface generators contains the operators on the

SD-array which generate surface sections or entire surfaces without pars-
* materization t and without any dependence on existing surfaces. In each case,

1 the I-D surfaces are generated as a pointwise sequence (xi, y1 ) ordered in an

increasing fashion from beginning to end. If the curves are closed, the
ordering becomes either clockwise or counterclockwise. As a matter of

notation, all operators will be labeled in capital letters to correspond with
the associated subroutine names. Basic operator definitions will follow an
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SDirect Surface Generators Surface Parameterization

Surface Generators from Geometric Surface

Existing Surfaces Operators

t

Transverse Operators Assembly Operators

Mesh Operators Data Visualization .F
Fig. 1. Operator categories and their interdependence.

arrow that is behind the operator name. In this format, the current operators

for direct surface generators are given by

LINE + Line segment

CIRCLE Circular segment

BEND + Two line segments joined by circular arc

BOX + Rectangle with rounded corners (4)

OVAL + Ellipse or superellipse

MACA *MACA airfoil

Geometric Surface Operators

The category of geometric surface operators contains the operators which

" 'depend only on the surface geometry and not on any surface parameterization.

When the basic geometry of a surface is known in the SD-array as a sequence of

data point locat.ons, the operators of this category can be applied. The

current operators are given by

.... ..

-4 , ,. .. .. ,,,. . . -.. .
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ROTATE + Rotate a surface

SLIDE + Slide a surface

FRAME + Construct unit tangent and normal (5)

vectors at each point.

Surface Parameterizatin Operators

Surface parameterization operators are applied to generate the l-D surface

parameterization, or equivalently, surface coordinates t. The operators can

be split into those which depend upon an existing parameterization of the

given surface and those which do not. The ones which do not are given by

ARCLN + Arc length

PLEAD * Load from another surface on a data

point basis (6a)

EXTPAR e Project from another surface along a

vector field

The ones which do are given by

PNORM * Normalize to an arbitrary interval

GPAR Reparameterize globally (6b)

LPAR + Reparameterize locally

With the reparameterization operators, pointwise clustering can be

simultaneously done at higher curvature locations and at arbitrarily selected

locations. For the arbitrary locations, the selection is accomplished by

loading the existing parametric intervals and the degree of desired clustering

into the array BUNCH in the form

BUNCH (J,l) - Start of cluster

BUNCH (J,2) - Center of cluster (7)

BUNCH (J,3) - End of cluster

BUNCH (J,4) - Degree of cluster

for cluster number J which, with current dimensions, can be at most 20.

V"A
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Surface Generators from Existing Surfaces

The basic geometry, the parametric representation, and the data point

indexing of existing surfaces can each be utilized to generate new surfaces

that are aligned or positioned in such a way that geometric specifications for

* , the mesh are easily given. The specifications include the boundary

1prescriptions on the behavior of transverse coordinate curves, and more

generally, prescriptions of mesh forms in an area sense anywhere in the meshed

region. The surface generators from the existing surfaces form a category

which extends the direct generators and contains the operators

- EXPAND - Expand away from a surface to get a new one

DEFORM - Deform between two surfaces to get a new one (8)

With EXPAND, the expansion is along directions from a vector field. When the
. -vector field is normal to the existing surface, the data points on the new

surface are orthogonally aligned. If subsequently, PLOAD from Eq. 6a is

• . -,applied, then the orthogonal alignment is used for the new curve. with

DEFORM, the deformation is along line segments that join the two existing 1-D

surfaces. When applied successively with PLOAD, coordinate line segments can

be smoothly embedded into the mesh.

Transverse Operators

The definition of the basic transverse curves for each multisurface

transformation (Eq. 1) is accomplished with he transverse operators which are

given by

PART + Generate partition points rk (9)

GKVAR + Generate coefficients of Gk(r)

Currently, the partition from PART is uniform.

Mesh Operators

After the parameterized surfaces have been constructed and the transverse
piecewise polynominals have been defined, each multisurface tiansformation can

be used to generate its corresponding part of the entire two-dimensional mesh.

The number of mesh points in both directions (MS and MR for Eq. 3) mst be

specified and is independent of both the previous discrete parametric surface
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constructions and the transverse piecewise polynominal definitions.1-4 With

the specification, the category of mesh operators is applied to obtain mesh

point discretizations for each multisurface transformation component

and G. of Eq. 1) and is split into those oriented towards evaluation and

those which change the mesh. The evaluation operators are given by

SF0IND - Find surface interval containing t

RFIND o Find partition point interval containing r (10)

SMESH - Surface mesh

' GK Evaluate

are usually called by assembly operators, and are consequently used less

frequently on an isolated basis., The operators which change the mesh are

given by

*- RDIST + Mesh distribution in r

CSLIDE + Slide a coordinate system

GRID1 + Generate orthogonal trajectories (11)

GRID2 4 Generate trajectories with exact

central difference orthogonallity

The transverse mesh distribution from RDIST can have specified clustering at

each endpoint and simultaneously in the center. The orthogonal trajectories
5-6from GRIDI are generated by the method of Graves and McNally but with an

accuracy increase from automatic refinement.7 The orthogonal trajectories

from GRID2 are generated by the Leap-Frog method presented in Eiseman.
7

Assembly Operators

To streamline the mesh generation process, assembly operators have been

developed to cover the most frequent applications and to reduce the required

number of calls to operators. They are given by

TRANS -) Assemble multisurface transformations (12)

GRID P Assembles grids without required calls to transverse,

mesh, and visualization operators

• A

- - "
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The operator GRID assunks a uniform r-distribution from RDIST and generates

grids from TRANS, GRID1, and GRID2. In contrast to TRANS, only the surface

*; data and the desired number of mesh points are needed.

Data Visualization Operators

To observe the constructive process and to see the mesh in graphical form,

the category, of data visualization operators has been created. Observations

of the surface data array SD and the various other arrays used in the
construction can be viewed through a sequence of printing operators. The

*printing of the coordinate mesh CM of Eq. 3 is included in the primary

visualization operator which is

PLOTIT + Plot the entire composite mesh (13)

This operator is automatically called by the assembly operator GRID which also

includes the technical calls for the plotting set up.

APPLICATIONS

To illustrate the mesh generation process with the system of opertors, we

first consider a region between an oval contour and a synmetrically

surrounding box with rounded corners. Only one coordinate system is needed

for this region. The pattern for grid generation is then established on this

simple example and is continued further towards other cases. To define the

coordinates for the example, the number of constructive surfaces must be

selected and is chosen here to be 5. The surfaces are depicted in Fig. 2

where they are numbered from 1 to 5 going from the ellipse to the box. The

first data point of each surface iE on the x-axis from which the counter-

clockwise orientation is indicated by an arrow. The dashed curve, other than

the x-axis, is one of the piecewise-linear curves determined by equal

parameter values t and is the curve which determines directions for the -.

associated transverse coordinate curve in r. In correspondence with the

figure, the surfaces and thus the grid are automatically generated from the

short coding sequence:

-C111111MW.Kf F
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Fig. 2. The constructive surfaces for an oval in a box.

MR(.) =15 +Number of mesh points in r

4S (1) - 49 - Number of mesh points in t

NDATA - 100 - Number of surface data points

NS (1,1) - 1I First surface number

4S (l,2) - 5 -~Last surface number
OVAL *Surface I

ARCLH -~ Arc length t along surface 1

PHOEM - Normalize t to unit interval

EXPAND *Surface 2 as outward normal expansion from surface 1

PLOAD -*Load t from surface 1 into 2

BOX +Surface 5

ARCLN +Arc length t along surface 5

PNORM *Normalize t to unit interval

EXPAND *Surface 4 as inward normal expansion from surf aca 5

PLOAD -j Load t from surface 5 to 4

DEFORM Surface 3 as deformation between suz faces 2 and 4
PLOA3 -P. Load t from surface 2 into 3

GRID *Assemble and display the grid

END
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From the successive application of EXPAND and then PLOAD, an orthogonal

alignment in t is obtained respectively between surfaces 1 and 2 and surfaces

5 and 4. From the successive application of DEFORM and then PLOAD, a linear

alignment in t is obtained between surfaces 2, 3, and 4. Both alignments are

illustrated by the dashed piecewise-linear curve in Figure 2. The grid from

the coding sequence is displayed in Figure 3 where the effect of the

alignments is viewed as orthogonality at each boundary and local linearity in

between.

D I

Fig. 3. Grid for an ellipse in a box. *

If OVAL is replaced by NACA in the coding sequence, then surface I becomes

a NACA airfoil contour. With PNORM replaced by GPAR, we get curvature

clustering for the leading edge. When the outward normal expansion for

surface 2 by EXPAND is adjusted to give the expansion distances illustrated in

Figure 4, we get the grid which is displayed in Figure 5. As the trailing

edge is approached, the r-coordinates have bends which occur progressively

closer to the airfoil surface due to the placement of surface 2.

!U
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Fig. 4. First two surfaces for an airfoil in a box.

tft

Fig. 5. An airfoil in a box without trailing edge clustering.
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Pig. 6. An airfoil in a box with trailing edge clustering.

This is equivalent to specifying normal derivatives which have progressively

decreasing magnitudes. At the training edge, the slope discontinuity is
propagated across about two thirds of the field. Because of the local

transverse interpolants for Eq. 1, the discontinuity is gone in the last
third. It can also be removed from the entire field by clustering. This is
accomplished by inserting trailing edge clustering requirements into the
BUNCH-array for GPAR to act upon. The result is displayed in Figure 6. An
airfoil in a cascade with 45* stagger can be obtained with ROTATE applied to

surface 1 and with successive applications of BEND for surface 5. When RDIST

is used to cluster points near the airfoil, we get the periodically aligned

grid of Figure 7 where Cartesian extensions are given in upstream and down- -:-

stream directions. A detailed view at 30* stagger is seen in Figure 8 with

uniform r-distribution. Returning to the airfoil in a box, a local region of
orthogonal coordinates is created about the airfoil by the additon of two more 4 -

A surfaces that are orthogonally aligned with the airfoil. With more mesh
points, we get the 7-surface transformation which is displayed in Figure 9.

.

I

A " A ,, j



460

.........
-7 Tr

Fig. 7. Airfoil cascade at 450 stagger.
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I 4Jj

Fig. 8. Basic system for airfoil cascade at 30* stagger. --
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* Fig. 9. Airfoil in a box with orthogonal disk around the airfoil.

CONCLUSION

The general format for automatic alegbraic mesh generation has been

established with a system based upon multisurface transformations. The system

is a collection of operators which automatically perform the various

constructive tasks and which are applied in sequence to generate a mesh. The

primary operator sequence is for surface construction and for distribution

functions. Surface construction and distribution functions are required for

boundaries and are basic to all methods of coordinate generation.
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AUTOMATIC TOPOLOGY GENERATION AND GENERALISED B SPLINE MAPPING

A ROBERTS

*. British Aerospace

1~ SUMMARY

)Completion strategies have been programmed for the removal of topological

anomalies in a cube cluster. Synthesis of complicated grid structures can then

be defined with very few explicit statements. The realisation of the

differential equations uses a generalisation of B spline mapping for modelling

* through topological singularities in the field. Such B spline schemes provide

accelerated convergence and-wide band-aacuracy. Relaxation sequences with B

spline can then be more efficient than those for finite difference methods even

*' for topologically regular grids. -

At INTRODUCTION

The Multi-Volume Data Structure (MVDS) is a general purpose topology system

for linking a range of industrial data bases to a range of CFN methods.

AD2000, ----a Mul ti-Volume "s-dPanel Methods
CADA24-oO -e- Data Structure --0Potential Flow Relaxation

I1MG (MVDS) -- oExplicit Euler Time-Stepping
Ss- "Clebsch Representation 1,2

Pig 1. The MVDS System Links Data Bases to Methods

The use of multi-grid techniques for partitioned fields with mapping

singularities in the field presents common organisational problem.

The automatic topological units are 'starters' such as a wing-body

combination and 'details' such as an engine pod. Each unit refers to both an

aircraft component and the adjacent field volumes. The library of such units

can be augmented using a cryptic language. To permit display of the grid

configuration default coordinates are generated automatically.

The grid is partitioned into a number of cubic blocks connected face to

face with 3,4,5 or 6 blocks meeting along junction lines in the field.

PREVIOUS PAG.
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. Fig. 2. A Field Partitioned with Singularities in the Field.

Each volume has a different grid structure at each multi-grid resolution

level:-

ij

I T

Volume Level 0 Level 1 Level 2

Fig. 3. Multi-grid structures in a volume

At every level the partition boundary is half a parametric interval from

* the nearest grid surface. Topological singularities then occur between grid

points:-

- " 
.

I S. .

;; ~~Fig. 4. Mapping Singularities at Node Points."-
Power -1 Power 0 Power +1 Power +2S •

, ,....+++ + ,+++.,,.++; +.+,, ,++ ,. .+. .... .......... ... +: +..+ .+ .- +

.......... ....... • ......+ ........... + .......................... . +.;_ + __ -.+ , .,+'i?:.. :+ .-+,.
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The grid is said to be regular in regions where four volumes meet along

every junction line. In such regions the partition boundaries and junction

lines have no numerical significance although the orientation of the parametric

axes may be discontinuous across partition boundaries. Near topological

S- . singularities, shock surfaces and vortex sheets the usual operator expansions

are not applicable. B spline techniques can then be used for modelling through

such anomalies.

Tesselation of Surfaces

A tesselation of a surface is a decomposition of that surface into four

sided cells. Tesselation operations are used here to illustrate strategies

* -suitable for cube clusters. For cube clusters with many singularities in the
field, definition by enumeration is not practicable due to the mass of
information required combined with conceptual problems. Automatic conversion

of a general decomposition of a 3-D field via a tetrahedron cluster is possible

- in principle but produces unsuitable grid structures. We are then left with

.- . progressive synthesis using operations that preserve the cube cluster

conventions.

4 .. We consider a general polygonal decomposition of a simply connected closed

:; surface. We can select any interior point of a line or a cell to be the median

-" point of that cell. A median line is then a line joining the median point of a

cell to the median point of one of the enclosing cell boundary lines. The

tesselating operation is then the reclassification of every median line of an

old decomposition as an additional boundary line of the new decomposition.

. %

AV:.. - -

I Deleted 
, I=..

" -~I . 5 e e l t o O p e a t i n s , ,-.
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Repeated use of the tesselating operation produces a family of tesselations

suitable for a multi-grid technique.

The median lines of the tesselation of a closed surface join up to form

endless strings of median lines. A cell string is a set of cells where each

cell contains segments of a particular median line string. We may note that

tesselation conventions are preserved by the deletion of any complete string

for a simply connected closed surface.

For any tesselation of a simply connected closed surface we can delete cell

strings, one at a time, until we are left with the minimum tesselation

* consisting of just two cells. By reversal of this sequence we can synthesse

any tesselation of a simply connected closed surface from the minimum

tesselation one string at a time.

The general synthesis operation is then to separate any closed string of

cell boundary lines into a pair of boundary strings enclosing the new cell

string. The boundary line string can be defined by enumeration of the boundary

segments forming that string. A more cryptic definition is possible if the

boundary line string is always concave with respect to a 'captured zone'. The

string then always follows the second left turn except for the nominated bend t

points where it follows the first left turn. The string is then defined by the

I bend points or, if there are no bend points, by one segment of the string.

The realisation of the new cell string following this convention can follow

a strategy of progressive capture based on just two elementary operations:-

. \.

Capture One Cell Delete Two Cells

Fig. 6. Elementary Operations on a Surface

These operations can be controlled by autonomous propagation sequences

operating at two priority levels.

First priority propagation is propagation along strings until a loop is

completed or a corner encountered.

Second priority propagation is propagation through an area enclosed by new

strings.

!

* . , , . ...
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{

Bend Points Captured Strings Captured

Fig. 7. Capture Phases

Basic Cube Cluster Operations

The direct analogue of a tesselated closed surface is a cube cluster in

which the minimum cube cluster consists of a finite cubic volume enclosed by an

'external cube' consisting of all space not included in the finite cube. We

have median surfaces of cubes bounded by a median line of each of four volume

interfaces:-

Fig. 8. The Three Median Faces of a Cube.

Median lines of an interface can be regarded as connecting a pair of median

faces of one cube to a pair of median faces of an adjacent cube. Median races

then join up to form edgeless sheets. A volume sheet is a set of volumes in

which each volume contains facets of a particular median surface sheet. A

volume string is the intersection of a pair of volume sheets. Each volume is

the triple intersection of volume sheets and of volume strings.

4 ".1

~.X,
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The cube cluster conventions are conserved by the deletion of any complete

volume sheet. Any cube cluster can be reduced to the minimum cube cluster by

deletion of volume sheets one at a time. Sheets may be deleted in any

sequence. By reversal of such sequences any cube cluster can be synthesised

one sheet at a time using one of many different sequences.

We have the pair of elementary operations:-

Capture One Volume Delete Two Volumes

* Fig. 9. Elementary Operations in a Cube Cluster

We can then have first priority propagation along strings, second priority b
propagation throught sheet segments bounded by strings and third priority

propagation through a captured volume cluster. Corners are points where three

bend lines meet. The specification must then enumerate explicitly:-

1. all corners with 1,2,4 or 8 inserted into one old volume

2. for any bend line not terminating at either end by a corner one sample

volume referring to 1,2 or 4 bend lines.

3. for any surface not bounded anywhere by bend lines one sample volume

referring to 1 or 2 new surfaces.

All other instructions are implicit.

After grid relaxation each median surface will form a surface for which the

unit normal is continuous almost everywhere. Such surfaces are useful for

displays of the grid and for contours of field functions. Where median

surfaces form closed sheets the Euler characteristic3 can be used to relate the

*1't
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number of handles3 h to the sum of the topological powers a where the

topological power of a singularity is four less than the number of volumes

meeting along a singularity line. For such tesselated surfaces we have

S = 8(h-1)

This is a useful rule when selecting a suitable topology.

Solid and Null Volumes

At the lowest level of the internal logic the two elementary operations are

used and the topology is always a properly connected cube cluster. However,

the required grid has sheets that can be bounded by an envelope or aircraft

surfaces, regarded as intrusions of the envelope Into the field. We can

designate volumes in a cube cluster as solid volumes. No propagation is

permitted through solid volumes. A null volume is a volume of zero thickness

with one great side connected to some old volume or some solid volume and five

faces connected to new volumes that may be null volumes.

............ . .......

3 1
I6

Fig. 10. Solid Null Volume Fig. 11. Apparent Propagation Forms

The null volumes thus bridge apparent anomalies in the cube cluster

conventions. There are six propagating forms as shown. Forms 3, 7, 8

propagate 1, 2 and 4 bend lines respectively as first priority propagation

along strings. Forms 2 and 6 propagate 1 or 2 sheets through some median sheet

segment. Form 1 propagates type distinctions. The shaded zones represent core

zones with the same sheet numbers as the original volume. With the

qualification SOLID all core zones are designated as solid in the insertion of

a sheet. The other volumes are volumes of the new sheet. Forms 5, 6, 9, 10

introduce 1, 2, 4 or 8 corner points of the new sheet.

* N• ~~~.. ". ... " ... '.'.'" ,- ..



472

The control of propagation is based on the examination in turn of each of

the six volumes that enclose the core volume. Each volume either is or is not

a null volume. The great side can be adjacent to a solid volume, a field null

volume, or an old field volume. If it is adjacent to an old field volume, that

volume may appear already at the same or higher priority level or at a lower

level or not appear in the pending operations lists.

Table 1 NULL VOLUME TESTS AND ACTIONS

TEST ACTION IF TRUE

VOLUME IS NOT NULL RETURN
ADJ. VOL IS SOLID DESIGNATE NULL VOLUME AS SOLID
ADJ. VOL IS NULL VOLUME DELETE PAIR OF NULL VOLUMES
ADJ. VOL ALREADY IN SAME OR

HIGHER LEVEL RETURN
ADJ. VOL ALREADY IN LOWER LEVEL DELETE LOWER LEVEL REF. AND RECORD
ADJ. VOL NOT ALREADY RECORDED RECORD PENDING OPERATION

In practice few sheets require explicit identification of more than twoj
volumes. If all sheets in a 'detail' intersect one sheet then all instructions

4 can refer to that sheet.

These conventions provide a cryptic language for the introduction of

ad itional 'starters' and 'details'.

Topological Displays

In order to define the topology of a library unit in the cryptic language

the user must draw a series of sketches. A set of sketches in fig. 12

represent the development of a simple wing-body configuration. In this case

all explicit statements refer to the horizontal plane of symmetry. Each one

line statement specifies which volume (denoted by s), which operation and, if

required, what is the fractional width of the new sheet. If the set of

statements is accepted a full set of displays of solid surfaces and field

sheets can be requested. )With no further data solid surfaces generated from

the sket.,'es in fig. 12 are displayed in the form shown in fig. 13. Other

examples of display generated from the cryptic topology are shown in fig 14.

These show a pitot intake, a side intake and a fan-in wing with adjacent field

sheets.

. -
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A/l

9 * Nert volume

Wake J

Fig. 12 User's Sketches for a Wing Body Combination.

Fig 13a. Display or Resulting Solid Surfaoes.

16.
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Sheet A View Looking Aft

Sheet B View from Side

* Sheet C View from Side

Sheet D View from Side

Fig 13(b) Median Surfaces after Relaxation

**X
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Fig 14i. Other Displays Generated fros the Topology Definition.

ftm
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Basis Function Mapping

The B Spline and finite difference schemes will be regarded here as

alternative interpretations of the integer spline conventions. The integer

spline schemes in turn are realisations of the basis function conventions in

topologically regular regions of the grid. The B splin. generalisation

required to model through singularities remains within basis function format

although integer spline conventions are violated. The basis function analysis

is relevant near singularities where the operator expansions are not valid.

The basis function equations and flat space tensor equations are defined as

follows:-

parametric coordinates X1, x2,X 3  Cartesian coordinates

fi(,2,&3) field functions ej ,2,) basis functions

"ij scalar coefficients 4 field function

At all we have

e( ,2 
)  

:1 fi( ', 2 ,9
3) * I ej(Cl.Z,,P,)Xi

le a 1

a i - 6
- - - k gii 23gi ati

a J axk 3xk 3)[k

1k) a2X5 a~k fPj21*k 1*
~ij agiat ajX2  agiat - (i) 7&k

k- Near a mapping singularity we consider first the general linear field

= A + Bp Xp

and we want the numerical formulae to satisfy at all points the equations

Bi ,p i,a' -*  --a* "Bk , *,l, ' 0
74' at ,giS' ac'

SIP . " S.

4' %
/. -o

- ,~* ~ ~> *~ ~ .)
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These conditions are satisfied at all points near any mapping singularity

provided that

X Xi fi for i a 1,2,3 f4

3
and 4j a A + I Bp pj

This conservation depends on

I The use of the same basis functions for XP and *.

2 Derivation of the inverse derivations from the explicit derivative by

matrix inversion at each point.

3 The use of the 'flat space' formula for{

The conservation of intrinsic derivatives of linear functions is not valid near

mapping singularities using:-

1 A mixture of analytic, B spline and finite difference derivatives

2 Interpolated values of the inverse derivatives

3 The general tensor formula for {k)c
Subject to such basis function conventions we require to improve the accuracy

in the numerical treatment of quadratic functions of the form:-

= A + BpX
p + Cp2XPx

2

With the use of a common set of basis functions there is a close connection

between the accuracy of computed errors in the field equations and accuracy of

the computed unit normal near a mapping singularity on a spherical surface.

Using basis function conventions the error of the unit normal should be zero
for a plane surface and small for a spherical surface.

Integer Spline Mapping

Let y(u) be the integer spline generating function

Wipqr be the spline weights

Q be the order of the polynoioal segments of y

R be the order of derivatives continuous between segments of y

2 be the order of operand for which a spline fit is exact

T be the number of non-zero segments of y

gi be a tripolynomioal operand of order Q

IV
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The tripolynomical operand is defined by

E E E

gi ([1, 2,C3) = . Aiabc(EI)a(E2)b(&3)c

a=O b=O c=O

The integer spline system is applicable to a simple Cartesian grid with unit

grid interval in parametric space &1,&2,&3.

For such a grid the basis functions and their coefficients are defined by
ej(&! ,E2 ,&3) -. y(&I)-p)Y( 2-q)y(E[3-r)

' j = j(p,q,r)

Aij = Wipqr
The generating function y consists of T non-zero segments where each segment is

* a polynomial of order Q extending over a unit interval. The function y is

symmetric about the origin and derivatives of order R are continuous between

segments.

For an operand of some order E the fit is exact and all derivatives are

exact at all points. For a general operand the functions fi are tripolynomial

functions of order Q ±athin each mapping cell where the mapping cell boundaries

*are
i for T even for all integer i

& 3 = i+1/2 for T odd

, Regarding a function as the derivative of order zero of that function the

general explicit derivative within a mapping cell is expanded in the form "1.

S m n fi = y d -p) dm Y(2-1) dn y(3-r)W i pr

(&I)l (&2 )
" 
a (,3)

n  
J d(&j) (42 )

m  
d (&[3)

n

with

aR __ B
Q  

i

continuous across both C 1 i and & i + 1/2

Comparison of Generating Functions

Let YI(u) = if -1/2 < u < 1/2 then 1 else 0 4.

+1/2

and YT+l(u) f YT(u/v) dv "

• *. -1/2

i.e. YT is the Tth power of convolution of the unit square pulse

Let Z(u) be a function with 4 non-zero segments fitted to the following values

at the integer values of u:-
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TABLE 2 FUNCTION

u -2 -1 0 +1 +2

Z(u) 0 -1 +2 -1 0

dZ(u)/du 0 0 0 0 0

d2 Z(u)/du2  0 0 0 0 0

. _ • Y~u)Y2(u)

U I•3 u ,4 u ..,........

"U U

Fig 15. Form of the Y Functions Fig 16. ForS of the Z Function

We will compare four generating functions that provide the basis for the three

and five point finite difference schemes (3PTFD and 5PTPV) and the cubic and

quintic 3 spline schemes (CBS and QBS). For one dimensional calculations of

the point values, first derivatives, and second derivatives at the grid points,

the corresponding operators P, F, 5, applied to the weights can be expanded in

standard finite difference notation for each of the generating functions. We

then have:-

TABLE 3 CHARACTERISTICS OF FOUR DISCRETISATION SCHEMS --

Scheme y Q R E T P P S

3PTFD Y4 Z/6 5 2 2 4 1 li 62

CBS Y6 3 2 3 6 1 % 62

SPTFD 5 2 4 6 1 (1-62/6)0$ (1-62/12)62

QSS Y6 5 4i 5 6

N "AA
'i!' -.

.................
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For 3-D applications the operators P, F, S applied parallel to the

parametric axis &3 are denoted by Pat Fs, S. respectively. The formulae for

typical derivatives are then expanded:-

TABLE 4

THREE DIMENSIONAL DERIVATIVES

Derivative Finite Differenoe B Spline B Spline
Form A Form B

fi fi P1 P2 Pi3 Wt f

iTfi/i Fi fi Pi P2 P3 Wi F1 P7
1 fi

a2fi/a(cl)12  
$I fi S1 P2 P3 Wi S1 p , fi

a2fi /a llC2 F2 F3 fi P1 F2 F3 Wi $2 p21 S3 p 3 fl

In a relaxation sequence the weights are updated using the residual errors ri

and the relaxation factor :-

Win+ 1 Win + Cri

FFor example in the relaxation coverging to the solution of
- [ So P;' Fi . 0"

i5

the relaxation sequence can be expanded as
:i f i l -f t"' 

+  €  
S s P s P s + (d i " f i f 

)

~in+1 fI a 3+S 1 P 2 (in- i

and this expression can be further expanded using tr-harmonic operands of the

4 form

e( W2 C 2  3 3)
gi 1

For harmonic operands the ratio of the computed values of and S1P I g"
and

F 1 P71 ) 2gi to the exact analytic derivative over the w, range as shown in fig

17 .. . .

3- . :
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Second Derivative First Deriv. of First Deriv.
- QBS - 5PTFD

.'."' " 120 - CBS -.- 3PTFD

* - . 80
OF .... .. a

-.

40- %%

"w/2 Wo IN W /2 It,.o.

Fig 17 Derivatives of Coo (wx) an Percentage of the Exact Derivatives
": These equations may be interpreted as follow:-

The CBS scheme uses trioubic mapping cells to achieve precise values of all

derivatives at all points for a trioubic operand. The 3PTFD system is a fast

*approximtion to CBS: the replacement of I + 62/6 by 1 in the expansion of P

'j can produce computing times for the calculation of derivatives reduced relative

to CBS by up to 70%.

Conditions especially favourable to 3PTFD are the solution of transonic

potential flow in 2-D using an orthogonal grid. In this case the accuracy of

numerical first derivatives is not critical. The change from CBS to 3PTFD is

achieved without reduction in the order of accuracy of second derivatives.

Errors are dominated by the 'upwinding' term of the order 63 so that the

reduction of errors of the order 64 by the use of 5PTFD is not necessary.

Relaxation can be based on line and block relaxation methods.

Since F1 F1 Cos (W 1 ) X S 1 cos (OW, 1 )
methods based on first derivatives require eight times as many grid points for

the same accuracy as methods based on second derivatives with conformal mapping

where the most critical first derivatives are known exactly.

On the other hand, for 3-D potential flow the accuracy of numerical first

derivatives is critical for the treatment of non-orthogonality of the grid and

for terms with non-zero values of VJ .  For first derivatives the CBS soheme

uses an operator of the same order as 5PTD. However, accuracy of 5PfFD has

been recovered by the use of remote samples and the w range over which this

accuracy is held is less than that for CBS. A seven point operator would be ' -

needed to match CBS accuracy for first derivatives over the harmonic spectrum. A

,' " " ; .

Az.,'

"7- .. ;
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Compared at constant band width the reduction in computing time for the finite

difference system can be less than 25Z. In a relaxation sequence the critical

condition for the selection of e is w, a2 (a - v for the finite difference

system and w1 - v , w2 - w3 - 0 for the B spline system due to the replacement

of jSs by S Ps+1 P8+2" This can imply a value of e for the B spline system
a 5

three times that for the finite difference system.

For a solution of the Ruler equations by time stepping no numerical second

differences are required and no upwinding errors are necessary. The correct

selection of latent shock surface requires accurate modelling of the wave front

with zero rate of propagation. The three point operators of CBS match the W
band width for the second derivatives of five point finite difference scheme

*and for the first derivatives of a seven point finite difference scheme. The

five point operators of the QBS system provide an even wider W band width. By

suitable application of errors to weights the maximum Courant number can be
raised by a factor of V3.

"* Thus 2-D potential flow using conformal mapping is especially favourable to

the 3PTFD scheme. In most other cases the wide band accuracy of B spline

schemes and their effect on rates of convergence are significant. Experience

with grid relaxation demonstrates that the predicted relaxation factors can be

achieved in the final convergence phase.

Topological Singularities

In a topologically regular grid, nmerical interolation end

differentiation operators which produce results within a patch require values
within a work zone that extends some distance H beyond the patch boundaries in

all directions. The distance H is the halo width given by:-

TABLE 5 THE HALO WIDTH

arid point operators interpolation operators

T Even T/2 -1 T/2

T Odd (T-1)/2 (T-1)/2

(

....... ._........... ;. 7
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Fig 18. A Work Zone in an Infinite Grid Fig 19. Copy Core Elements into Halo

Zones

The numerical operators are always applied to a work zone as if the halo

-zone represented grid points in adjacent volumes in a topologically regular

grid. All grid points in the core zone of the work zone represent grid points

within the patch and all values associated vith such grid points are regarded .
. as independent variables.

The edges of a core zone consist of overlapping zones of width H within the

core zones. The corners of the core zone are the intersections of the edge

* zones. Edge zones values are always copied into edge zones of the halo of an

adjacent carpet. With T even this Is sufficient to ensure analytic continuity

across a partition line except for parametric distance (T-I)/2 from the node

* point at each patch corner. At all regular node points the values in a corner

of a core zone are copied into a corner of the halo of the diagonally opposite -.

carpet. For T odd this is sufficient to ensure analytic continuity up to the

So node points.

Where N carpets meet at a node point with N * 4 the set of N adjacent

corner tones of the halo of the adjacent carpets are paired collectively with

the set of N adjacent corner zones of the core zones of the adjacent carpets.

,



% 0

a~~~b~~~c -- ar ahcpe noteeg onso h ao ftoajcn

carpts.We hen equre o deermne he vlue Inthe hao crner p~~rI

caesc Weteie oeteione the vapei the halo corneraus toq be

defined in matrix format

Then

[A ~r~q * Bx [b] 0

A Then 1r1 ra
qA-' x P Jx ab

The square matrices with dimensions NH2 , NH,' represent a selected set of

continuity conditions modified to ensure that A is not a singular matrix. The

column matrices have dimensions NH2,M where M is the number of f.functions.

The first set of continuity conditions is:-
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TABLE 6 CONTINUITY RANGES

Parametric distance from node Continuity along grid lines

T- 4 0 fi

T - * 6 1/2 a2fi / a(Q ) 2

T- * 8 3/2 a f, / a(tl)4

From consideration of symmetry and antisymmetry for any definition of

P,F,S, there are always H redundant equations in this system. To satisfy basis

functions conventions we require that when all elements of a,b,c are unity then

all elements of p,q,r are also unity. The condition that the sum of the radial

tangential vectors at the node point is zero is virtually mandatory. Minor

violations of this constraint lead to violent excursions in double curvature

very near the node points with little effect elsewhere. There are then H-i

auxiliary solutions and an empirical parameter is used to control tuning for

double curvature effects.

An alternative system of contrainte drops one order on the continuity at

half a parametric interval and introduces the constraint that a common limit of

Jn is approached at the node point for every carpet. This system requires one

empirical parameter to tune for double curvature and another to control J.

This form has the merit that surfaces can be transferred directly to AD2000 and

other panel systems.

In field solutions the expansion of about the singularity can be expanded

in the form

4. A+BiXi+CijXixj + DijkXiXjXk + +

For any values of A and Bi modelling throught the singularity should be exact - -.

when all the other coefficients are zero. With the CBS scheme it should be

possible to neutralise the total source strength for unit length due to the

contribution from C j, for the region near a singularity line independently for

N - 3,5,6.

The total doublet, quadrupole and higher order violations of conservation

should have effects that subside at least as rapidly as the inverse second

power of distance from tLe singularity line.

f'Ii
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Fig 21 Grid Lines and Direction Cosine Contours.

Concluding Remarks

The HVDS data base is the most versatile convention compatible with generalised

* B spline mapping. The present cryptic language does not realise the full

versatility of the data base but it appears to be adequate for a range of

*practical problems.

As a grid point technique the B spline system is slow for the standard

bench mark cases. However, for 3-D relaxation and Buler solutions the superior

harmonic band width, numerical stability and accuracy for first derivatives are

relevant. Used with topologically complicated computing grids the alternative

is the finite volume technique which is no more accurate than the finite

difference system away from mapping singularities and has no special treatment

of mapping singularities.

The KVDS system therefore, is suitable as a replacement for the existing

facilities which locate mapping singularities at critical regions of the

aircraft surfaces.
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THE NUMERICAL DIFFERENTIATION OF DISCRETE FUNCTIONS USING POLYNOMIAL

INTERPOLATION METHODS

JAMES H. nY AN AND BERNARD LARROUTUROU"
Center for Nonlinear Studies, Theoretic Division, Los Alamos National

Laboratory, Los Alamos, NH 87545, USA; Laboratoire Central des Ponta et
Chaussees, 58 Bd Lefebvre, 75732 Paris, Cedex 15, France

ABSTRACT

* N)A FORTRAN subroutine package, called DERMOD, has been written for calculating

*numerical approximations for the spatial derivatives of a function defined only

on a discrete set of data points. The routines are designed to complement many

existing codes for solving ordinary and partial differential equations and for
the interpolation of tabular data. We describe some new numerical

differentiation algorithms, discuss a mapping procedure for nonuniform grids,

and explain the program methodology used in designing the software.

I. INTRODUCTION

The accurate approximation of spatial derivatives is a crucial element in the

numerical solution of partial differential equations (PDEs). The derivation and -

implementation of accurate differentiation formulas is an error-prone and

tedious process. This is especially true in two and three dimensions on

nonuniform grids. For these reasons we have written a subroutine package,

called DERHOD, to help reduce the effort needed to accurately and reliably

differentiate discretely defined functions.

A major advantage of the package, compared with the traditional approach for

solving PDEs, is that state-of-the-art numerical methods can be used with a

minimum of programing effort to approximate the derivatives in large

complicated PDE systems. Furthermore, the resulting programs can easily be

modified for a comparison of the relative accuracy and efficiency of the

different methods for solving a particular problem. The production runs can

then be made using the best available methods.

The numerical analyst will also benefit from this approach. Host of the

developmental analysis for numerical methods is for simple linear systems. It

is important to understand the behavior of a new method in a complex situation

before recomending its use to the uninitiated. New methods can now be quickly

tested on any PDE system discretized using the DEUNOD package.

14.
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All the spatial differentiation methods we describe will follow the same

algorithmic flow. A function is defined on a discrete set of mesh points in

one, two, or three space dimensions. These discrete data sets are the input to

a black box type subroutine in the DERNOD library. In this subroutine the

approximation for the described derivative is calculated and returned to the

user.

Thus, the spatial differentiation is totally divorced from the nonlinearities

of the PDE, the boundary conditions, and the time integration method. This

modularity also reduces the redundancy of programing the same approximation to

the spatial derivatives each time they appear in an equation. These

differentiation routines are designed for no specific PDE and need to be

debugged and optimized for a particular machine only once.

The data structures of the grids allowed in the current version of DERHOD,

listed in increasing order of complexity and computer cost, include:

0 . one-argument, grids: (tensor-product grids, Fig. Is) Ixi), [Xi , yj}, and

{xi, yj, zk). Uniform grids are a special case of one-argument grids,

e ultiple-argment grids: (logically rectangular, Fig. ib) (x,}, Ix 1 j ,

0 neighborhood grida: (Fig. lc) [x.}, fx,, V.}, [xp, y, z,1 and NBRS.

These grids are typical of finite element simplex grids.

. The numerical differentiation methods described can be divided into two

*classes: interpolation methods and mapping methods.

The interpolation method approximates the function with an interpolant (such

as splines, or a local Lagrange polynomial), differentiates the interpolant, and

evaluates the derivative at the desired location. These formulas are simple on

uniform grids but are usually complicated on nonuniform grids. The

interpolation method is not as sensitive to rough mesh variations as the mapping

method.

In the mapping method, the nonuniform grid is mapped to a uniform reference

grid. The derivatives on the nonuniform grid can then be expressed as products

and sums of the derivatives of the function on the reference grid and the map.

These derivatives on the reference grid are approximated using an interpolation

method that is simple and efficient. The accuracy of the mapping method depends

upon the smoothness of both the original function and the map. Therefore, the

smoothness of the mesh variations in the nonuniform grid can strongly influence

the accuracy of the derivative approximations.

• ~.:.
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bm.-srammeat grids 2-D Tensor-product grid
(z r vi, sk)

.ultiple-argument &rids 2-D logically rectangular grid

(z1,,D J ,,k'

4."

Neighborhood trids 2-D triangular grid
. .i (z ~v~a) s

4;, ,w(L) X)

YzOc(L)
z=o(L)) N R (L,*) 

" ,

Fig. 1. Different 2-0 grid data structures.
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After first describing the interpolation method in greater detail we will

discuss the mapping method, explain the program methodology used in designing

the software, and then provide instructions for using the DERNOD subroutines

effectively.

II. INTERLATION METHODS

In the interpolation method one can either construct a local interpolation

function based only on data points near where the derivative is desired or, by

using all the data points, construct a global interpolant. Usually the local

interpolants are simpler and more appropriate for handling sharp gradients and

nonuniform meshes, but they are less accurate than the global interpolants. In

this report we will describe only the local polynomial interpolation methods.

In a later report we plan to describe on the implementation of global

* interpolants based on the Fourier transform or Chebyshev polynomials.

The simplest local interpolation method to approximate derivatives fits a

Lagrange or least-squares polynomial through the data st the nearby mesh points,

* differentiates the polynomial and evaluates it at the desired mesh

point.I1 8  This results in an approximation for the k-th derivative of f st x.,

denoted by f(k](x ), that is a linear combination of the nearby function values,

t(k] = zI af(z /(costant x hk

On uniform grids these formulas are relatively simple and are called finite

difference methods. Table I lists some common finite difference formulas used

in DUMOD. The centered difference formulas are used whenever possible and the

uncentered ones are used only near boundaries when too few function values are

available to use a centered scheme.

When the data is smooth, the high order Lagrange interpolation formulas in

Table Ia usually provide better accuracy on a given grid than do the lower c-der - .

formulas.

When the data is rough, the sensitivity of the derivative approximations to

noise can be more important than the order of accuracy of the method. For these

problems the least-squares formulas 9 in Table lb are preferred over the Lagrange

formulas. These formulas are derived by fitting a least-squares polynomial

through the data points of degree two less than the Lagrange polynomial.

4. 44

S. t .- .'



491

TABLE la k (klLAGRANGE APPROXIMATIONS ON EQUALLY-SPACED GRIDS, chkf = 1 af(x )
.1 i

a a a a a a a
Derivative i-3 i-2 i-I i i+l i+2 ai3 ai+4 i+5 Accuracy

* "2hfx.) -1 0(h 2 )

xl
"2hf x (zd -3 4 -I O(h 2

4). 12hfx) -8 8 -1 O(h)
1 4 )

12hf x(x) -3 -10 18 -6 1 0(h
1 4)12hf (x ) -25 48 -36 16 -3 0(h)

60hf (x.) -1 9 -45 45 -9 1 0(h6 )

6Ohf (x i ) 2 -24 -35 80 -30 8 -1 (h

","hfxX+) -1 1 O(h2)
22

24hf(x ) -27 27 -1 0(h4)

24hfx( ) -23 21 3 -1 0(h)
2

1920hf (x+) -9 125 -2250 2250 -125 9 0(h 6

h 2f (x 1 -2 1 0(h 2 )

h 2 1fx 2 -5 4 -1 O(h2)

P4-----------------------------------------------------------------------------------------------
2 412h f (x.) -1 16 -30 16 -1 0(h)

22 xx 4
12h f (x.) 10 -15 -4 14 -6 1 0(h)

12h2 f x) 35 -104 114 -56 11 O(h )

180h 2 f (x.) 2 -27 270 -490 270 -27 2 O(h6 )

180h 2 f xx(x) -13 228 -420 200 15 -12 2 O(h5)

2h 3 f xxx.) -1 2 -2 1 2(h2)

2h 3 f (x ) -3 10 -12 6 -1 O(h 2 )

2h fxx(X -5 18 -24 14 -3 0(h 2 )x 1

h4f () 1 -4 6 -4 1 0(h 2 )

hi x ) 2 -9 16 -14 6 -1 O(h2 )

h4 fxxxx() 3 -14 26 -24 11 -2 0(h 2 )xxx

4.K
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TABLE lb
LEAST-SQUAIBS APPROXIMATION 0h RQIALLY-SPACI GRIDS. ch kf k  

- I ajf(x1 )
Approxieation a*3 ai* 2  ai-I l I&2 41+3 8i & ai 5 ai6 Accuraa a

35f(x ) -3 12 17 12 -3 O(h )

35f(x1) 9 13 12 6 -5 O(h
3
)

35f(x.) 31 9 -1 -5 3 O(h
3
)

2lObfx(x.) -2 -1 1 2 O(h)
7Obfx(x.) -34 30 20 17 -6 O(h 2

70hf(z 1 ) -54 13 40 27 -26 O(h
2
)

7h
2
f (x.) 2 -1 -2 -1 2 O(h

2
)

231f(x ) 5 -30 75 131 75 -30 5 O(,
6 )

462f(x ) -35 155 212 150 25 -65 20 O(bh
)

4
62f(xi) 25 356 155 -60 -65 70 -19 O(h

5
)

462f(x ) 456 25 -35 10 20 -19 5 0(w)

2S2bfx(x ) 22 -67 -58 58 67 -22 O(h
4)

2772hf(x t) 158 -1619 -50 121 74 -607 136 O(b
4 )

(x 1 4252hfx(x ) -104 -25 68 84 16 -59 20 O(h)

2772hfx(xi) -4420 5059 1504 -2394 -1378 2375 -746 O(h
4 )

132h 2f (x.) -13 67 -19 -70 -19 67 -13 O(h
4 )

1 2xxi 27 3 -35 -34 9 47 -17 Oh
3

132h
2
fx() 103 -145 -39 74 49 -57 15 O(h

3

132 2 f x( 0 153
132h f(x 1 ) 215 -377 -31 254 101 -245 63 O(h

37

*Q
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On an equally spaced mesh it is easily seen that the centered first10
derivative approximations in Table I are conservative. On an unequally spaced

mesh the interpolation formulas are, in general, not conservative.

To compute more complicated derivatives such as f or (dfx)x the formulas

are applied in a two-step process that ensures that the resulting formula will
be as compact as possible. For example, to compute (dfx)x, first fx is computed

at the half-points xi+% = Vxi + x i+)" Then d is defined at these points using

the harmonic mean,

+ d-l(x) dd] 2d d 1(d 1, d+l)

The harmonic rather than the arithmetic mean is used in order to preserve the

flux continuity (df ) accross discontinuities in d.11  The product df is then
x x

differentiated and evaluated at the mesh points. On nonuniform grids special

care must be taken because the centers of the midpoints are not the mesh points.

* The three-point derivative approximations on nonuniform grids using a

parabolic interpolant are listed in Table 2. The five-point quintic Lagrange

interpolation methods are straightforward I and are also available in the

TABLE 2
QUADRATIC APPROXIMATIONS TO fx AND fxx

fx(x) (Axi-1/2 S1+1/2 4 Axi+1/2 Si-ll2)/(Axi+i/2 + Ax i1/2)

f fx i -(2Axi1/2 + Axi+3/2 Si+I/2 - Axi+i/2 Si+3/2]/(&Xi I/2 + Axi+3/2)

f a (xxi 2(S i+1/2 " i-1/2)/( itl/2 + Ai-1/2 )

where

AXi+1/2 = i+1  x i

Si+1/2 =Af i+1/2/Axi+1/2

• . -.. . .1
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package. The coefficients a. for the quintic interpolation methods are computed

and saved on the first call to the package. By using this information, later

derivative calculations on the same nonuniform grid cost little more than the

approximations on an equally spaced grid.

On the multiple-argument or neighborhood grids the local Lagrange interpolant

is more cumbersome and frequently there is no unique formulation. For example,

in two dimensions, the typical Lagrange quadratic interpolant is uniquely

defined with six data points, but the (ij)-th mesh point in two-argument grid

has nine data points next to it. A possible approach is illustrated in Fig. 2.

First, an orthogonal (x,y) coordinate system is set up and f is interpolated

linearly to give values at the on-axis points A, B, C, and D using the function

values at the neighboring points. The one-argument grid quadratic

interpolation formulas are then used. This procedure, implemented in DERMOD, is

not as accurate as it could be, since the interpolsted values are only O(h
2).

The first derivative approximations are only O(h) accurate and the second

derivative approximations may be only 0(1), and thus they may be inconsistent.

SY 
Y

; 
A

'a

• (i-I~j|( Igk//

' Oll)j x

Fig. 2a. Two-argument grid. Fig. 2b. Neighborhood grid.

Fig. 2. Interpolation to an underlying orthogonal reference grid.

We have considered two other approaches to overcome this dilemma on

multiple-argument and neighborhood grids. The first is to fit a least-squares

quadratic polynomial through the nearby data points and differentiate it at the

desired location. We expect this method to be accurate and stable. We are

currently implementing this approach in DERMOD.

tA
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The lumped finite element method is another interpolation method that can

also be used to generate local approximations to the derivatives. These 4

formulas work well on uniform grids, but appear to have little advantage over

the least squares approach on rough grids. In fact, using a triangulation of

the grid in Fig. 2, the approximations thus generated to the second derivatives

are pointwise inconsistent. The Minerbo approximation to the Laplac4.n is an

accurate special formula that avoids this inconsistancy.

§ III. HAPPING NKTHODS

A simpler approach to numerical differentiation on nonuniform grids is the

mapping method. In the mapping method, the physical mesh points (x,y,z) are

mapped to reference mesh points Q,). The derivatives in the physical space

are then expressed in terms of the derivatives of the map, called the mesh

metrics, and the derivatives of the function on the reference grid.
13

. The mapping method in one space dimension is always nonsingular since the

nonuniform mesh [xi) forms a strictly monotonic sequence. That is, there exists

a one-to-one map from x1 onto the reference grid ti (for example, Li = i). The

derivatives of a function defined on {xi) can then be expressed as

fz = f z ft/zg (4.1)

A I J* andj

fx_ f tetX tX f(x(t) + 41((x)) C (42

The derivatives on the right side of these equations are derivatives on the

reference mesh. These can be approximated with any of the interpolation

methods, all of which have a much simpler formulation on regular reference

grids. For example, if fourth-order Lagrange finite differences are used in

(4.1), then

f +81 of +*iet- Z1+2 + 1-1 1-2)-I2+ 12- x- i2-f +2 +  8f,1+1 " f-I , fl-2

Z .1+2 + Ox 1+1 - axi1- + X1-2

I
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Note that the reference grid points need not be evenly spaced. They could,

for example, be the Gauss or Chebyshev points depending upon the interpolatingI

functions being used.

Some smoothness in the function being approximated is assumed in deriving all

the high order differentiation formulas. For this reason, the order of accuracy
is bounded by the smoothness of f, the smoothness of the map, and the order of
accuracy of the differentiation formula on the uniform mesh. Therefore the
mapping methods are usually less accurate than the interpolation methods on

grids with nonsmoothly varying mesh spacing.

Analytically, tz can never vanish. However, on rough grids (where the
mapping method is inappropriate) the numerical approximation to x ay vanish

or, equally bad, change sign. When this occurs, either an interpolation method

or a lover order mapping method should be used.

On two-argument grids the formulas are more complicated, but the

derivatives can still be expressed as a function of the derivatives on a regular

reference grid and the mesh metrics of the map from the physical (x,y) grid to

the reference (t,q) grid. For this case we hive

f% E n 0 0 "

fLy y 0 0 0 f n

n 2 2t f (43)
xx x X x 2q qx EE(43

fx NY 4X xy V~c xy kxfy + yn1  'rvJy ftr

f(£VV qy 2 rr

Using the Jacobian J of the map and its derivatives,

XV -t S-~

and

! !'
+

n t n nn E xnvt
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the mesh mtrics can be easily expressed as derivatives on the (t,n) reference

grid.

ny/

* ( 1 2 I VJ3
"yn j y = n jyyn/

E = (J xy - Jxztyn - Jnxnyt + Jxsi.)/J
3

- =(J-Jt x +  *Jzzn + ' Jtxn n)/j3

%2

n = (Jnrlv -J, 0YE " rl " n + -. )/

and

n., (- *Jx x + 'ztn + z -J z /'T

If the derivatives of many different functions must be calculated on the same -

mesh, then the mesh metrics need only be calculated once and saved. Usually

this means after the initial derivative calculation, additional derivatives on

the same nonuniform mesh, using the mapping method, cost only slightly more than

derivative approximations on a uniform mesh. The package des this

automatically.

The mapping method for three-argument grids is similar to two-argumnent grids

but this has not been implemented in DERHOD, yet.

II
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IV. SOFTWARE DESIGN

In designing DERPOD we placed a priority ov making the code reliable, modular

and easy to use. All the programs were extensively documented and verified as

the code was developed and performance claims were tested and reconfirmed.

During execution, the input is consistently checked for reasonability.

The routines are modular and as independent of each other as possible.

Minimal internal communication allows sophisticated users to easily experiment

and modify a subroutine for special purposes without causing unexpected errors

to ripple through the other routines. Modularity also allows the programs using

DERMOD to be easily upgraded and to make use of improved methods and

implementations as they become available. We anticipate that by using the

package the sofware development time and maintenance of codes may be

significantly reduced, especially for lengthy 3-D programs.

The machine architecture largely determines the efficiency of many of the

numerical differentiation methods. We have opted for the routines to

differentiate along one line at a time. This requires only one-dimensional work

arrays and allows the code to be easily vectorized on machines such as the

CRAY-1 and CDC Cyber-205.

The subroutine names in the package have six characters. These are chosen

according to the following convention:

first letter:

A - define all the indicated derivatives
X - sweep in the x direction (first index sweep)
Y - sweep in the y direction (second index sweep)
Z - sweep in the z direction (third index sweep)

second letter:

1 - first derivative
2 - second derivative
3 - third derivative
4 - fourth derivative
X,Y,Z or L - see special cases listed below

third letter:

X - derivative in the x coordinate direction
Y - derivative in the y coordinate direction
Z - derivative in the z coordinate direction
C,D,R,S,Y or Z - see special cases listed below

* I
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fourth letter:

P - polynomial approximation (finite differences)

F - Fourier transform (pseudo-spectral method)
C - Chebychev transform (pseudo-spectral method)
R - rational function Padi approximation (implicit method)

fifth letter:

E - equally spaced grid
I - interpolation method (unequally spaced grid)
MH - mapping method (unequally spaced grid)
G - Gauss points

C - Chebyshev points

sixth letter:

I - one-argument (tensor product) grid X(I), Y(M), Z(I)
2 - two-argument grid X(I,J), Y(I,J)
3. - three-argument grid X(I,J,K), Y(I,J,K), Z(I,J,K)
T - triangular neighborhood grid X(L), Y(L) (two dimensions)
P - pyramid neighborhood grid X(L), Y(L), Z(L) (three dimensions)
H - one-argument staggered grid (derivatives at the half points)

special cases for the second and third letter:

XY - mixed xy derivative
XZ - mixed xz derivative
YZ - mixed yz derivative

LR - Laplacian in rectangular geometry (xxu + u + u
xx yy zzLC -Laplacian incylindrical geometry 1 '2uy zz

LS - Laplacian in spherical goemetry

XD - compute (dfx)x

YD - compute (df )
y y

ZD - compute (df )z

For example, subroutine X2YPM2 computes the second derivative of f with

respect to y, f , at the mesh points along an X coordinate line using a local

polynomial interpolant or finite difference method, listed in Table 1, after

mapping the unequally spaced two-argument grid to a uniform grid. The mesh

metrics are computed using the same order finite difference methods.

At this time the available routines are:

XIXPEI, X2XPEI, X3XPEI, X4XPEI, X1YPEI, X2YPE1, X3YPEI, X4YPEl, XlZPE1, X2ZPEI,

X3ZPEI, X4ZPEI, XIXPII, X2XPIl, XIYPII, X2YPII, XIZPIl, X2ZPI1, XIXPNl, X2XPHI,

XIYPMI, X2YPHI, XlZPMl, X2ZPHI, XXYPE1, XXZPEI, XXYPI1, XXZPII, XXYPHI, OXZPH1,

X1XPEH, XIYPEII, XIZPEH, XIXPMH, X1YPNH, XIZPMH, X=PEI, XYDPE1, XZDPEI, XXDPII,

XYDPI1, XZDPII, XIXPI2, XIYPI2, XIXPH2, X2XPH2, X1YPH2, X2YPH2, and XXYPH2.

AN
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The nomenclature used by the package will be useful in describing the

capabilities of the routines. These variables (used in the above X sweep

routines) and their meanings are:

Input Variables:

U - array of the function values to be differentiated

in one space dimension the function u(x) must be defined at U(I) where
I is between NXBX and NXKX

in two space dimensions the function u(x,y) must be defined at U(I,J)
where
I is between NXBX and NXEX
J is between NYBX and NYEX

in three space dimensions the function u(x,y,z) must be defined at
U(I,J,K) where
I is between NXBX and NXEX
J is between NYBX and NYEX
K is between NZBX and NZX

On neighborhood grids the function u must be defined at U(L) where L
is between NLBX and NLEX.

X - the array containing the mesh point locations in the first coordinate
diction. The element X(I) in one-argument grids, X(I,J) or X(I,J,K) :
on multiple-argument grids, or X(L) on neighborhood grids must be
defined for the same indices I, J, K, or L as those where U is
defined.

Y - the array containing the mesh point locations in the first coordinate
diction. The element Y(J) in one-argument grids, Y(I,J) or Y(I,J,K)
on multiple-argument grids or Y(L) on neighborhood grids must be
defined for the same indices I, J, K, or L as those where U is
defined.

Z - the array containing the mesh point locations in the first coordinate
diction. The element Z(K) in one-argument grids or Z(I,J,K) on
multiple-argument grids or Z(L) on neighborhood grids must be defined
for the same indices I, J, K, or L as those where U is defined.

D array of the diffusion coefficients for the second derivatives. This
* -array must be defined where U is defined and has the same data "

structure as U. S..

NXBX - index of the first X point where U is defined.

NXB - index of the first X mesh point where the derivatives of U are to be
calculated.

N)M - index of the last X mesh point where the derivatives of U are to be
calculated.

t
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Nt - index of the last X point where U is defined.

ND - dimuesion of the first index of U and the mesh arrays.

NYU - index of the first Y point where U is defined.

NY - index of the Y mesh point where the derivatives of U are to be
calculated.

NYZX - index of the last Y point where U is defined.

NYD - dimension of the second index of U and the mesh arrays.

NZBX - index of the first Z point where U is defined.

NZ - index of the Z mesh point where the derivatives of U are to be
calculated.

NZUX - index of the last Z point where U is defined.

M N"f- method order parameter. The method should be asymptotically MOD-th
"'S-order

orkspace Variables:

1W - index to indicate whether the work space array contains information on
the grid such as the mesh metrics (rW = 0 on first call using the grid,
1M = I on later calls).

WS - array of workspace used for internal calculations. This array may be
g.5. input or output.

Output Variables:

V" - array of the derivatives defined at U**(I) for I between Nil and I.
The second and third letters are the same as these in the

subroutine-naming convention.

NOP - The derivative returned is asymptotically HORD-th order. This will be
less than or equal to the requested value. HOlD returns equal to zero if
no calculation was possible.

The variables for the routines that sweep in the Y and Z lines are similarly

named.

A sample program to compute the derivative of sin(x) for x between zero and

one, using a sixth-order finite difference (polynomial interpolation) method is:

DINMI 0 X(l1),U(ll),UIX(1l)

ND=1.OI(mX-NXX)

DO 10 I=MMX,IXM

10 U(M)USIN(1(I))

..ia
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MORD--6
WXB-=NXBX
KXE=NXEX
CALL X1XPE1(U,X,NXBX,NXB,NXE,NXEX,MORD,UIX)
PRINT 20

20 FORMAT(" X U UIX ANS")
DO 30 I=NXB,NXE
ANS=COS(X(I))

30 PRINT 40,X(I),U(I),U1X(I),ANS
40 FORHAT(4FI0.6)

CALL EXIT
END

The output is:

X U UIX ANS

0.000000 0.000000 .999980 1.000000
.100000 .099833 .995009 .995004
.200000 .198669 .980067 .980067
.300000 .295520 .955336 .955336
.400000 .389418 .921061 .921061
.500000 .479426 .877583 .877583
.600000 .564642 .825336 .825336
.700000 .644218 .764842 .764842
.800000 .717356 .696707 .696707
.900000 .783327 .621613 .621610

1.000000 .841471 .540289 .540302

* Note that in this example the derivative approximations near the boundaries

where the uncentered difference formulas are used are less accurate than where

centered differences can be used. These errors could be avoided by defining U

on a domain greater than that of the desired derivatives such

as: NXBX < NSB - 2 and NXEX > XNE + 2. This is also convenient when using

fictitious points to incorporate the effects of the boundary conditions into a
15discrete approximation and when constructing a local Hermite interpolant and

sampling the interior of a table.

The workspace needed by the code is limited to one-dimensional arrays of

length NXE. These arrays contain the finite-difference coefficients for a
particular mesh line, and can be used to define the coefficient matrix needed in

solving the linear systems arising from implicit methods. When the user's

program is constr2ined by .omputer CPU time and not storage, then by saving

*workspace arrays of length NXE on one-arsument grids or NXE-NYE on two-argument

* grids, the difference coefficients need only be computed once for the entire

* problem.

A%
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V. USAGE

We expect the package to be used most frequently for calculating derivatives

directly for explicit approximations to differential equations and for defect

correction improvements of low-order implicit approximations. 16 When used this

way a crude estimate of the error can be obtained by comparing the derivatives

with those obtained by a different method or on a coarser grid. The structure

of the package makes this easy to do.

The direct usage is straightforward; the function to be differentiated is

defined at the mesh points and the derivatives are calculated as described in

the example in the previous section. We expect this to be the most coion usage

for explicit integration methods for PDEs and for constructing interpolants.

The indirect defect correction usage occurs most often in the iterative

solution of algebraic equations arising in the numerical approximation to

differential equations. These equations occur in steady state or time

independent problems and on each time step in the implicit integration of time

dependent problems.

These systems can be written

A(v) - b = 0 , (5.1)

where A is a nonlinear discrete operator, b is a known vector, and the discrete

solution vector is v. The sparseness of A depends upon the numerical

differentiation method used. The high-order methods result in less sparse, more

complicated systems than the lower-order methods.

Often the solution of Eq. (5.1) is difficult to obtain directly, but the

residual error,

r = A(w) - b (5.2)

for an approximate solution w, is easy to evaluate. In many complicated PDE

problems, one is less likely to introduce errors in evaluating r than in

constructing A and solving Eq. (5.1). This is particularly true for high-order

r approximations of nonlinear systems on irregular domains.

If there is a related system

P(w) - b = 0 (5.3)

that approximates Eq. (5.1) and is easier to solve, the defect correction

" ' ". '-V . L . - -°' '. -
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algorith. ay be appropriate. The operator P may be a lower order, simpler
approximation to the same system.

Given an approximation v 
n (where n is the iteration parameter) near a ront

n+1 of Eq. (5.1), we can expand Eq. (5.1) using the Taylor series to set

0 = A(vn
+ l) - b

= A(vn+ ) - b + P(vn+
l ) - P(vn ')

= A(vn) b P(Vn+l
)  P(v

n ) n- .J A " (v n l v n + 0(82

(5.4)

where = vn +l 
- vn The defect correction is any 0(a) approximation to

Eq. (5.4); that is, to

P(vn+ l) ) P(v ) -A(v n ) + b (5.5)

The iteration will converge if vn and (the Jacobian of P), are near enough to
nilp

v and JA' respectively. This will usually be the case if both A and P are

different discretisations of the same equation.

The approximate operation P can also be chosen to make Eq. (5.5) even easier

to solve using an SOR, ADI, ILU or multigrid approxination. 1 6  When this is

done, the residuals need to be computed with the high-order formula only in the

last few iterations when the iteration is almost converged. The cost of the

high-order approximations in the residual calculations are often ssmll and more

than justified in light of the resulting increase in accuracy.

The defect correction iteration can often be speeded up by using an

acceleration technique such as a Chebyshev or conjugate gradient method.

Vl. SU Y

We have used a modular approach to design a subroutine package calculating

numerical approximations to the spatial derivatives of a function defined only

at a discrete set of points. The routines are flexible, easy to use, and

compatible to further expansions of the package. We hope that the software

development and maintenance time of future P13 and interpolation codes using the

package will be substantially reduced.

We are extending the package to include some pseudo-spectral methods and some

better interpolation methods on two- and three-argument grids. We encourage

_I
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others to develop compatible subroutines that could be added to IDUInD. We will

gratefully consider including into DEUM any code sent to us that has been

programed using standard FORTRAN and the same supporting routines as the

current package. For further information please contact J. N. Hymn.
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SOLUTION OF VISCOUS INTERNAL FLOWS ON CURVILINEAR GRIDS GENERATED BY THE
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++Department of Aerospace Engineering and Applied Mechanics

University of Cincinnati, Cincinnati, Ohio

I

x SUMMARY

A method is presented for combining an accurate orthogonal curvilinear

coordinate generation procedure with a fast, accurate, and stable forward

marching viscous flow solution technique to solve for the flow field in arbi-

trary axisymmetric ducts. In this method, the coordinates are generated from

the plane potential flow streamlines and potential lines using the Schwarz-

Christoffel transformation with a composite finite difference formula which is

valid everywhere and which treats the poles exactly by analytic integration.

Since the coordinate streamlines approximate the actual streamlines, the equa- J
tions of motion for viscous compressible flow can be parabolized so as to solvek for both the boundary layers and core flow in a single streamwise pass. The

versatility of the method is demonstrated by two examples of viscous compress-

ible swirling flow through complex radial gas turbine passages.

INTRODUCTION 0

Accurate solution of high Reynolds number, viscous, compressible, swirling

flows in complex turbomachinery ducts is a continuing concern in fluid mechanics.

Two major areas of development are required for the solution of these problems.

The first is the development of an efficient and accurate method to generate

a coordinate system which should facilitate the formulation and numerical solu-

tion of the viscous flow analysis by aligning the coordinates along and normal

to the predominant flow direction. The second is the development of a fast

and accurate viscous flow solver which mvs use of the properties of a

properly constructed curvilinear coordinate system to simplify the problem

and reduce computing time.

Many authors have addressed the grid generation problem by analytical or

the right to reproduce the copyrighted chapter in whole or in part and
distribute copies thereof without charge to employees of United Technologies

Corporation (UTC), its divisions, subsidiaries and related entities. The
above right may be exercised by the author(s) or delegated to any library
or archive within UTC.
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12 3
numerical means. Sells 1

, Jameson , and Garabedian and Korn have adapted the

conformal mapping procedure to calculate orthogonal curvilinear coordinate

systems to solve the steady state transonic flow over an airfoil. Moretti4

5
and Ives have adapted conformal mapping methods to generate grids for a

variety of other geometries. Anderson6 has adapted the Schwarz-Christoffel

transformation to calculate orthogonal curvilinear grids for a variety of sim-

ple internal flow passages and Davis7 has adapted the same transformation to

calculate a variety of external flow curvilinear grids. Recently, Sridhar and

Davis8 have extended the method of Davis to calculate grids for internal flow
9

passages and Anderson, et al. have combined into a single code the Davis

7
method for calculating coordinates and the Anderson method for solving tur-

bulent compressible viscous flows in small radial gas turbine ducts. The

present paper is an abbreviated version of the NASA contractor report prepared

by Anderson, et al.

The Schwarz-Christoffel transformation transforms the interior of a polygon

to the upper half plane which in turn can be transformed to a straight channel.

Each corner of the polygon is a pole (singularity) and the transformation is

6
not analytic at that point. The method of Anderson resolved the singularity

problem by integrating along a boundary which was just inside the mapping do-

main. Hence, errors are incurred in mapping the boundary. In addition, the

Anderson solution was such that it could not treat complex duct passages which

* turn 90 degrees or more because of multivalues in the wall coordinates. The
7

Davis method , however, uses a composite finite-difference formula which is

valid everywhere and which treats the poles exactly by analytic integration.

Therefore, the Davis method can integrate along the walls and reduce the

errors associated with the Anderson method. Sridhar and Davis have also

shown that the new Davis method yields second order accurate coordinates and

metric coefficients. In addition, the Davis method has the flexibility to

construct orthogonal curvilinear grids for complex internal flow passages

which turn up to 180 degrees.

The overall objective of the present paper is to describe the Davis method

for the calculation of orthogonal curvilinear grids suitable for Internal duct

flows and in particular focus on highly converging ducts which turn up to 180

degrees. The viscous flow analysis developed by Anderson6 is then applied to

M"ON
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this orthogonal curvilinear grid to solve for the turbulent swirling compres-

sible flow through complex small radial gas turbine passages.

ANALYSIS

Curvilinear Coordinate Analysis

The analysis on which the viscous solution technique is based requires that

the coordinate system be orthogonal and that it be a first approximation to

the viscous flow through the duct since the flow curvature is assumed to be

6the same as that of the streamwise coordinate lines 6 . A two dimensional ortho-

gonal coordinate system can always be constructed from a potential flow solu-

tion by setting the normal coordinate equal to the stream function and the

streamwise coordinate equal to the velocity potential. For plane flow, con-

formal mapping techniques are ideal because it allows solution of the inverse

. problem by direct means. That is (x(s,n), y(s,n)) rather than (s(x,y), n(x,y))

can be calculated directly where (x,y) is the Cartesian system and (s,n) is

* the curvilinear system and where s is the velocity potential and n the stream

function. For many axisymmetric ducts, this plane flow solution serves as a

sufficiently good approximation to the flow curvature of axisymmetric flow.

However, for certain cases where this approximation is insufficient, a tech-

nique has been developed by Anderson and Edwards to obtain axisymmetric

streamline curvatures for use with the coordinate system derived from plane

* potential flow. Thus, coordinate grids based on conformal mapping have a wide

range of applicability to the solution of viscous flow problems.

The mapping of an arbitrary duct in the (z) plane to a straight channel

in the (t) plane has a special significance for the formulation of the

viscous flow equations. Thus, if t is the complex potential, a Cartesian

mesh in the (t) plane maps into an orthogonal curvilinear mesh in the (z)

plane in which the coordinates are the potential lines and streamlines for

the inviscid incompressible flow through the particular duct being analyzed.

The coordinate streamlines thus approximate the viscous flow streamlines at

high Reynolds numbers. This property of the coordinate grid-is used to sim-

plify the equations of motion.

A two-step transformation, shown in Fig. 1, is adopted. This first step

is the Schwarz-Christoffel transformation from the duct (z) plane to the upper

Ad
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half ( ) plane which is given by

z NM_ n tC_ bi)_Q'/w

This mapping has a constant M which determines the rotation of the duct rela-

tive to the real axis. The corner angles are denoted by ai and are known.

The pole locations bi in the C plane, however, are not known.

" PLANE (, +fq)

Z PLANE (Z= X + iY)
, ZNLF + I (w. e .

N.... bl b2  bNLF bNLF + 1 bN
00 0 .0::

Z1 2  t P LA N E ( t = s + in)
" 

IN in 1NLF + 1

It tNLF

S

Fig. 1. Happing of duct to straight channel.

The second step of the transformation is from the upper half ( ) plane to

a straight channel in the t plane is given by

t -nc + I(2)

If t is the complex potential, then

t-m-+in (3)

where a is the velocity potential and n is the stream function, then construc-

tion of a Cartesian mesh in the t plane represents a conformal mesh in the z

plane composed of the stream function and velocity potential for the plane

-.,' -
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potential flow through the duL.. The comple' conjugate of the potential

flow velocity is

u-iv - dt (4)
dZ

Hence, the magnitude of the potential flow velocity is

(5)

which is the inverse of the metric coefficient.

Equation (1) can be reduced to a form involving only poles and angles on

the duct. This form is given by

.AL C-e 1 (._bi)'i 1  (6)

The transfortation given by Eq. (6) is singular at each pole bi. Davis7

has developed a composite finite difference formula by analytically integrat-

ing Eq. (6) in the neighborhood of the poles. This formula is given by

4+.

; Zx+ I Zo + +, ... . (+- )(7)
Z~~1 ~ 1mZ~ ~ %+1/2 I

From Eq. (2) we have

W , -- KT (,. 4 I

which may be combined with Eq. (7) to provide a direct integration to the t
8

plane. These equations, as demonstrated by Sridhar and Davis 
, are second

order accurate and contain no singularities. Therefore, the integration may

be done along the walls which contain the poles. Equations (7) and (8) may

be used to integrate along either streamlines or potentail lines. Thus we

have

IWO.
't.



-- 1

512

dtmds+idn (9)

By setting dn 0 the integration is along streamlines and by setting ds 0

the integration is along potential lines.

The asymptotic solution for far upstream in the straight inlet channel is

obtained C =. In this limit, Eq. (1) reduces to

dz M (10)

Integrating Eq. (10) and substituting Eq. (2), we have

z- rMUi-t)+z (11)

Subtracting the lower wall from the upper wall results in

Zu-ZLm 1 - rMi (12)

Then using the duct height H and angle of rotation 0, as shown on Fig. 2,

we may solve for the constant H which results in

M- (13)

Thus, M scales the height and rotation of the duct.

An examination of Eqs. (6) and (2), together with Fig. 3, shows that the

at's and the line segments Iz - I are known along the walls but the -
ci+l c

location of the poles bi or tL are not known. One constant can be fixed arbi-

trarily so that we take (z1, bi, t1 ) as known. For the moment, let us assume

(ZN, bN, t )are known. Then new guesses for the poles b,9s are given by com-

a; paring the lengths of line segments

t "+ + 0 . -t ) (14)" " Ir-zr-," I
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and from Eq. (2)

b&+' ep[Iwi- +')] (15)

Z PLANE (Z = X + iY) Z
Z PLANE (Z= X +iY) NLF+1

Z ZN 
ZCNLF

V -4

,: 
Z7 Z2 _

ZIT Z21' ZILF

.,, 

X

•x

Fig. 2. Asymptotic Solution Fig. 3. Integration Update

Absolute and uniform convergence is established when all points satisfy the

condition

"I Z=c-z"I C (16)

The iteration formula given by Eq. (14) is valid for all points except

t N This point is determined using the asymptotic solution in the following

manner. Let us define upstream points t1 ' and tN' shown in Fig. 4, by the

following relations

t,,, ti'+ i (17)

where a is a parameter chosen to move t1 ' sufficiently far upstream to approx-

imate the limiting asymptotic solution as t - - -. Referring to Fig. 4, the

point zN is determined with known t 'a by integrating along the path (Zl to

A to z\1 ). Then the point zI' is determined by integrating along the path

(z1 to 21'). The point zN' is determined using the asymptotic solution,

Eq. (12). Hence,

AV
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ZN'- Z;- - wMi (8

Then the point tN  is Vien by

too' +~ (t ts') (19

Z PLANE (Z = X + iYI I PLANE (t =S + in)

In pZNj' 'N (A) tN " IN'1
(AA 1 ' tN.

k 'N ZCN r

, II

:IZ'. I

X Ii 12V t3Pi

*Fig. 4. Update for Corner Point

Viscous Flow Solution
6

The formulation of the viscous flow equations was presented by Anderson

In this formulation a parabolic system of equations is derived from the

Navier Stokes equations by assuming that the velocity component normal to

the streamwise coordinate (inviscid streamline) is small compared to the

streamwise component of velocity. In addition only the viscous stress

component normal to the wall is retained. This method has been shown by

6 i
Anderson to be numerically stable and capable of simultaneously resolving

'I.

the inviscid core flow and the boundary layer flow at the walls. It has

also been shown by Barber, et al. to yield the same results as viscous-

inviscid interaction theory in which a boundary-layer solution was iterated

with an inviscid core solution; but in contrast to interaction theory, which

can only treat thin boundary layers, this method can treat problems with ' "

thin boundary layers up through fully developed channel flow. The method

has been extended to treat swirling flows produced by inlet guide vanes

.v .'*.
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(see Barber, et al. 11). In this manner, the special properties of the

coordinate system are used to simplify the equations of motion so that the

flow field can be calculated in a single streamwise pass rather than in multi-

ple passes such as used in a viscous-inviscid interaction approach.

The viscous flow equations, given below, are written in an orthogonal

streamline coordinate system where n is the normal coordinate (potential

flow stream function) and s is the streamwise coordinate (potential flow

velocity potential). The metric scale coefficient is the same in both the n

* and s directions and is equal to (l/V) where V is the magnitude of the poten-

*' tial flow velocity.

SrOUs (20)

4 rpU~(21)

- V * Us V~ # PaU*2B U# r f,,8
7s. an _t r _! ( (12)

r On OS* as asdu U r i n * V~ an
"V at au -tao P So. 1n#) + n:O

'' an sv F r is T n k-r (23)

PV P .V r + V i. 0 (24)

V, + (25)

'm * /FOn(VUS) (26)

- --.... ,

((27
4. C V .. 28)
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p wR (29)

I-I •Cp In(T/TJ -Rt (P/P) (30)

Equations (20) through (30), excluding Eq. (22), form a set of eight

* first order partial differential equations and two algebraic equations which

may be used to solve for ten unknowns. The boundary conditions for this

problem are given by

US(o.s)•0 q,,(o, s) Z 0
* . (31)

Su*(os)-o *1o~s).o

• for the inner wall and

UO,(Is)so q, (I's)-o
,t(32)

u.(,s)0o *(,s)*()32)J..-"

for the outer wall.

In previous work, two turbulence models have been incorporated into the

viscous flow analysis to provide closure of the problem. The first is an

algebraic two layer eddy viscosity model6 with recent corrections for stream-

10line curvature and swirl developed by Anderson and Edwards . The second is

a two equation (k,e) model developed by Chen1 2 with corrections for stream-

* line curvature and swirl developed by Launder, et al. 3 . The implementa-

10tion of these turbulence models Is presented by Anderson and Edwards

i The examples given in this paper were calculated using the algebraic turbu-

lence model.
k. With the relationship between turbulent viscosity and the man flow speci-

fied, Eqs. (20) through (30) can be solved by a forward marching numerical

integration scheme. Equations (20) through (30) are first linearized by ex-

pending ell dependent variables in a Taylor series expansion in the marching . '

2direction (a), and terms of 0 (As are dropped. Finite-difference equations

* -'"- - .,-

/*1 .
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are then obtained using the two point centered difference scheme of Keller
14 '15

The resulting matrix equations are (10 x 10) block tridiagonal and are solved
16

by block factorization using the method of Varah1 . The numerical solution is

second order accurate in the n direction, first order in the s direction,

6
-, linearly stable, and has no branching solutions . The As step size is limited

not by linear stability conditions but by the required acciiracy in the Taylor

series expansion in s.

RESULTS AND DISCUSSION

Comparison of Coordinate Calculations

A comparison of the coordinate grid generation analyses of Anderson and

Davis was made by choosing a simple engine exhaust nozzle and calculating

the coordinates with both methods. A geometric mesh consisting of 50 equally

spaced streamlines and 80 potential lines was calculated using each coordin-

ate analysis. The Davis method obtained uniform and absolute convergence

with a tolerance of 10- 4 in 7 iterations and .he Anderson method obtained

convergence to 10 in 8 iterations. The computational (CPj5) time on a

UNIVAC 1100/81A system was 15 1/2 minutes for the Davis grid generator and

15 minutes for the Anderson grid generator.

The two grid generators produced essentially identical results for the vail

boundaries as can be seen in Fig. 5 which is a comparison of the inner wall

coordinates for the exhaust nozzle calculated by both methods. This was ex-

pected since the two methods are based on the Schwarz-Christoffel transforma-

tion. However, as can be observed from Fig. 6 which is a comparison of the

metric coefficinets along the inner wall using both methods, the Davis method

calculates a smoother distribution of metric coefficients. This improvement i.

can be attributed to the fact that the Davis method treats the poles exactly

whereas the Anderson method does not.

AGTIO1 Gas Turbine

The AGT101 gas turbine, shown in Fig. 7, is a small automotive gas turbine

under development by the Department of Energy, NASA Lewis Research Center, and

private industry. Although it contains certain design features which are

specifically tailored to the automotive gas turbine application, it represents

the complexity of flow situations found in a broad class of mall gas turbine

). - ,-. .. _ . . .. .. ...i
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engines which can be addressed by computational fluid mechanics. In particular.,

one notes that the flow is compressible, turbulent, swirling, and passes

through flow passages which turn up to 180 degrees. This paper presents two

examples taken from this engine to illustrate the calculation procedure.

-...REF. 6 ---- REF.6

013- - REF.7 R - REF. 7

U 2.8

0.1- - U.7 - -

Uj 2.7,.1 - A L D A2. - - -

12.5-

t0 0.05 0.10 0.15 0.20 0.25 0 0.05 0.10 0.15 0.20 0.25

z - AXIAL DISTANCE (ft) z - AXIAL DISTANCE (ft)

* Figure 5. Comparison of Calculated Figure 6. Comparison of the Calculated

Inner Wall Coordinates Inner Wall Metric Coefficients

AGTl01 Turbine Inlet Duct

The viscous turbulent flow through the AGT01 turbine inlet duct, with

struts, was calculated using inlet flow conditions supplied by NASA-Lewis

Research Center 10 . The computational mesh and geometry used to represent

the AGT101 turbine inlet duct in the analysis is shown in Fig. 8. This tur-

bine inlet duct is a transition duct from the combustor exit plane to the

turbine inlet plane and contains three struts arranged circumferentially

around the duct. The plane view of these struts is shown in Fig. 8. The

blunt stagnation point at the axis of symmetry is replaced by a faired

streamline to bypass the need to solve stagnation point flow since the equa-

tions are singular at this point since the metric coefficient, liV, is

infinite.

Initial flow conditions specified by NASA were uniform total temperature

of 794.4 degrees Rankine and uniform total pressure of 3086.78 psf with a

corrected weisht flow of 0.3369 Ibm/sec. These conditions are sufficient '

to set up all flow variables at the initial station which satisfy the global

11

..... . .;! : . " -
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continuity equation, normal momentum equation, and equation of state. The

analysis was started downstream of the hub stagnation point to bypass the

stagnation point solution. Turbulent boundary layers were assumed and a low
10

Reynolds number algebraic turbulence model was used . It was found that

the Reynolds number per inch was so low that a turbulent boundary layer start

using a momentum thickness estimated from a stagnation point solution was not

possible. Since a laminar turbulent transition model is not currently avail-

able, the initial station was chosen further downstream and the momentum thick-

ness increased. At this initial station, the Reynolds number based on momen-

tun thickness was 400.

040

S0.30 STRUT LOCATION

0.20 SHROUD INLET

0 AXIS OF SYMMETRY

z - AXIAL DISTANCE (III)

Figure R. Computational Mesh for AGTIOI
* Turbine Inlet Duct

A geometric mash was calculated using the Davis method consisting of 50'

equally-spaced streamlines and 100 potential lines. Uniform and absolute

convergence of the conformal mapping solution was obtained to a tolerance of

1.5 x 10- 4 in 13 iterations. The computational CPU time on a UNIVAC 1100/S1A

operating system was 29.5 minutes. The computational mesh shown on Fig. 8,

consisting of 99 unevenly spaced streamlines and 100 potential lines, was

obtained by linear interpolation from the 50 x 100 uniform mesh in order to

provide adequate resolution of the flow in the wall boundary layers. In addi-

tion, the computational mash was distorted near the wall using the Roberts

- -. S1
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transformation17 to provide grid resolution of the boundary layer.

The results of the flow analysis of the AGT1OI turbine inlet duct are

shown on Figs. 9 and 10. These figures show a comparison of the calculated

-static pressure from both the viscous and inviscid solutions along the hub and

shroud walls with experimental data. The solid line on Figs. 9 and 10 is the

solution for the viscous flow and the dashed line is the solution for the in-

viscid flow. From Figs. 9 and 10, it is observed that the results agree quite

well with the experimental data. The close agreement between the results of

- the viscous solution and the inviscid solution indicate that in this case the
f, effect of blockage due to the boundary layer is very slight except near the

maximum duct height. The viscous solution did not predict separation in the

AGT1O1 turbine inlet duct for the specified flow conditions. The computa-

tional CPU time was 11.6 minutes for the complete flow calculations. Of this

time, 1.2 minutes was required for the inviscid solution10 on a 99 x 100 mesh

IP and 10.4 minutes was required for the viscous solution on a 254 x 100 mesh.

- ADD CODE VISCOUS SOLUTION
-- APPROXIMATE INVISCID SOLUTION Pref =21.436 psia

a EXPERIMENTAL DATA

1.02 1.02 -

1.01 1.01

~10C) - 100

CL 0.99 0.990..

098 - -098

! 0 .9 7 , 0 .9 7 , :

0.2 0.3 0.4 0.5 06 0.7 0.1 0.2 0.3 0.4 0.5 0.6

z - DISTANCE ALONG HUB WALL z - DISTANCE ALONG SHROUD WALL
SURFACE (ft) SURFACE (It)

Figure 9. Hub Wall Static Pressure Figure 10. Shroud Wall Static Pressure
Distribution for AGT1O Distribution for ACTIO
Turbine Inlet Duct Turbine Inlet Duct

AGT1OI Turbine Exhaust Diffuser

The performance of the AGT101 turbine exhaust diffuser (see Fig. 11) was

I' -

__ 1,, . . . . , , , , . . - , . .
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measured on a test stand in which the turbine exhaust was simulated using inlet

guide vanes. These inlet guide vanes (IGV) were a set of 16 blades with a

27 deg circular arc camber which were used to impart swirl to the flow. The

projection of these inlet guide vanes onto the (r,z) plane is shown on Fig. 11.

Axial flow enters the inlet guide vanes and leaves with a swirl angle of approx-

imately 27 deg. This swirling flow enters the diffuser at the diffuser inlet

station and is turned radially outward to exhaust at the diffuser exit plane.

The computational mesh, shown on Fig. 11, consists of 100 streamlines and

100 streamwise stations where the streamlines are concentrated near each wall

to provide grid resolution of the boundary layer calculation. This computa-

tional mesh was interpolated from a 50 x 100 uniform mesh. Computational

time on the Univac 1100/81A computer was approximately 15 min to obtain a

convergence level of 
10.

- 4

Inlet conditions provided by NASA consisted of uniform total pressure and

. itemperature at standard atmospheric conditions. A corrected weight flow

(1.47 lb/sec) was provided to set the inlet Mach number. However, this weight t
* flow established a Mach number at the inlet guide vane exit plane which was

not consistent with the measured wall static to total pressure ratio. A guess

for the actual weight flow (1.74 lb/sec) was made in an attempt to establish

the correct initial conditions.

An overall view of the solution for the flow through the exhaust diffuser

is shown on Fig. 12 for the streamwise velocity distribution across the duct

at successive streamwise stations. The boundary layer growth on the hub and

shroud walls is vividly illustrated. On the hub wall the boundary layer grows

slowly as the flow is decelerated by the initial portion of the turn. Then

the boundary layer thickness decreases as it recovers from the turn. Finally,

the boundary layer grows slowly as it is decelerated in the radial diffuser.

On the shroud wall, the boundary layer is initially accelerated as the flow

enters the turn. Then the boundary layer grows rapidly as the flow recovers

* * * from the turn and continues to decelerate in the radial diffuser. At the exit,

the shroud boundary layer is nearly separated and occupies almost one half

the exit flow.

A comparison of the calculated wall pressure distribution with the measured

pressured distribution on both the hub and shroud walls is shown on Fig. 13.

-IV,
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The agreement with experimental data is quite good considering the complexity

of the flow field and the approximations necessary for estimating weight flow

* and inlet guide vane performance characteristics.

0.45 0.45

DIFFUSER EXIT I
0.40 PLANE 0.40

035 0.35
Lu

z .3 SIMULATED ~03
TURBINE EXIT 02

r ~0.25 FLOW DFFUER5

IJ INE
<020 0.INLE

INLET GIDE PLANE 02

0.5 VANES
0.15 0.15

005 _____________0.05_____________

0 0.10 0.20 0 0.10 0.20

Fig. 11. AGT101 Exhaust Diffuser Figure 12. Streamwise Velocity

Distributions in AGTl01

Exh~aust Diffuser
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CONCLUDING REMARKS

A method is presented for combining an accurate orthogonal curvilinear

coordinate generation procedure with a forward marching viscous flow analysis.

In this method properties of the coordinate system are used to formulate the

equations of motion and properties of the viscous flow field solution and are

used to select the distribution of the computational grid. The method has

been successfully applied to calculate the viscous swirling compressible flow

through complex radial gas turbine passages which turn up to 180 degrees and

the calculated results compare favorably with the limited experimental data

which is available.

~ . ACKNOWLEDGEMENT

This work was supported by the Department of Energy under an interagency

agreement with NASA-Lewis Research Center under NASA Contract DEN3-235. The

technical monitor was K. J. McLallin.

LIST OF SYMBOLS

b Poles t Complex potential (s + in)

i V F T Temperature

I Entropy Us, Un, U, Velocity components

M Complex constant V Metric coefficient (l/V)

n Normal coordinate Z Duct plane (x + iy)

P Pressure 0 i  Wall angle

Pr Prandtl number IT Turbulent viscosity
T PT

qn Heat flux P Density

r Radius 
T nas T

nt Stream components

S Streawise coordinate Stream function
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TEST PROBLEMS, COORDINATE TRANSFORMATIONS, AND TECHNIQUE
FOR NONSTEADY COMPRESSIBLE FLOW ANALYSIS

JON J. YAGLA
Naval Surface Weapons Center, Dahlgren, Virginia 22448

INTRODUCTION

4 -- __;This paper describes a finite difference technique for solving problems in nonsteady, two-
dimensional, inviscid flow of an ideal gas. The technique solves the equations of gas dynamics in
transformed coordinates obtained by conformal mapping of the physical domain of the problem.

Irregular physical domains with curved or piecewise-straight boundaries are transformed onto rec-
* tangles to facilitate the application of boundary conditions in the finite difference calculations.

The differential equations of fluid flow in conservation law form are solved by means of either the

two-step Lax-Wendroff or MacCormack's finite difference method. An expedient means of obtain-
ing coordinate transformations by a numerical integration of a Schwarz-Christoffel type differential

* equation has been used for problems in transient external aerodynamics. An extensive series of
test problems, consisting of one-dimensional traveling shock waves, two-dimensional steady

Prandti-Meyer expansions, and oblique shocks were solved so that the finite difference calculations

could be compared with exact mathematical results. Nonsteady Mach reflections were computed

and compared with approximate theory and experimental data to test the technique for problems
that are both fully two-dimensional and nonsteady.,

CONSERVATION LAW FORM

The differential equations of gas dynamics for nonsteady flow of an ideal gas can be written as

Sat F(U) + yG G(U) + z R(U) = 0 .

For two-dimensional flow one has 8/8z 0. Here, U, F, and G are column vectors defined as fol-

lows:
I

Sp* qu + 4V

U =)(2)

** (k + h

ax: a

b~(E,
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P*u

F(U) = ax ay )uv + (3)

ax a al?(4

P*v

v (E -

In the above equations u and v are contravariant velocity components in the (x,y) curvilinear

coordinate system. The curvilinear coordinates are related to the (Q,q) Cartesian coordinates
through a conformal transformation. The starred quantities are the usual physical quantities Mui- .
tiplied by Vg , where V/j is the Jacobian of the coordinate transformation. The physical

quantities p, E, and P are the density, total energy per unit volume, and pressure, respectively. I

have called these scalar physical quantities multiplied by ,/-g "tensor densities" of the correspond-

ing physical quantities. Special properties of conformal mappings, e.g. the Cauchy-Riemann condi-

tions and the harmonic property, have been used to simplify the above equations.

Figure 1 shows three representations of a curved duct in the Cartesian and curvilinear coor-

dinate systems. Figure 2 shows the representation of a fluid velocity vector in terms of physical

and contravariant components along the curvilinear coordinate lines. The independent variables

in the technique are the curvilinear coordinates (x,y). The dependent variables of the technique

are the contravariant velocities u and v, and the tensor densities of the fluid density, total energy

per unit volume, and pressure. Finite difference equations for solving these equations are pre-

sented in the following section.

CFINITE DIFFERENCE EQUATIONS

The first attempt at approximating the above differential equations with finite differences

failed. The two-step Lax-Wendroff finite difference scheme) originally developed for Cartesian

coordinates was used as a prototype method for the conservation law form equations in curvi-

linear coordinates. The approach worked under the trivial coordinate transformation, i.e. w-z,

II
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Fig. 1. Representation of duct in different coordinate systems
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where w = + itq and z = x + iy. However, under the nontrivial coordinate transformation w -e + z,

for a duct with a curved wall, Figure 1, the method failed. Flows spontaneously arose at interior

points of regions of the flow field having an initially uniform quiescent state. The source of the

error was found, and could be alleviated through a slight modification of the Cartesian form of the

finite difference equations. 2 The modified two-step equations are

in I t 4 [t U 'Ik Ujk + , +
jeI.k i-I ,k j10+1l Jk-1

Ax (Fj+ .k F"j- Ik) - (Gj! Gnk. ) , (6)

and

in2 Un .
4  

(Fu.+.Ia-l)u. I (Gl4 I -G..*PIl1 (7)

where J is the Jacobian of the transformation. For the trivial coordinate transformation one has

J= I, and the usual Cartesian two-step equations are recovered. Several test problems were solved

with good results using this "generalized" two-step finite difference technique.

The MacCormack 3 difference equations for Cartesian coordinates are defined by:

IP1' 
1
U"- F"- k (8)

( t

jk k~ Ax It. ky &yk. .... 4 +- (9)

These equations replace equations (6) and (7) of the Lax-Wendroff two-step formulation. The
first step of the method constructs approximate-values for U", . 1, denoted , + 1 , for each point

using forward differences to approximate the spacial derivatives. The approximate solution is then
used to calculate F" +I and d"i"1. The solution for U '* I is then computed with the second equa-

tion which uses backward differences obtained from the approximated functions F and G. Since

F(U) and G(U) are computed the same way using either Lax-Wendroff or MacCormack differenc-

ing, the computer program changes required to change technique are minimal.

COORDINATE TRANSFORMATION

. General remarks
Conformal mapping was chosen as the coordinate tranformation technique. At risk of repeat-

ing arguments of other proponents of the technique, the following list summarizes the basic

strengths of conformal mapping method of coordinate generation:
(1) Conformal mapping is a "classical" technique that is highly developed for applications, and

has the benefit of an extensively developed mathematical theory.

. . .-4 .
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(2) There exists an ample body of literature with plenty of examples and even a "catalog." 4

(3) Powerful numerical methods for constructing transformations are available when mapping

by elementary functions cannot be accomplished.

(4) The transformed coordinates are orthogonal to the physical boundaries and to each other

everywhere in the domain. This facilitates application of boundary conditions and minimizes com-

putations elsewhere.

(5) The transformation has the simplest possible nontrivial structure. This minimizes errors in

generating metric data and further errors entering the solutions from finite difference terms in-

volving metric quantities.

(6) When used for two coordinates of a problem with three spacial dimensions, the result is a

minimal amount of metric data that must be stored and used in mathematical operations. This
may be crucial for solving three-dimensional problems with the presently available computers. For

example, Moretti s has used rotated conformal mapping to compute the axisymmetric flow in noz-

zles and around gun barrels. Marconi and Salas 6 used conformal mappings of a succession of cross

sectional planes normal to the axis of a fuselage and wing in a three-dimensional, supersonic,
. steady flow analysis of a fighter aircraft. Moretti 7 used conformal mappings in meridional planes

to map an ablated three-dimensional reentry body.

(7) The coordinate lines are well aligned with the local velocity field because the compressible

flow problem is solved in a coordinate system that Is the solution to an inviscid incompressible
flow problem with the same physical boundaries. This can only help to reduce numerical errors.

(This can be carried even further. Kim, Thareja, and Lewis8 solved the three-dimensional pan- ,- .:.

bolized Navier-Stokes equations for a blunt cone at large angle of attack in supersonic flow using

&coordinates obtained from a method of characteristics solution to the corresponding inviscid super-

sonic flow problem.)

(8) Special properties of the transformation can be used to simplify the transformed equations

of gas dynamics, thereby providing economy in the formulation of the finite difference equations

and program execution.

A ninth and compelling advantage of conformal mapping for some problems will be presented

below.

The drawbacks of using conformal mapping for coordinate transformation are mainly lack of

coordinate controls. One cannot specify arbitrary coordinate distribution functions in order to

concentrate coordinate lines in regions where flow properties are rapidly changing. A second limi-

tation is that a considerable study of the theory of functions of a complex variable may be re-

quired for a user to develop sufficient skill to effectively use the technique.

As previously stated, the physical coordinate system of the gas dynamics problem is taken as

the Cartesian (Q ,q) plane. The gas dynamics problem is solved mathematically in the transformed

plane (x,y). Points in the physical (,) plane correspond to points in the (xy) plane according to .

" the complex valued function w f(z), where w + i, z =x + iy, and i =T. The function

/" "

T'.C
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f(z) must meet the requirement that the complex derivative f'(z) exists at every point of the

domain of f(z); then f(z) is said to be analytic. For such functions one has immediately available

the Cauchy-Riemann conditions:

f/ax = an/ay and a8/3y = -ar/ax

the implicit function theorem which yields

axlat (at/Bx)/J, x/n = (Ollax)/J,

* ay/at = (aO/ay)lJ, ay/q = ( q/ay)/J,

and four Laplace equations v2  = 0, v2 /= 0, V2x 0, and V2 y 0. Here J is the Jacobian de-

- terminant 8 (,vz)/(x,y). Along with the Laplace equations comes almost two hundred years worth

of research on potential theory. One also has available powerful numerical techniques that were

developed for grid generation by means of Poisson equations, as the Laplace equation is a special case.

The metric tensor for a general two-dimensional transformation, whether or not it is a con-

formal mapping, is taken from the expression for arc length in the transformed coordinate system:

(ds) 2  (dt)2 + (di?) 2

''x} + (dx)z + + (dy)2
ax) k OY ayj

+ + dxdyi.ay ax

The metric tensor is defined in terms of the Einstein notation

(ds) 2  gl dx'dxj

where x1 = x, x 2 = y, and the off-diagonal components are chosen so that g~ is symmetric. The spec-

ial properties of the analytic function lead to the immediate result:

where 6 is Kronecker's delta. For axisymmetric coordinate systems obtained by rotating a co-

ordinate system obtained by conformal mapping, one obtains

t -
where r is the radial coordinate. When one examines the tensor form of the conservation equa-

tions of ps dynamics as displayed in the "conservation law form," the tremendous potential for

simplification of calculations in the transformed coordinate system is readily apparent. One of

-,+, .* . -. .. . 2 _. , "
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the Soal of the project was to exploit the potential simplifications of the equations of gas dy-

namics in tensor form to the fullest possible extent. To this end curvilinear densities, pressures,

and energies (the "tensor densities") were defined which made it possible to even remove the ex-

plicit appearance of the Jacobian from the transformed conservation equations. This provided a

yet simpler system of equations to solve and led to a simple procedure for loading initial and

boundary data into the computer program.

.1 - The examples and basic test problems of the technique use the principle of Schwarz-Christoffel

transformation to obtain transformations of piecewise straight boundaries onto a straight line. In

this way piecewise straight physical boundaries become the lower coordinate line (y = 0) in the

transformed plane. The Schwarz-Christoffel transformation is based on the fact that complex

transformations of the form w = z, where n is a rational exponent, cause the physical plane image

.* of the x-axis to turn through a finite angle at the origin. One can successively apply this principle

to obtain any number of finite turns of an axis at discrete points by means of the complex valued

differential equation:

dw/dz = (z-z, 1) (zz 2 )2. . . . (Z zm)n . (10)

The function w is called a Schwarz-Christoffel transformation if it maps a closed polygon onto a

straight line. One of the early results of the present research was recognizing that this differential

equation could be used in unsolved form to solve complicated aerodynamics problems. A dis-

*cussion of this differential equation and its use in unsolved form is presented in the following

paragraphs. The transformation in unsolved form was used to establish the coordinates that were

,*. used for calculating the "shock on shock" problems that are described in a later section.

Attempting to obtain general solutions to the above differential equation for more than two

factors and exponents other than 0, ±1, i±1/2, ± 1/3, and ±1/4 is useless. Solutions in terms of

elementary functions, if they exist, are unknown. However, Anderson 9 has devised a numerical

procedure for solving the Schwarz-Christoffel differential equation for up to 200 turning points.

His work is designed to provide coordinate systems for duct flows. Woods o has generalized the

Schwarz-Christoffel transformation to handle curved as well as piecewise straight boundaries.

Davis lI has devised a means of numerically integrating Woods' transformation for almost arbitrary

piecewise smooth boundaries, greatly extending the conformal mapping technique. These recent

developments enhance the attractiveness of the conformal mapping approach to coordinate genera-

tion, and increase the power and utility of numerical methods that employ conformal mapping as

a means of coordinate generation.

Special consideration for external aerodynamics and transient field calculations

The following paragraphs describe a slightly different technique that can be used for grid Sin-

* oration for solving problems in external aerodynamics, heat conduction, and other field problems. : .

In external aerodynamics one is generally interested in computing the flow field over a body. It

"A4 - -.ar e *

-a. '. .--

I , , ' ' .* " "-



a' 532

is usually the case that one needs to determine the pressure and/or the velocity field along the

surface of the body. In this way the lift and drag on the body are computed. In other engineer-

ing problems, for example, structural design or determining the response of a vehicle to a transient

load, one is required to compute the force on the body, Again the pressure distribution on the

surface is required. It is usually the case in external aerodynamics work that one is not interested

in the details of the flow field at points that are away from the body. Similar remarks hold for

some transient problems in conduction heat transfer. High speed transient heat loads, such as the

flow of propellant in a gun barrel or impingement of rocket exhaust on a structure, cause very
high, and often damaging temperatures near the heated surface. However, the heat diffuses rapidly,
and the in-depth, late time, temperature profiles and back wall temperature increases and boundary

conditions are of relatively little interest.
* An inspection of the differential equations of fluid dynamics for the transformed coordinates,

- equations I through 5, shows that the coordinate transformation quantities (at /ax, etc., also
called metric data) are the only coordinate transformation quantities that appear in the trans-

formed differential equations. The quantity ./j- , the Jacobian determinant of the transformation,

which appears in the equation of state, is computed from these same coordinate derivatives. It is
especially significant that the coordinate transformation itself does not appear in the differential

equations to be solved, only derivatives of the coordinate transformation. This carries over into the

i finite difference equations, where again only coordinate derivatives are required. One thus realizes
that once the initial data and boundary conditions have been specified, then the finite difference

, calculations of the flow field can be carried out to arbitrarily large times without ever making re-
course to the coordinate transformation per se, only coordinate derivatives are used.

The only time one requires the coordinate transformation itself is when points of the com-
putational space have to be associated with points of physical space. This is done in establishing

the initial data, possibly in application of boundary conditions for special problems, and when

transforming the solution back into physical space. For example, in calculating nonsteady ex-
ternal flow, the initial data are usually some initially uniform or quiescent stream. The boundary

conditions for inviscid flow over any body are that the flow is parallel to the body, which is true

in any coordinate system and can be formulated and implemented in the fmite difference calcula-

tion independent of the details of the particular coordinate transformation. The no-slip condition

for viscous flow is even easier.

SCHWARZ-CHRISTOFFEL TRANSFORMATION

The Schwarz-Christoffel differential equation maps straight lines onto piecewise straight bound-
aries, or vice-iera. The transformation is of the form w - f(z) where w is the solution to the

complex valued ordinary differential equation (10). The quantities 3t/ax and 8q/8x which appear

in the transformed differential equations of gas dynamics are the real and imaginary" parts of f(z)

respectively equations (I) through (5). The remaining coordinate derivatives a/ ay and an/ay are

I+
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just -an/8x and 3t/3x according to the Cauchy-Riemann conditions. The significance is that once

f'(z) is specified, one needs only to take the real and imaginary parts of f'(z) to completely de-

termine the differential and finite difference equations of motion. An explicit representation of

f(z) is not required. Numerical values for the coordinate derivatives are readily computed from the

expression for f'(z) by FORTRAN statements without ever having to obtain explicit formulae for

( x,y) or 71(x,y). For external aerodynamics calculations one only needs a correspondence be-

tween physical boundary points and node points along the image of the boundary in the com-
putational domain. An expeditious means for developing the required correspondence is described

below.

A further important property of f'(z) follows from interpreting f'(z) as a magnification and

rotation of an infinitesimal line element under the mapping, that is,

Aw- dw f'(z) - If'(z) I exp [i arg f'(z)
Az dz

The first factor on the right is the magnification, the second factor is the rotation. Taking further

absolute values,

mod(Aw) - lf'(z)I mod (Az)

Because the transformation is analytic, the value of f' is independent of the direction of Az. Thus
every infinitesimal line element of length e passing through the point (x,y) is strained by the same 1 .
factor and rotated through the same angle in passing to the (Q,v) plane. Also the mapping is con-

formal, i.e., the angle of intersection of infinitesimal line elements is preserved under the trans-

formation.

By letting Az = Ax, and then i~y, and using the orthogonality property of the tmnsformation,

there results

AA,= If'(z) 2 (mod Ax)(mod iAy) if'(z) A ,

where AA. is the area in the w plane corresponding to the area element AA, in the z plane. Use

of the analyticity of the transformation, or equivalently the Cauchy-Riemann equations, yields

-AA. JAA5

where J denotes the Jacobian determinant 3(tIi)/8(x,y). Now the physical density of a continuum

of unit thickness can be defined by
p = limit

AAw.,OAAw

where AM is the man continuously distributed over AA, in the (Q,7) Cartesian system. Then

AM

4, m Pm mm'
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is the mass per unit area when measured in units of the z (curvilinear) plane. When "tensor densities"

are used as dependent variables, the explicit appearance of the Jacobian determinant of the trans-

formation is removed from the flow equations so that it appears only in the equation of state.

NUMERICAL INTEGRATION OF SCHWARZ-CHRISTOFFEL DIFFERENTIAL EQUATION

Because of the difficulty in carrying out the integration of equation (10), a numerical technique

is required to obtain the transformation. Equation (10) represents a line integral in the complex

z plane. In principle, this integral could be evaluated along lines of constant x and constant y

to construct the w plane images of the (x,y) coordinate lines. Alternatively, one can view equa-

tion (10) as a first order differential equation for f(z) and use an appropriate numerical procedure.

The latter approach, which consists of a generalization of the Runge-Kutta method to the complex

plane, is used here.

To construct the equations for transforming a piecewise straight boundary such as shown by

Figure 3 onto a straight line, the numerical integration proceeds from a point on the x axis, such

as point A on Figure 3, sufficiently far from the first turning point x,. The Runge-Kutta scheme

is then used to integrate up to x. As the singular point z, is approached, the integral remains

finite. This can be seen from the form of equation (10). In a small region near the point z,

the factors involving z2 , z3, etc. in equation (10) are nearly constant, while the integrand of

equation (10) changes drastically on account of z being near z,. It is known that the integral of
the frst factor is well behaved for k, 1, and is of the form:-

f (z - x,; "k I dz = Iki (z - x,~ ' k  011)

Therefore, although the differential equation (10) is singular at the points z,, z2 , and z3 , the solu- 4

* tion remains regular at the turning points. After the integration of equation (10) has been ac-

complished up to z,, with perhaps equation (11) having been used near z,, the integration then

proceeds from z, to z2 along the x axis in a similar fashion. An alternate procedure is to integrate

along a line z = x + ie, where e is a very small number. Then no singular points are encountered.

This hueristic procedure is justified on the basis of the accuracy obtained in a variety of sample

' "problems.

Determination of the curvilinear coordinates away from the x axis with the numerical scheme

is straightforward, as no singular points are encountered. The construction of the transformation

of coordinates for points not on the x axis is carried out as follows. For exi.mple, from point A

on Figure 3, one integrates equation (10) numerically along a line of constant x (dx - 0). The

value of f(A) serves as the constant of integration. The integration is carried out from A to B.

The point B corresponds to the top of the computational mesh. Values of w along this line then

serve as initial data (constants of integration) for computing the image lines of coordinates corres-

ponding to lines of constant y. Starting from initial values taken along the line f(A), fIB), the I -

•,. , A. '
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Fig. 3. Numerical integration of Schwarz-Christoffei differential equation

numerical Runge-Kutta scheme is then used to construct curvilinear lines such as f(C), f(D). For

these lines the numerical integration scheme uses dz = dx, i.e., no imaginary component, to con-

struct coordinate lines that are images of the lines of constant y. An analogous procedure is then

used for constructing images of lines of constant x to complete the transformation.

The numerical method consists of a fourth order accurate Runge-Kutta scheme that has been

generalized to the case of complex variables. For a real valued first order differential equation of

the form y = f(x), the Runge-Kutta equations can be reduced to:

x = f(x)

X= X0 + Ax

Y, 0 yo + Ax{f(x 0 )+ 4f(x0 + At/2) + f(x ) }/6

* Generalizing to line integrals in the complex plane, for the differential equation w f(z),

x - f(z)

. . z Z + A z:

W= w0 + Az (f(z 0 ) + 4f(z0 + Az/2) + f(zl))/6

Solutions are obtained by successive applications of the above formula along lines in the complex IL

plane. A simple computer program for the calculations is contained in Figure 4. Several problems

S.have been worked out with the computer program to test accuracy and suitability of the technique. 12

I, Y• ?
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This is in contrast to most elliptic methods that locate the boundaries exactly but provide coordinate
* lines and metric data to second order accuracy. Since it is the metric data that appear in almost every

term of the governing equations of fluid dynamics, and never the precise location of the boundary or
any coordinate line, the present method is superior in this regard to other methods that employ only
approximd.. metric data.

TEST PROBLEMS *

The preceding sections presented the differential equations of two-dimensional compressible
flow in conservation law form and two finite difference approximations of second order accuracy

At
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to the differential equations. The differential and difference equations are valid for any coor-
dinate system obtained by conformal mapping. A coordinate generation scheme based on the

Schwarz-Christoffel differential equation that provides exact metric data and fourth order accurate

locations of transformed boundaries has been described. This chapter presents a series of test

problems and results for standard compressible flow phenomena. Additional results and a more
comprehensive explanation of the test problems can be found in reference 13.

This chapter presents results from calculations of standard compressible flow phenomena, and
compares the calculations with exact theory and experimental data. The first calculations are for

constant speed shocks and the reflection of a constant speed shock from a solid boundary at nor-
mal incidence. The second set of calculations is for oblique shock reflections and Prandtl-Meyer
expansions. The constant speed shock calculations provide an elementary test of the technique

for computing nonlinear and transient phenomena in one space dimension. The oblique shocks

* . and Prandtl-Meyer expansions provide elementary tests of the technique for computing steady flow

in two space dimensions in curvilinear coordinates. Collectively, these problems are the most

basic compressible flow phenomena, and therefore provide hn essential test of any numerical tech-
* . nique for compressible flow. The first set of test problems demonstrates the ability of the theory

to solve transient flow fields; the second set of calculations shows the ability of the technique to

solve fully two-dimensional problems with continuous and discontinuous solutions. A method of
characteristics for steady two-dimensional flow in coordinate systems generated by conformal map-

ping& was developed as a further means of testing the finite difference technique. As a final test
the results of transient Mach reflection calculations are presented to demonstrate the capability

for solving more general problems of two-dimensional, nonsteady, compressible flow.

The constant speed shock provides an essential test for nonsteady compressible flow calcu-
lations and provides a very basic test for the computer program. For the trivial transformation

w = z, the (x,y) curvilinear coordinate system degenerates into a Cartesian system identical to

(Q,). Under this transformation the program for solving curvilinear problems can be used for
solving two-dimensional problems in Cartesian coordinates. Calculations with this transformation

completely exercise the computer program, although many of the variables and coefficients of the
transformation quantities are zero or one. However, for a program to be successful under more
complicated transformations, it is necessary that it provide correct results for the trivial trans-

formation. The results of constant speed shock calculations are presented in Figures 5 and 6 and

are compared with exact theory and calculations of the same problem using other techniques. A
4 by 100 grid was used. The exact values were obtained from the Rankine-Hugoniot equations.

The most basic two-dimensional, inviscid, steady, compressible flows are the oblique shock and

the Prandtl-Meyer expansion. If the flow is turned through an angle such that the flow is com-

pressed, as shown in Figure 7, then an oblique shock is formed. If the flow is turned through an
angle such that the flow is expanded, then a fan of expansion characteristics can be used to de-
scribe the process, as shown in Figure 7. The flows downstream of the shock and expansion waves

•I
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Fig. 5. Computed results for strong shock with Lax-Wendroff finite differences
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Fig 6. Wave diagram for shock reflection at solid boundary

can becomputed using exact theory from known upstream conditions and the angle of turning,

prvddthat the flow is supersonic on both sides of the shock.

Teanalytic transformation dw/dz =nz""I. or w = z", where n is a rational exponent, was
uetoobtain a natural coordinate system for computing the flow over a wedge. For n 17/18,

II
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The transformed x axis is shown by the heavy line in Figure 8. Other lines of constant x and y

are also shown in Figure 8. The physical problem is in the w plane, the line 17= 0, for x > 0,

being the z plane image of the surface of the wedge. The incident flow is a parallel stream, paral-

lel to and above the line w = 17118 exp (il71r/18) on Figure 8. Transformations for other turn-

ing angles are readily computed. For example, the above formula with n = 35/36 produces a five

degree compression, and n = 37/36 produces a five degree expansion. The solutions shown in

Figure 7 were computed with a 20 by 20 grid. The pressure profile on an inclined surface using

MacCormack differencing is shown by Figure 9.

OBLIQUE SHOCK
30 X Wo GRID

... COMPUTED (MacCormock)
EXACT

1.3- MACH 2.13

1.2-

0 ,o oo s ,1 7o so o

Fig. 9. Surface pressure on a 3.59 degree wedge "

VHigh quality experimental data have only recently become available for oblique shock reflec-

tions.14 The experimental data show that real gas effects are of considerable importance to the

structure of the shock reflections, particularly for strong shocks and large turning angles. One
would not therefore expect to obtain particularly good agreement between the above experiments
and calculations unless very general equations of state were employed. Finite difference calcula-

tions can, however, provide very good agreement with experimental15 data, when real gas effects '
are taken into account.

There are two basic types of transient shock reflections, regular reflection and Mach reflections.

Regular shock reflections are somewhat like acoustic or optical reflections, except the angle of in-

cidence does not equal the angle of reflection and the reflected pressure does not vary linearly with

the incident pressure. The Mach reflection patterns consist of three distinct shocks.

" r ',The following paragraphs describe computer calculations of Mach reflections in curvilinear co-

~ordinates. The technique used for the Mach reflections is essentially the same as used for the

~oblique shock steady flow calculations of the previous section; however, the program was not run
" until steady state conditions were attained. The Mach reflection calculations presented below were'

carried out for shocks of various strengths encountering a ten degree wedge. The coordinate sys-

ten for the calcul ation s was essentially the same as shown by Figure 8. FMe incident shock wasar.tkeoitoacout
Thr"r wobsctps ftasen hc elctions, regula relcto a M achm relctos
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caused to travel normal to the line w = x 17
/

18 exp(il 71r/I 8) by continuously resetting the values

along the entire line x = -3.5 to the desired upstream values obtained from the Rankine-Hugoniot

equations for the desired shock strength.

A very simple approximate theory exists for computing the overpressure behind a traveling

Mach stem. Simple reasoning leads one to the conclusion that if the Mach stem is to travel normal

to the reflecting surface and still remain attached to the incident wave, then its speed must be

approximately the speed of the incident wave divided by the cosine of the wedge angle. Then, if

the slip stream attached to the triple point is assumed to travel parallel to the reflecting surface,

and all shocks are assumed to be straight, a complete set of formulae can be worked out for cal-

culating the geometry of the Mach stem and the flow field behind each shock of the system.16

The data points enclosed by squares on Figure 10 were computed with this method. The upper

portion of the curve on Figure 10 shows Bertrand's 17 experimental data points for strong shocks

enclosed by triangles.
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oFig. 10. Finite difference calculations compared with other sources of data

' Ben-Dot and Glass"s have provided density contours and other data for shock Mach numbers in

the range of two to eight, and a series of wedge angles of two to sixty degrees. These data would ,

, logically form the basis for further comparisons between theory and experiment with real gas effects.
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Computer calculations of a nonsteady Mach reflection on a ten-degree wedge were compared

with the experimental data obtained by Dewey. 19 The experimental data were obtained from a

study of the motion of a number of fluid elements, in the purest Lagrangian sense, using a unique

smoke tracer particle technique in a shock tube. Further, the experimenter used the experimental

density field behind the Mach reflection to compute the pressure field, and confirmed the pressure

field with direct measuring electronic instruments. Although the comparison with Dewey's data

should not be considered to be as basic as the comparisons with exact mathematical theory as

described above, the experiments provide an interesting test case. The test problem fully exercises

both the transient and two-dimensional aspects of the technique. The results are also interesting

because the incident shock Mach number is 1.15 and the pressure ratio is 1.378. The shock is
therefore neither weak nor strong, and provides a test case for an intermediate strength regime I
where other experimental data seems to be totally lacking.

A 20 by 20 computing grid was used for the calculations. The results of the computer cal-

culations were output at t = 400 microseconds for comparison with Dewey's results. This time

compares to Dewey's time of 240 microseconds. This is because Dewey measured time from the

time of arrival of the shock at the wedge. The present calculations have the time equal to zero at

the start of the calculations, the shock being upstream of the wedge. The computer calculations

required 42,300s words of memory and 28 seconds of execution time on the NSWC CDC 6700

, ' .computer.

The computed data were compared with the experimental data by calculating the averages of

the data points in each of the three regions. The data fields consisted of 154 theoretical points.
: Th~'e averages over the individual regions and the difference between the theoretical and experi- ":

mental values, expressed in percent, are shown in Figure II. The pressures agreed to 0.7, 0.0, and

1.4 percent, and the densities to 0.8, 0.0, and 1.5 percent in regions I, II, and Ill, respectively.

Also, the average of the percentage differences was found to be 0.73 percent.
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Finally, a method of characteristics for two-dimensional, steady, supesonic flow was devel-

oped for the equations of gas dynamics in coordinate systems obtained by conformal mapping.' 3

At the expense of slightly more complicated compatibility equations, one has a very simple

boundary treatment that applies for all problems, rather than very specific, case dependent bound-

* ary treatments as in rectangular coordinates. This provides a natural and aesthetically pleasing

test technique for finite difference calculations in coordinates obtained by conformal mapping, as
the method of characteristics is known to be very accurate, and the same coordinates can be used
for the test problem and baseline problem. The results of a curvilinear coordinates method of

characteristics calculation for the flow field in an exponentially divergent duct of Figure 1 is

shown in Figure 12.- I..
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Fig. 12. Wave diagram for characteristics in transformed duct

APPLICATION TO SHOCK-ON-SHOCK PROBLEM

A problem of a blast wave interacting with a wing in supersonic flight is sketched in Figure 13

for a symmetrical double wedge airfoil. The initial flow field consists of an oblique shock attached

to the leading edge, a Prandtl-Meyer expansion centered at mid-chord, and an oblique shock re-

compression at the trailing edge as shown in Figure 13 (a). The wave system created when a blast

wave intercepts the supersonic airfoil is sketched in Figure 13 (b). The shock ABCD is the oblique

- - .. .so,
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Fig. 13. Steady supersonic flow and nonsteady shock interaction on a triangular airfoil

shock during interaction with the blast wave. The shock GCEF is the incident shock discontinuity, _ -

* .* having GC as an undisturbed portion. The segment EF is the Mach stem, with the triple point E.

The shock EBH is the reflected portion of the Mach reflection. The entire shock structure, with

the exception of GCD. is composed of curved segments. The flow consists of three distinct tem-

poral periods: a steady period prior to intercept; a nonsteady period while the blast wave diffracts

over the wing section and the flow adjusts to the new free stream velocity, pressure, and density;

and a final steady state that is attained asymptotically after the wing is well into the blast wave.

Exact analysis is clearly impossible.

The Schwarz-Christoffel differential equation for the transformation for a particular wing was

taken as .-'

~z20
w = , (12)

(z + 5)' (z - 5)p

where a = .039897. The computer program of Figure 4 can be used to generate the image of the

wing under the coordinate transformation. The flow field solution only requires that equation (12)

be loaded into the compressible flow program.

Figure 14 shows the .esults of the calculation for the flow over the wing. The coordinates

(/,q) are Cartesian coordinates traveling at the speed of the wing. The body fixed curvilinear co- _

ordinates (x,y) are shown. The approximate space-time trajectory of the incident shock wave

; . . -* -
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" Fig. 14. Stream tube wave diagram for shock interaction on wing

" along a small stream tube containing the x (y = 0) coordinate line is shown. The figure is actually
a wave diagram in transformed coordinates for an infinitesimal stream tube which travels along the

incident stream to the forward stagnation point, then along the wing. Initially, ahead of the wing
the flow velocity in the stream tube is U - 8.02 X 104 cm/s and the pressure is one bar. The

oblique shock compression attached to the leading edge causes the pressure to jump to 1.23 bar

and the velocity to drop to 7.49 X 104 cm/s. The Prandtl-Meyer expansion causes the pressure to

drop and the velocity to increase. The trajectory of the incident blast wave is shown as a heavy
line beginning at t/At = 100 and x/Ax 0 0. Initially the wave travels at speed 7.87 X 10 cm/s

relative to the incident stream and 15.82 X 10 cm/s relative to the wing. Upon arrival at the

wing, the blast wave speeds up due to the compression of fluid by the wing. The increase in speed

is evident on the wave diagram.
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AN EXPERIENCE IN MESH GENERATION FOR THREE-DIMENSIONAL CALCULATION OF

POTENTIAL FLOW AROUND A ROTATING PROPELLER

*WEN-HUEI JOUt
tFlow Research Company, 21414 68th Avenue South, Kent, Washington 98031

INTRODUCTION

7 Anew generation of propellers with eight to ten blades operating at tran-
sonic flight speeds is now under development These propeller blades are

typically highly swept and twisted with small aspect ratios and supersonic tip

speeds. A three-dimensional finite-volume computational code that accounts for

cascade effects, hub-induced flow and nonlinear transonic effects is highly

desirable. An effort to develop such a code has been undertaken by the-praaan±-

author; the results will be reported elsewhere.*
'

The present paper discusses the author's experience in mesh generation for

this complex configuration. What is reported here is not new methodology butr
some practical considerations for a specific problem. However, the experience

gained here is valuable to the developers of basic methodologies in general-,ji
izing their methods to accomaodate these practical considerations, particularly

, ;- for three-dimensional geometries. --

In general, most of the three-dimensional mesh generation schemes are the

outgrowths of two-dimensional schemes. Hence, with the exception of very few

works, one of the dimensions, e.g., the spanwise dimension for a wing, is less

eaphasised. One would divide the three-dimensional space into two-dimensional
~shoots on which more exotic two-dimensional body-fitted meshes are generated.

The detail of the geometry in the third dimension, e.g., the wing tip, is

sacrificed. This bias toward two-dimensionality is somewhat related to the

usual requirement of mapping three-dimensional space continuously to a cubical

computational domain (I, J, K), a requirement for the ease of formulating a
discretized approximation of the governing partial differential equation. If

a practical numerical method that does not require continuous mapping could be

found, the generation of an unbiased three-dimensional mesh can be made easy.

The present work is no exception to the common practice. However, even with

this two-dimensionally biased approach, the expericce in this work shows that

further difficulties arise from assembling seemingly reasonable two-dimensional

* meshes to form a three-dimensional mesh system. Also, the interdependency

between the mesh system, the numerical method and the physics of the flow

under consideration is emphasised.
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SLICING THOS-DINENSION&L SPACE

The flow field around a rotating propeller with an axisysmetric hub is

periodic i the azimuthal direction. The period is determined by the nmber

of blades. It is natural to divide the computational space into cylindrical-

type surfaces. On these surfaces, two-dimensional meshes which map the domain

to a rectangular computational space are generated. The nodal points with the

same coordinates in these two-dimensional computational spaces are connected

to give the three-dimensional network.

Let (xr,O) be the polar cylindrical coordinates with the axis along the

axis of rotation of the propeller as has been dons in the mesh generation for
5an airplane. A small-radius sei-Infinite cylinder is attached to the nose

of the hub. The function of this cylinder is to avoid the mesh singularity

that Inevitably appears in a mesh system around a finite three-dimensional

* body. The cylinder is so small that it does not interfere with the flow around

*" the propeller-hub combination in an inviscid flow calculation.

The resulting cylinder-hub combination Is then sheared to a constant-radius

cylinder by a simple shearing transformation in (x,r) space as shown in

Figure 1.

• .. ] .\ I
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To ensure that a similar topological structure, i.e.. a cascade configura-

tion, can be given on each of the cylindrical surfaces, a fictitious "blade"

extending to infinity Is attached to the tip of each blade. Two considerations

* .are important in this augmentation of the blade. If one continues the rate of

twist of the blade beyond the tip so that the chord of the "blade" is approxi-

mately aligned with the undisturbed flow, a cascade of plates facing the flight

direction will be formed a large distance from the propeller. It is impossible

to generate a cascade mesh compatible to that of the inboard cylinder. Sece,

-the rate of twist beyond the tip is reduced so that at the outer boundary, the

twist angle reaches a reasonable limiting value.

The second consideration is the chord length distribution of the attached

fictitious blade. As the radial distance r increases, the distance between the

blades increases linearly. Given the same number of mesh lines between blades,

the mesh spacing in the blade-to-blade direction increases accordingly.

If the same chord length at the tip is maintained for the fictitious pert

beyond the tip, the mesh aspect ratio becomes exceedingly large toward the

outer boundary. This property of the mesh may cause some numerical difficulty.

To avoid this problem, the chord of the "blade" is flared out, approaching

linear growth as it approaches the outer cylindrical boundary, as shown In

figure 1. < I
Having accomplished the augmentation of the blade-hub combination, the

exterior of the sheared constant-radius hub is divided into a series of

cylinders. The intersection of these cylinders with the sheared blades is

obtained through interpolation. A two-dimensional mesh will be generated on

these cylinders and sheared back to the physical space.

TWO-DINUSIOULW CASCADS lIESK

TW-dimensional meshes which map the physical space continuously to the com-

putational space are generally classified into three main categorlse: 0-type,

C-type and 1-type meshes. The so-called 0-type mesh maps the exterior of a

body to a ring-shaped computational domain on which a branch cut is defined.

For a C-type mesh, a branch cut ts defined in the physical specs, generally

along the wake trajectory. The resulting singly connected physical domain can

* be mapped to a rectangular strip in the computational domain. These two types

of meshes have one family of msh lime wrapping around the leading edge of the

airfoil. No singularity of transformation is presented at the leading edge.

The singularity of the transformation at the trailing edge is Ignored, since a

special treatment of the flow there is often required to satisfy the gotta

condition.

J I
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The R-type mesh maps the exterior of an object to an infinite space with

the image of the object as an internal branch cut. At the leading edge, a

smooth contour is mapped to two sides of the branch cut, giving a square-root

singularity of the transformation there. The H-type mesh is therefore con-

sidered a grid system not suitable for potential flow calculations. However,

*recent work has shown that the singularity resulting from the mesh transform-

ation can be removed in the numerical computations if the correct singular

behavior can be embedded in the basis function for solution projections.6

In terms of computational efficiency, the 0-type mesh is rated most effl-

cient, and the C-type and H-type meshes are considered less efficient in that

order. This rating is based on the efficiency for a two-dimensional object.

*Another consideration in selecting one of these meshes is their ability to be

assembled to describe a fairly complex geometry in three dimensions. While

the efficiency of the meshes can be easily defined as the ratio of the number

of points on the solid surface to that of the total number, the latter is hard
to quantify. The choice is probably related to various aspect ratios of the

4 °dimensions of the object.

SIn the following, we describe our experience with these types of meshes.
This experience my shed some light on the quantification of the flexibility

*of different types of meshes.

General requirements for cascade meshes

There are a number of requirements for cascade meshes, some of them essen-

tial to the cascade configuration and some of them essential for forming a
three-dimensional mesh. These requirements are listed below:

(1) For all spanwise configurations, the blade surface must be on mesh
lines with the same configuration in the computational space, i.e.,

* one type of mesh must be used consistently at all spanwise stations.

(2) The mesh index at the trailing edge must be the same for all meshes at r
different spanwise stations, so that when they are connected, a clean

trailing edge in the third dimension can be defined.

(3) Because of the periodicity, only flow around one blade can be .omputd.

The periodic boundary condition can be "aslly applied numerically, if

the mesh is periodic.

(4) The finite-volume numerical method for computing potential fl.M re-

quires that the assumed vortex wake be placed on a mesh surface. For a 7,'

propeller, the vortex wake is assumed to leave the trailing edge at

its bisection angle and to follow asymptotically a helical trajectory

along the direction of the local undisturbed flow.

Kit. I,.
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C-type and O-type meshes

The 0-type or C-type meshes for a cascade configuration can be generated by
7various methods, such as solving an elliptic equation or using electro-

8.9
static analogy. The method of electrostatic analogy for generating a

C-type mesh has been experimented with in the present work. These meshes have

been used successfully in two-dimensional computations. For three-dimensional

calculations, they present some difficulties unforeseeable from the two-

dimensional test calculations.

First of all, the upstream distance covered by an orthogonal or near-

orthogonal C-type or 0-type mesh is of the order of the blade-to-blade

, distance. For O-type meshes, this is also true for the downstream direction.

For an advanced turboprop with eight to ten blades, the blade-to-blade

distance near the hub is less than a chord length. The meshes will not be

able to cover the entire hub geometry when they are assembled for the

three-dimensional configuration. The hub-induced flow cannot be accurately

computed and the upstream far field condition Is applied too close to the

blade. Some stretching of the mesh upstream can be performed, but excessive

stretching can result in an extremely skewed mesh that may cause difficulties

in numerical solution.

Furthermore, the blade-co-blade arrangement varies substantially along the

span because of the high twist. If the trailing edge indices are required to

be constants along the span, the resulting meshes will have fairly high

densities on the upper surface and low densities on the lower surface for the

&outboard stations and vice versa for the inboard stations. One can attempt to

choose a set of trailing edge indices so thea the best compromise can be

reached for practical applications. Our experience shows that the results are

marginal at best, as shown in Figures 2 and 3.

When these C-type meshes are actually applied to potential flow calcula-

tions, another difficulty arises. At the spanvise station off the blade tip,

C-type meshes are generated around the fictitious interior boundary (the camber

line). The mesh lines approaching this interior boundary from above, having a

higher mesh density, do not coincide with those approaching from below. The

ratio of the mesh density can be as, large as 5, and it is particularly severe

right off the blade tip because the fictitious blade does not have a chance to

"untwist." To compute the flow across this fictitious boundary, interpolation

of the velocity potential is required. For a high-speed propeller, the local

flow there is supersonic, and attempting to interpolate the velocity potential

between two sets of.data points with lare differences in density results in
/i "
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undesired disturbences in the supersonic region. The convergence of the

iterative scheme is severely affected by this operation.

U-type Utah
The extreme complexity of the geometry, the numerical scheme chosen to

solve the specific problem and the physics of the flow force us to look for a
better msh system. The -type msh deserves a closer look for this specific

configuration for the following reasons:

(1) Because of its Inefficiency, the space covered by the sash can be
' extended arbitrrily upstream and downstream from the blade providing

sufficient distance to cover the hub geometry and to apply the far

field boundary conditions.

(2) The blade Is mapped to an interior branch cut in the transformed space

in which the division into discrete meshes naturally gives continuous

aesh lines on the fictitious part of the blade.
(3) A shearing transformation will be required to align the mesh lines on *."

the periodic boundary. For the type of propeller under consideration,

It was estimated that the minlmam angle between two families of mash

lines will be in the neighborhood of 35 degrees, which, from ourJ a ,j
experience with the finite-volume calculation, is acceptable.

(4) Because of the ease of generating an K-type mesh by a combination of

simple conformal transformations and a series of shearing transforma-

tions, the distribution of the ash density can be fairly easily

modified to enhance the numerical solution.

For the range of blade twists considered for the high-speed propeller, the

following simple procedure hes provided useful results.

* (1) Consider the leading edge curvature, K, of an isolated blade. The
following complex transformation, with the origin at the leading edge

of the blade, maps the branch cut along the positive axis in C spee

* to a parabola in the physical space, a, with a curvature K at the

origin:

X * - 1 /2 + •9

A set of Cartesian coordinate lines in E space is mapped to a

streaninse/potential-lime system in the physical space, and a basic -
* . U-type mesh is established around an Isolated, sem-infinite parabolic

boundary.

74
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(2) To obtain a blade-fitted coordinate system, the parabola is moved to

the blade surface by a simple shearing transformation. This shearing

. ,also moves the mesh points outside the parabola in a continuous way.

(3) The mesh system around an isolated blade is now manipulated to satisfy

the periodic requirements for a cascade configuration. For the range

of twist angles and the blade-to-blade distance required, simple

shearing transformations produce computationally acceptable results.I
The periodic boundaries are defined far upstream by choosing two

points with the same longitudinal location, x, and with a difference

of 2w/N in the azimuthal angle, where N is the number of blades. The

mesh lines passing through these two points and extending to down-

- *: stream infinity are not straight lines; they are straightened out by

the shearing transformations.

* (4) The mesh lines in the blade-to-blade direction do not satisfy the

.- .. :periodic conditions. They are now sheared by a cosine shearing function

* that moves the points on the upper and lower boundaries toward each

other. This shearing procedure creates a fairly nonorthogonal mesh
near the periodic boundary whi- preserving near orthogonality on the

blade surface. .2  j
(5) Further minor shearing transformations are performed, mainly to avoid

an extreme mesh aspect ratio in the far field downstream and near the

periodic boundaries. These shearing transformations are implemented

to enhance the stability of the numerical calculation after the pre-

liminary calculations have been performed using the mesh obtained in

steps (1) through (4).

Samples of mashes produced by the procedure described above are shown in

Figures 4 through 7.

CONCLUSIONS

The present paper discusses an experience in generating a computational

msh for a rotating propeller. The problem is somewhat unique in that several

characteristic length scales are involved, namely the chord of the blade, the

length of the blade, the length of the hub and the blade-to-blade distance.

Them length scales of considerable disparity coupled with other nondimensional

quantities, such as the twist angle, create a geometrical complexity beyond

the capability of a general mesh generation algorithm. An ad hoc mesh

generation scheme must be developed. .
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The usual practice of dividing the three-dimensional space into two-

dimensional surfaces on which two-'dimensional meshes vil be generated is

followed. It Is found that the popular 0-type and C-type meshes, saeeingly
attractive from experiences in tvo-dimensional computations, present some

difficulties in the three-dimensional computation. The U-type mesh, comonly

considered an inefficient mh system, Is thouSht to have more flexibility for

this particular problem. A nonorthogonal 3-type mash is generated by using a

very simple complex-variable transformation followed by a series of shearing

transformations. This type of mesh has bem used successfully in the numerical

computation of transonic flow around a rotating propeller using the finite-

volume algorithm.

The properties of the resulting mh are strongly influenced by the

numerical method used, as well as the flow physics involved. The ash system,

the numerical method and the physics involved are integral parts of this

complex problem.

* - This work is supported by MAA Lewis Research Center under Contract

So. UAS3-22168. The author acknowledges the useful discussions regarding this -"-"

work with Lawrence Boher of Lmis Research Center.
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FAST GENERATION OF THREE-DIMENSIONAL COMPUTATIONAL

*BOUNDARY-CONFORMING PERIODIC GRIDS OF C-TYPE

DJORDJE S. DULIKRAVICH*
Universities Space Research Association
Columbia, Maryland 21044

ABSTAC proram GRID3C, has been to gener t lve
A fast computer program, developed generatevel

three-dimensional, C-type, periodic, boundary conforming grids for the calcu-
lation of realistic turbomachinery and propeller flow fields. The technique

is based on two analytic functions that conformally map a cascade of semi-

infinite slits to a cascade of doubly infinite strips on different Riemann

sheets. Up to four consecutively refined three-dimensional grids can be auto-

matically generated and permanently stored on four different computer tapes.
Grid nonorthogonality is introduced by a separate coordinate shearing and

stretching performed in each of three coordinate directions. The grids can be

easily clustered closer to the blade surface, the trailing and leading edges
and the hub or shroud regions by changing appropriate input parameters. Hub

.and duct (or outer free boundary) can have different axisymmetric shapes. A

N vortex sheet of arbitrary thickness emanating smoothly from the blade trailing

edge is generated automatically by GRID3C. Blade cross-sectional shape, chord
length, twist angle, sweep angle, and dihedral angle can vary in an arbitrary

smooth fashion in the spanwise direction. Input coordinates must be Cartesian,

while the output grid coordinates can be Cartesian or cylindrical.

INTRODUCTION
When numerically solving partial differential equations governing the flow

of fluid through realistically shaped configurations, exact boundary condi-

tions must be applied at correct locations. This is especially important when

calculating internal flows and flows that are governed by nonlinear partial
differential equations. Seemingly negligible alterations of geometrical shape

or flow conditions at the boundary can drastically change the basic features
of the flow field, for example, choking an originally unchoked flow or chang-

ing a shock-free flow into a shocked flow1 . The most economical and accu-

*Visiting Research Scientist with Computational Fluid Mechanics Branch, NASA
Lewis Research Center, Mail-Stop 5-9, Cleveland, Ohio 44135.
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rate way to numerically apply exact boundary conditions on solid boundaries is

to generate and use a computational grid that conforms to these surfaces (fig.
1). Recent numerical techniques do not require orthogonal gridse because
they use locally isoparametric formulation when numerically determining deri-

vatives of geometric and flow variables. A widely accepted procedure for ac-
celerating an iterative solution process of the flow equations and for resol-

ving or capturing high flow gradients is to perform calculations on a sequence

of several successively refined grids. The multigrid technique3 usually

requires four to six such grids. For realistic threedimensional configura-
tions the number of grid points to be generated is prohibitively large even

, !for inviscid flow calculations. Computational grids for such configurations

should be easy to regenerate if shock waves and vortex sheets are to be better
resolved or if the configuration of the solid boundaries changes with time.

* An H-type grid (fig. 1) provides excellent resolution of the flow field at
upstream and downstream infinity. It is also the simplest grid to generate.
At the same time, H-type grid does not provide for an accurate treatment of
rounded leading and trailing edges and wastes points in the flow domains away

* from the boundaries. An 0-type grid represents the other extreme. It gives a
very poor resolution at infinities4, thus creating a problem when Cauchy-
type boundary conditions must be enforced at the supersonic inflow boundary

, * (fig. 2). A grid of the 0-type also does not provide desirable resolution in

the vicinity of the vorttx sheet. An open trailing edge simulation of the
boundary layer displacement thickness effect cannot be readily incorporated.

Nevertheless, an 0-type grid provides for accurate discretization of arbitrar-
ily blunt leading and trailing edges and requires a minimum number of grid
points. A combination of an 0-type grid in the upstream region and an H-type
grid in the downstream region creates a C-type grid. This type of grid pro- -.

vides for a good treatment of all boundary and periodicity conditions in- >*

cluding wake treatment and supersonic exit flow, although it lacks an adequate -
resolution at upstream infinity (fig. 1).

In turbomachinery and rotorcraft flow field calculations the flow field is
periodic and a geometrically periodic grid provides for a simple and accurate
way to enforce the flow periodicity. The simplest and fastest way to generate

nonorthogonal periodic grids is to avoid time-consuming techniques based on
the numerical solution of sets of partial differential equations whenever pos-

sible. Instead, a basic knowledge of complex variables and conformal mapping
can be used together with a few additional nonorthogonal coordinate shearings ,
and stretchings. A three-di mnsional, periodic, 0-type grid generator code

was already de 'oped4 by '- ,ig this technique, which guarantees that the

.. ., +, t" L
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grid lines of the same family do not intersect because the basis of the tech-

nique is conformal mapping. Another view of a three-dimensional, periodic
O-type grid is presented in figure 3.

SHEARING AND STRETCHING IN PHYSICAL SPACE

Conformal mapping can be applied only to two-dimensional plane surface

problems. A general procedure for creating such planes can be best described

in the case of a rotor mounted on a hub shaped like a doubly infinite circular

cylinder and confined inside a doubly infinite circular-cylinder-shaped duct.
The intermediate doubly infinite circular-cylinder-shaped surfaces intersec-

ting the blades can be viewed as planes when expressed in terms of (x,re) co-

ordinates. A standard procedure for creating three-dimensional blade shapes

is to specify local airfoil shapes on a number of input planes that are or-

thogonal to a straight radial line. This radial line (z axis in fig. 4) is

called a stacking axis, and local blade sweep ard dihedral angles are measured

from that line (fig. 1). Input planes are defined by z = constant. Inter-

mediate cylindrical surfaces, which we seek for the next step in this grid

generation procedure are defined by r - constant. To obtain an intersection

contour between the blade surface and r- constant cylindrical surfaces, a

spline fitting and interpolation procedure is used along the blade. Input

airfoil (xt,y i) coordinates on z = constant planes are transformed into

cylindrical coordinates

x =xi (1)

e = arc tan(yl/zi) (2)

r 21/2r = i )(3

Cylindrical coordinates (xre) are interpolated at r = constant spanwise loca-

tions, thus defining blade cross sections on r - constant cylindrical surfaces.

On the other hand, realistically shaped hubs and ducts are not doubly in-

finite circular cylinders but axisymmetric surfaces. Therefore, the inter-

mediate surfaces are also axisynmetric and not cylindrical. Nevertheless, the

sae grid generation technique can be used if a simple nonorthogonal shearing

(or normalization) and stretching of the radial coordinate (fig. 3) is per-

formed. Nonorthogonal (unidirectional) shearing of the r coordinate converts

the axisymmetric surfaces into cylindrical surfaces defined by R - constant.

Let subscripts H,T, and D designate R = constant surfaces corresponding to

hub,blade tip, and duct (or outer free boundary) location, respectively. Also

let the normalized radial coordinate be defined as

,

• , 4I
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r (xi) - rH(xi)
R = ;TF--F F (4)

The radial coordinate in the hub-to-tip region is stretched and sheared with

the following function

R = RH + (RT - RH)((RIRT) + A sin(2, RIRT)) (5)

The following value was obtained from experience

RH - N/50.0 (6)

The stretching parameter, A, gives best results if

0.12 > A > 0.0 (7)

When A 0 0, the cylindrical cutting surfaces R = constant are equidistantly

spaced from hub to tip. Let the normalized, sheared radial coordinate in the

region between the blade tip and the duct (or outer radial boundary) surface

be

R = (R - RT)/(RD - RT) (8)

The stretching function for the tip-to-duct domain is chosen to be

R = 1.0 + (RH - q)R + q R (9)

This function must have the same slope, q, at the location R 1 as the

stretching function in the domain between the hub and the tip (eq. 5).

q = (1 + A)(1 - RH)/RT (10)

Combining the two stretching functions (eqs. 5 and 9) provides for a smooth

and continuous transformation from the physical r coordinate into the sheared

R coordinate (fig. 4). For a stator or rotor with no tip clearance, equation

9 is not needed.
Frequently, the input points are not clustered in the same regions on each

input plane. Moreover, the number of input points defining the blade cross

section on each input plane can vary from one input plane to the next. To

accurately determine intersection contours between the blade surface and the

*axisymmetric surfaces, the corresponding input points must be located at the

same percentage of the blade chord length on each input plane. Implicltly,

- this means that the number of input points must be the same on all input

planes. Therefore, these input points must be appropriately redistributed on

i •
I
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each input plane. This redistribution can be performed with respect to the

input airfoil contour coordinate defined as

s - [(x i - Xil ) 2 + (Yi - Yi- )2 1112  (11)

Then the input Cartesian coordinates can be expressed in terms of the input

airfoil contour coordinates. Coordinate s is measured clockwise around the

input airfoil contour, starting and ending at the trailing edge point. As it

was stated earlier, the number of contour points on the pressure surface must

be the same as the number of contour points on the suction surface. For non-

symmetric airfoils the lengths of these two contour lines are generally not

the same. Let ITS denote the trailing edge point on the suction side and ITP

denote the trailing edge point on the pressure side of the input airfoil.
Also, let LE denote the leading edge, that is, the point that is farthest from

the trailing edge. The normalized surface coordinate is defined as

s - SITP (12)

SLE - iTP

The redestribution of input points is performed with the following stretching

function
S = ( S)SB+S ( S)B] (13)

where the exponent B should satisfy

1.4 > B > 1.0 (14)

When B = 1 the points are equidistantly spaced along the airfoil contour. The

* points along the pressure surface are redistributed by using the formula

s - 9(SLE - sITP) (15)

and the points along the suction surface are redistributed by using the formula

= TS -~ s LE) + (SLE - sITP) (16)

cThis redistribution of input coordinates x and y is performed with a cubicspline fitting applied in the s direction. Interpolation is performed atS

locations. Spline fitting and interpolation are also used with respect to the

R coordinate in order to find the points on intersection contours between the

blade surface and the intermediate axisymmetric surfaces. Locations of those

L "-
- .-.
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points in the physical space will not be altered with the subsequent mapping-

remapping procedure.

The exact shape of the wake of arbitrary thickness is not known a priori.

To eliminate the need for specifying the location of the wake in the prepara-

tion of the input, the shape of the wake centerline is automatically generated

by using the simple polynomial expression

y - a(x -xTE )3 + b(x- - XTE) + YTE (17)

* Here the trailing edge point coordinates are

xTE - (xITP + xITS)12  (18)

and

YTE " (YITP + YITS
)12  (19)

The point where the wake centerline intersects the downstream-infinity cutoff
* -. ~. boundary is defined with the subscript EX. Let c be the average slope of the

pressure and suction surfaces of the airfoil at the trailing edge , and let d

be the slope of the expected flow angle at the exit boundary. Then the con-
i stants a and b in equation 17 are

a Cxw(c + d) -2 yJIx (20)

and

b - [3y - xw (2c + d)]Ix2 (21)

where

xw -xEX xTE (22) "

and

yw -~-y~(23)

Wake surface grid points are redistributed (stretched) with the formula

x* - (x - XTE)/xw - n sin(w(x - XTE)/Xw) (24)

The stretching exponent, n, is determined from the continuity of the slope of

the stretching functions at the trailing edge (eqs. 13, 15. 16, 22, and 24)

n a1.05(l.0 - 812x w)Iw (25)

-Yw-
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If the wake has a finite thickness, that is, if the blade trailing edge is

open, coordinates of the points on the upper and lower surfaces of the wake

are determined by adding and subtracting the trailing edge half thickness.

The axial coordinate of the upper surface of the wake is determined from the

formula

xu  - x + (XITS - xITP)12 (26)

and that of the lower surface of the wake by the formula

x - x - (XIT S- xITp)12 (27)

* with similar expressions for the y coordinate. Superscripts u and I designate

the upper and lower surfaces of the wake, respectively.

CONFORMAL MAPPING AND REMAPPING

The conformal mapping portion of the present procedure for generating

three-dimensional, periodic C-type grids was originally used by Sockol to

generate orthogonal, two-dimensional, cascade C-type grids. If the blades are

straight, semiinfinite twisted plates of zero thickness, their intersections

with circular cylinders generates doubly infinite cascades of semi-infinite
straight slits on each of the (x,Re) planes (fig. 5). Each of these R -con-

stant planes can be defined in terms of complex variables

w -x + iRe (28)

The goal is to generate a boundary-conforming, periodic C-type grid on each of

the planes. This task is accomplished by conformally mapping the w plane via ..

an intermediate "circleu complex plane (fig. 6)

v C + in (29)

into the interior of a "doubly infinite strip* plane (fig. 7)

u -X + iY (30)

Uniform grid in the u plane is then conformally remapped into the w plane,

thus generating the desired C-type grid. As shown by Sockol4 a single ana-

lytic function

,Vu.
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w= +  -- (2o sin o + 2 cos 0 ln(2 cos o))

+ e-iO(ln v - iv 2 cos o In (I - v) (31)

where N is the number of blades and 0 is the local stagger angle on the R =

constant surface, confomally maps the interior of the unit circle in the v

plane to the interior of a periodic strip enveloping a semi-infinite slit in

the w plane. The center of the circle (v - 0) maps into upstream infinity in

the w plane and the point v = -1 maps into downstream infinity in the w plane.
The zero-thickness slit between the points v - 0 and v - -1 maps into the up-

per and lower periodic boundary of a periodic strip in the * plane. The

circle in the v plane maps into a semi-infinite straight slit in the w plane.

A doubly infinite cascade of semi-infinite straight slits in the w plane is
*thus created by conformally mapping a doubly infinite cascade of Riemann

sheets (v planes) that are interconnected through the slits between the points

v - 0 and v - -1. Sockol4 used a simple analytic function

v - tanh(u2 /2) (32)

to conformally map the interior of a doubly infinite straight strip in the u
plane into the interior of a unit circle in the v plane. The lower strip

boundary (Y - -lw /2) in the u plane maps into the circle in the v plane.

The upper strip boundary (Y a 0) maps into a zero-thickness slit between the

points v - 0 and v - -1. Axial infinities (X = *-) map into a single point

(v a -1). The origin (X- O;Y - 0) in the u plane maps into the origin (v -

0) in the v plane.

Realistically shaped blade airfoils are not straight semi-infinite lines

of zero thickness. A C-type grid generated with the use of equations 31 and

32 alone wil; not conform to the actual airfoil cascade shapes on R = constant

surfaces. To generate a C-type grid that conforms to the shape of the airfoil

and wake , several nonorthogonal coordinate shearings and stretchings are used.

Airfoil surface points are conformally mapped from the w plane via the v

* 'plane into the u plane. As a result, the circle in the v plane becomes de-

formed (fig. 7), and the corresponding lower wall in the u plane becomes an
irregular line (fig. 8). The inverse of equation 31 cannot be analytically

obtained for staggered cascades. Therefore, a Newton-Raphson procedure is
used to iteratively evaluate on a point-by-point basis the pairs of (C,n)

coordinates corresponding to the given pairs of (x,Re) coordinates. By using

an analytic inverse of equation 32, that is,

1
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1/2- v in (r-- )) (33)

the deformed circle is conformally mapped from the v plane into the u

plane.

SHEARING AND STRETCHING IN COMPUTATIONAL SPACE

It should be pointed out that with the increase in stagger angle in the w

plane the image of the leading edge point shifts along the deformed circle inkthe v plane and along the deformed lower boundary in the u plane. To in-

sure that the corresponding points along the periodic boundaries in the w

plane have the common values of x coordinate, their images in the u plane are

placed symmetrically along the Y - 0 line (fig. 9). At the same time these

periodic points are distributed with a simple stretching function

- - e sin(2 XU/(XT - XLT)) (34)

ITS ITP

Superscript U denotes the upper wall (Y 0 0) of the u plane and superscript
L denotes the lower irregular boundary of the u plane. The stretching-J

coefficient e is determined from experience as

e 0.18 - 0.05 ln(2RwINt) (35)

Iwhere t is the local blade chord. The periodic grid points located in the

wake region are redistributed by using the expression

XU . XU f sin(2w(iXsU
- XUT ( 1  U (36)

where MAXXP denotes the last point on the upper surface of the wake. The
stretching coefficient, f, is determined also from the experience as . .

0.10 > f > 0.05 (37)

Because only a finite length of the wake is conformally mapped from the w

plane into the u plane, the deformed strip in the u plane has a finite

length. The shape of the end wall boundaries in the u plane are determined so

that they meet the lower boundary of the strip in the u plane almost orthogo-

nally (fig. 8). Consequently, grid orthogonality is well preserved at the

wake. Coordinates of the grid points inside the strip in the u plane are de-

termined from

FA
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y - yL((y/yL) + g sin(,Y/YL)) (38)

and

X - XU + (XL - XU) ((yiyL) + C stn(,y/yL)) (39)

where

0.30 > C > 0.15 (40)

g - C (1.0 -1.0/cosh h) (41)

h -5 (XU/xxe ) (42)

.4 Stretching coefficients C, g, and h are determined from experience and from

the condition that C-type grid lines in the w plane closely follow the wake

contour. Larger values of C generate grids suitable for viscous flow calcula-

tions, because grid layers are positioned closer to the blade and wake

-surface.

* . . The resulting two-dimensional nonorthogonal periodic grid in the u plane

* q Is conformally mapped back into the w plane on a point-by-point basis. Final-

ly, determination of the physical r coordinates of the grid points on the

(x,Ro) planes is obtained by reshearing the R coordinate (eqs. 4, 5, 8, and 9)

and fitting it with respect to the x coordinate with a cubic spline.

RESULTS

On the basis of the preceding analysis, a computer program GRI03C was de-

*veloped and tested6. Program GRID3C consists of 1150 card statements and

requires approximately 500 K of computer memory. Because of the analytical

character of most of the transformations used, GRID3C is very fast. To gener-

ate and permanently store x,y,z coordinates of a typical four-level grid se-

quence consisting of (33*8*6),(63*13*11),(123*23*21),(243*43*41) grid points,

respectively, BRID3C requires between three and four minutes of CPU time on an

IBM 370/3033 computer. The Newton-Raphson iterative point-by-point mapping

procedure of the airfoil and wake contour from the w plane into the v plane

consumes most of the computer time. But this procedure needs to be performed

only once on each axisywmetric surface.

Input to BRID3C must be provided in the x,y,z coordinate system, while the

output grid coordinates can be computed in the x,y,z or x,r,e coordinate

system. GRID3C can automatically generate up to four successively refined

three-dimensional grids and store them on four separate tapes. Computational

.. t .' *
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grids for the blades with closed trailing edge (fig. 10) and for the blades

with open trailing edge (fig. 11) can be generated with GRID3C code. For re-

petitive runs with different numbers of blades or different blade setting an-

gles, only one input parameter needs to be changed in the input deck. Clus-

tering of grid points closer to the leading and trailing edges and closer to

the blade and vortex sheet surface (fig. 12) can be easily achieved by varying

coordinate stretching parameters A, B, and C. Grid nonorthogonality is almost

entirely removed from the airfoil and wake surface. Nevertheless, grid nonor-

thogonality can become intolerable if this grid generation technique is ap-

*plied to closely spaced, highly staggered and cambered blades. Nonorthogo-

nality can become excessive in the leading edge region of any blade if the end

point of the semi-infinite slit in the w plane is not positioned approximately

midway between the leading edge and its center of curvature.

An unsatisfactory grid resolution inherent to the C-type grids can be ob-

served In figure 13. This figure shows a rectangular wing - cylindrical fuse-

]age combination and two computational grid surfaces: one corresponding to the

surface of the fuselage and the other being an intermediate surface located

between the hub and the wing tip. Note that the wing extension beyond the tip

, has linearly increasing cord length. The GRIIC code automatically calculates

that gap-to-chord ratio at the tip should be retained at all outer spanwise

4locations. Key elements of a three-dimensional C-type grid generated by the
GRID3C code for an advanced, eight-blade, transonic, NASA propeller is

presented in figures 14 and 15 with intersection contours between a blade and

the axisymmetric sur- faces shown. Note the large twist, sweep, and taper

variations and the fact that the propeller hub is axisymmetric.

With minor modifications GRID3C can be used for generating computational

grids applicable to a midmounted wing-body combination or a finned missile in

free air or inside a wind tunnel having axisymmetric walls.
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J i0-TYPE GRID H-TYPE GRID
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Figure 1. -Three basic types of two-dimensional, conforming, comp~utational
grids.
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Figure 2. - Axlsymmetric view of a three-dimensional, 0-type, periodic bound-
ary conforming grid for NASA eight-blade transon1,, prop fan. Shown are the •
hub surface grid and three neighboring blades with their surface grids.

I

Figure 3. - Frontal view of the 0-type grid for N4ASA eight-blade transonic
prop fan.
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Figure 6. - Two-dimensional cascade of semi-infinite staggered slots of zero I..

thickness with an indication of a cascade of realistically shaped airfoils and
their wakes.
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t Figure 8. " Strip" plane obtained by conforinally mapping "circle" plane.
- Upper boundary corresponds to periodic boundaries, and lower boundary to air-

foil shape.

*All B"t BI At

Ev DC D' El

Figure 9. -Nonorthogonal coordinate shearing and stretching concept applied* to X (eqs. 34, 36, and 39) and Y (eq. 38) coordinates results in a desired
* rectangular comlputational surface.
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Figure 20. -An example of a two-dimensional (x,Re) surface discretized with a
- coarse, C-type, periodic grid.

* Figure 11. - to-dimensional (x,Re), C-type, periodic, boundary conforming
grid for a cascade of blades with open trailing edges.
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Figure 12. Effect of controlled grid clustering. Grid points can be easily
concentrated in the regions of leading and trailing edges as well as closer to
the surface of the airfoil and its wake.
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Figure I,. - Elements of a three-dimensional, C-type, periodic grid generated
by GRID3C code for a geometry consisting of a rectangular unswept wing attach-"
ed to a circular cylinder. Note deteriorating grid quality In the far up-
stream region. Only every fourth cylindrical surface is shown.
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*Oi

Figure 14. -Blade surface grid and one of the axisymmetric surfaces generated
by GRID3C for an advanced, eight-blade NASA prop fan.
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Figure 15. -Another view of the same prop fan grid generated by GRID3C shows
more clearly the axisytuietric shape of the propeller hub surface.
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CONFORML GRID GENERATION FOR MULTIELUIENT AIRFOILS*

* ,DOUGLAS HALSEY+

+Aerodynamics Research Department, Douglas Aircraft Company, 3855 Lakewood
Blvd., Long Beach, California, 90846 USA

INTRODUCTION

Conformal mapping provides an effective means of generating suitable grids

for use in the numerical solution of many two-dimensional flow problems.

* There are numerous examples of its use for problems involving single-element

airfoils, including the well-known finite-difference transonic flow codes of

1 2 3Garabedian and Korn and Jameson 
. 

The present author has found con-

formal mapping to be especially useful in computing compressible potential

flow using an integral-equation (or field-panel) approach similar to that used
4 5by Nu and Thompson , Luu and Coulmy 

, 
and others. In this approach, a

body is analyzed in an equivalent inviscid, incompressible flow with distrib-

uted singularities in the external field. The distribution of the singulari-

.* ties is determined in an iterative manner, using the fully nonlinear field

equation, the computed flow field, and the appropriate solid-body boundary

conditions. Application of a conformal mapping to this problem simply odif-

ies the magnitudes of the singularity strengths and the boundary conditions,

without changing the general form of either. The regular spacing in the

transformed plane allows the application of very efficient numerical proced-

ures which make effective use of the fast Fourier transform algorithm. For

example, using the grid transformations shown in figure 1, accurate subsonic

compressible flow solutions for single-element airfoil cases have been

obtained in less than two seconds of CPU time on an INN 370 computing system.

Conformal mapping has also been used for problems involving two-element

airfoils. For example, the finite-difference transonic flow code developed by
6 7

Grossman and Volpe makes use of a mapping, developed by Ives , in which

the region outside two airfoil elements is transformed to the annular region

between two concentric circles. In that case, however, it was necessary to

apply nonoonformal shearing transformations to the resulting grids, ir. order

*This research was sponsored by the Independent Research and Development Pro-

gran of the 14cDonnell-Douglas Corporation.
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to obtain suitable point spacing distributions. This illustrates the unfor-

tunate fact that conformal mapping methods do not allow the degree of control

over grid point spacing offered by some other methods, such an the differen-

tial equation methods of Thompson

Conformal mapping has not yet been used to generate grids for flow problems

involving general multielement airfoils with more than two elements (at least,

not to the author's knowledge). This development has been hindered by the

absence of any suitable conformal napping methods for general multielement

airfoils. However, the recent development of such methods by the present

author9 and by Harrington1 0 .hould result in the increased use of con-

*formal mapping for multielement airfoil problem._ I -:

This paper describes recently-developed*techniques applicable to cases

involving general multielement airfoils having any number of airfoil elements.

Each technique can be considered as a purely geometric construction or, equiv-

alently, as a network of streamlines and potential-lines of an auxiliary

potential-flow solution. The nonuniqueness of such solutions ensures the

existence of a wide variety of conformal grid types, each having different

point-spacLng characteristics. A chronicle is given of the search for the

type of grid most suitable for solving the inviscid compressible flow aqua-
tions using a distributed-souroe field-Wael approach. Examples are show. for --
grids involving up to four airfoil elements.

(b)

Fig. 1. Typical conformal grid for a single-element airfoil.
(a) Circle plane.
(b) Physical plane.
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COMNOREdAL MAPPING O IULTIULET AIRFOILS

A prerequisite for the development of conformal grid generation techniques

for multielement airfoils is the existence of a method for transforming the
multiple airfoil elements to a system of bodies having much simpler geometry.

Such a method has been developed by the present author 9. This method makes

un of a succession of comparatively simple single-body transformations to

solve the more difficult multiple-body problem. In the first step, a succes-

sion of inverse Karman-Trefftz mappings is applied. Each of these mappings

*.removes a single corner (or a pair of corners in some cases) from a single

body, and also causes smaller perturbations to the shapes of the other bod-

ies. At the end of this step, there ore no corners and, in most cases, all

bodies are quasi-circular in shape. The next step is on iterated sequence of
mappings, each of which maps a single body to a perfect circle, and also

causes small perturbations to the other bodies. At the end of each iteration

* of this sequence, the final body is perfectly circular and the other bodies

.* are more nearly circular than at the end of the previous iteration. Itera-

tions proceed until all bodies are sufficiently close to perfect circles and

the derivative of the mapping function converges to within a sufficiently

small tolerance. Because of the rapid decay with distance of the effects of

o Q

00

fig. 2. Transformation of a four-element airfoil into four circles.
(a) Physical geometry.
(b) Geometry after four corner-removing mappings.
(C) eometry after four circle mappings.
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* these mapping., the entire procedure converges extremely quickly. Three to

five iterations are usually sufficient to give four-digit accuracy. The

entire procedure usually requires less than three CPU seconds on an IRm 370

* computer. This process is illustrated in figure 2, which shows a four-element

airfoil, the geometry after the removal of all corners, and the geometry after

only one iteration of the circle mappings. An extension of this procedure to

allow airfoils with open trailing edges to be included is described in ref-

erence 11.

GRIDS USING A STRING MAPPING

One straightforward grid generation procedure for multielement airfoils

involves stringing the airfoil elements together into a single effective body,

in a manner reminiscent of Thompson's treatment of multieleent airfoils
8

In this approach, it is not necessary to use a conformal mapping method for

multielement airfoils, although the geometric problems ore simplified somewhat
if the bodies have been previously transformed to circles. This grid genera-

tion procedure requires the following steps: 1) String the bodies together
into a single body and order the points in a continuous array around the per-If

imeter of the effective body. 2) Apply the Karman-reffts transformation suc-
cessively to remove the resulting corners in the effective body. 3) Transform

the resulting body into a perfect circle. 4) Set up the grid in the circle

plane. 5) Perform the transformations in reverse order, bringing the grid
points beck to the multiple-circle plane and finally beck to the physical

plane. The steps in this process are illustrated in figure 3 for a three-

element airfoil case. For step 3, a very robust circle mapping method is nec-
essary, since the shapes to be transformed are too complicated for more lim-
ited methods. A comparison of two alternative circle mapping methods is given

in reference 12.

Grids produced by this technique for two- and three-element airfoil cases
are illustrated in figure 4. These grids are very similar to single-element

grids, such as the one illustrated in figure 1 and the flow calculation tech-

nique of reference 3 can be directly applied. Point density in these grids is
suitably high near the leading edge of the forward element and the trailing

edge of the aft element, but there are undesirable sparse areas between the

airfoil elements. Although these sparse areas may not cause serious errors in

some calculations, they clearly limit the general applicability of this grid
generation technique.

I . -,t
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*, (b)Q

00

.

(c) (d)

Fig. 3. "String mapping' for a three-element airfoil.
(a) Physical geometry.
(b) Geometry in multiple-circle plane.
(c) Single body produced by stringing circles together.
(d) Geometry after corner-removing mappings.
(e) Unit circle.

(a) (b)

Fig. 4. Grids generated using the string mapping.
(a) Two-element airfoil.
(b) Three-element airfoil.
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GRIDS USING STRBMLINN/POTIRTIAL-LINN NETWORKS

The grids described above were derived using purely geometric conformal

constructions. Other types of grids can be derived from networks of stream-

lines and potential-lines from auxiliary potential-flow solutions. These

grids are conformal as a result of the fact that the complex potential
(0 + i*, where and 41 are the scalar potential and stream function) and

the complex velocity are analytic functions of each other. In fact, any

conformal grid can be considered to be a potential/stream-function network

(-' grid for short) for some potential flow. In this context, the grids

described in the above section can be derived from a flow with a point vortex
at the center of the circle in the transformed plane. The nonuniqueness of
the potential-flow problem for given geometry ensures that a wide variety of

types of conformal grid can be constructed.

The development of a -4 grid generation capability for multielement

airfoils (using the present author's conformal mapping procedures) requires a

method for computing the flow around the multiple circles, with constant

stream function on each circle. Such a method is described in reference 9 and

briefly below.

Any incompressible potential flow solution can be represented by a linear j
combination of simpler fundamental solutions. In the present method, there

are two noncirculatory fundamental solutions and a number of circulatory solu-

tions equal to the number of circles. Zath noncirculatory solution has unit

freestream and zero circulation about each circle. The two solutions have

different angles of attack of the freestream flow. Each circulatory solution

has zero freestream, unit circulation about one circle# and zero circulation

about all other circles. The two noncirculatory solutions and one of the

circulatory solutions for a three-circle case are illustrated in figure 5.

The calculation of each noncirculatory flow solution involves finding an

infinite sequence of reflected point doublet singularities within the cir- -

cles. 3ach circulatory flow solution involves finding a similar infinite

sequence of point vortex singularities. The result of each flow solution is a

series expansion for the complex velocity as a function of complex coordin-

ate. This is easily converted to a series for the complex potential having

the following forms

()+i) - {a + l (C-C ) + a (- )-1

-2
I aS (€-1) + ... } (1)

qU

-- 1 ei .. .. .. .. ... ... . . . . - •_ . .""; " '' ''- 
r'- ',
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_ i

(b)

" Cc (0)(0)(

Fig. 5. Nonuniqueness of potential-flow solutions.
(a) Noncirculatory flow with freestream at a - 00.
(b) Noncirculatory flow with freestream at a - 900.

p(c) Circulatory flow with stagnant freestream.

where . Is the complex coordinate of the point at which the flow is to be

computed, 4 is the complex coordinate of the center of the circle having

index NS, N DS is the total number of circles, and the series coefficients

(ai) are generally complex.

The calculation procedure for each point in a $4 grid consists of

solving equation (l) for the complex coordinate corresponding to the specified

value of the complex potential in the multiple-circle plane, followed by a

transformation to determine the complex coordinate in the physical plane. The

solution of equation (1) is accomplished by a Newton iteration procedure for

nonlinear complex equations. Having solved equation (1) on the boundaries of

a region of the flow, the solution in the interior can often be obtained more - . "*

efficiently using a fast Laplace solver.

- ridds for streaming flows

The most comon flow solutions used for producing -4 grids are prob-

ably the standard streaming flows, with uniform freestreas and smooth flow off

the trailing edge of each airfoil element. These can be obtained by combining

all the fundamental flows described in the previous section. The combination

constants for the noncirculatory fundamental flows depend only on the flow

-~ **--- *:p'"
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angle of attack. The combination constants for the circulatory solutions are

found by imposing the Kutta condition at the trailing edge of each airfoil

element. In the multiple-circle plane, this requires specifying zero tangen-

tial velocity component at the images of the trailing-edge points and solving

the resulting set of linear equations.

The point spacing in the physical plane of a *- 4 grid is inversely pro-

portioral to the local flow speed. Consequently, a grid around a body which

causes only a small perturbation to a uniform flow should have nearly uniform

spacing. This is illustrated in figure 6(a), which shows a grid for a single-

element airfoil at a small angle of attack. Flow solutions with extensive low-

speed regions have extensive sparse areas. This is illustrated in figure

6(b), which shows a grid around two circles, with large sparse areas near the

leading- and trailing-edge stagnation points. I
These grids are divided into a number of segments, separated by the stagna- A

tion streamlines. Within each segment, increments of stream function and

potential are constant, resulting in a rectangular grid in the $-4) plane.

A logarithmic mapping transforms the rectangular region into an annular one

similar to figure 1(a). The efficient flow calculation techniques of refer-

ence 3 can then be used to find the influence of each region at points in all

the regions. gv-

For the present application, these grids have several drawbacks. First,

the sparse areas near the leading edges would give inadequate definition of

* the rapidly-varying field-source density. SecorA, the uniformly-spaced areas

far from the bodies would reduce the solution efficiency by adding unnecessary

points. Third, the flow calculation procedure of reference 3 is most effic-

ient if 0-type grids can be used.

(a) (b)

Fig. 6. Grids derived from potential-flow solutions for streaming flows.

(a) IinJle-elemnt airfoil.
(b) Two circles.

,,1., . . .. . .
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*-4 grids for circulatory fundamental flows

0-type grids can be obtained from -* networks if flow solutions having

circulation but no freestream are used. The point vortex solution for single-

element cases, mentioned earlier, is an example of such an application. The

simplest nultielement flow solutions having circulation but no freestream are

the circulatory fundamental flow solutions# having unit circulation about one

body and zero circulation about all others. Like the 44 grids for
streaming flows, these grids are divided into a number of segments by the

stagnation streamlines. In each segment, the increments in stream function

and potential are constant and the flow calculation procedure is identical to

- that for a 04 grid for a streaming flow.

Exaple of circulatory 4-4) grids are shown in figure 7 for two- and f
three-element airfoil cases. In general, the point distribution around the

circulatory body is very desirable, with high point density near the leading

* and trailing edges and lower point density near mid-chord. The noncirculatory

* bodies have high point density near the leading and trailing edges, but they

have far too low point density near the stagnation points on the upper and

lower surfaces. Grids of this type would probably only be suitable for cases

in which the expected flow solution is rapidly varying on just one of the air-

foil elements.

4-, grids for nore general flows
The most undesirable features of the 4-4 grids discussed above are the

sparse areas associated with stagnation points on the bodies. In many cases,

(b)

'(a)i

rig. 7. Grids derived from potential-flow solution for circulatory funda-
mental flows.

(a) !wo-elemont airfoil.
(b) Thre-element airfoil.

* ,f
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however, it is possible to eliminate stagnation points entirely or move them

so far from the bodies as to be inconsequential. One strategy for accomplish-

iq this is to coAMpe circulatory fundamental flows, alternate the sign of

the circulation on adjacent bodies, and adjust the magnitudes to make the

total circulation equal zero. Examples of portions of grids of this type are

illustrated in figure 8. The most obvious feature of these grids is their

extremely high point density in the areas between the bodies which, for a

given total number of points causes sparse areas elsewhere. Another feature

is that each grid is divided into a number of segments, within each of which

the streamlines circulate around a single body. The dividing streamlines

between the segm3nts extend to infinity in both directions. Both of these

features are undesirable for the present flow computation procedure, prompting

the search for still further types of conformal grids.

One way of eliminating the infinite extent of the grid and also changing

the point distribution is to allow the total circulation to be nonzero. At

some distance from the bodies, the streamlines will then circulate around all

the bodies and the grid can be truncated at any one of these streamlines.

Spacing problems still remain, however, and can even become more serious as

ne stagnation points arise in the flow.

More control of the spacing can be obtained by introducing fictitious

bodies or singularities into the flow (out of the range covered by the grid).

If a new body surrounds all the other bodies and contains the entire flow in

its interior, control is also achieved over the extent of the grid. This has

(b)

rig. S. Grids derived from potential-flow solutions for more general flow.
(sero total circulation).

7.V
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been implemented by adding a larger circle around the original bodies in the

multiple-circle plane. Calculation procedures for the auxiliary potential

flow are only slightly modified by this addition, requiring the series for the

complex potential to include positive as well as negative powers of the con-

plex coordinate. An example of a portion of a grid generated in this manner

is shown in figure 9. This is a big improvement over the previous grids; the

point spacing is more appropriate and the grid extent is now finite.

Flow calculations using any of the grids discussed in this section

encounter difficulties not found when any of the previous grids are used. The

efficient flow calculation procedures of reference 3 can still be used to find

the influence of the singularities within any given grid segment at points

within that same segment, but they can no longer be used directly to find the

influence at points outside the given segment. This is because the segment

boundaries now represent folds in a Riemann surface, rather than just discon-

tinuities in point spacing. Another way of expressing this is to note that

the stream function is not a monotonic function of distance along any line

crossing the dividing streamlines and, as a result, two or more points in dif-

ferent segments of a grid can have identical values of the complex potential.

. - .:

Iig. 9. Grid derived from a potential-flow solution for a more general flow
(nonzero circulation and fictitious body).

A" I
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These grids can still be very useful, especially in a field-panel method, but

means of communication between the segments must be developed. These tech-

niques could be very similar to the flow segmentation techniques described by
WU1 3 , et al. Given the influence of a segment on its boundaries, the influ-

ence at exterior points can be computed using either boundary singularities or

a fast Laplace solver (perhaps with the aid of additional transformations).

The details of these segment communication techniques have yet to be worked

out.

SEGQNITED GRIDS WITH SPECIFIED BOUNDARIES

A greater degree of grid control can be achieved by directly specifying the

shapes of the region boundaries, rather than using whatever shapes the divid-

ing streamlines of a flow solution may form. In order to force the boundaries

to be streamlines of the flow, it is necessary to distribute vortex singular-

ities on the boundaries. The distribution of these singularities could be

computed using a boundary-integral-equation technique similar to the panel
14methods for aerodynamic analysis developed by Hess and others. A more

efficient computational approach makes further use of conformal mapping. In

this approach, each segment of the grid is dealt with independently of the fi

other segments. The region between a single element of the multielement air-

foil system and the boundary surrounding it is transformed to the annular

region between two concentric circles. A polar grid in each annular segment

is constructed and transformed back to the physical plane. The resulting grid

is equivalent to the -4 grid which would be'computed using the vortex

singularity approach.

The process of transforming a given region to an annulus Is very similar to

the method for transforming a multielement airfoil to a system of multiple

circles. The first step is to apply a sequence of inverse Karman-Treffts map-

pings, each of which removes a single corner from one of the boundaries. (If
the boundary specification is performed in the multiple-circle plane, only the

outer boundary will have any corners.) The next stop is to apply an iterated

sequence of mappings, each of which maps either the inner or the outer bound-

ary to a perfect circle. In order to avoid the necessity of applying an

interior mapping to the outer boundary and an exterior mapping to the inner

boundary, an inversion mapping is performed after each circle mapping. At the

end of a small number of iterations (typically three or four), both inner and
outer boundaries are sufficiently close to circular and the derivative of the

mapping function converges to within a small tolerance. Since these circles "

o-1
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(b) 

(C)

Fig. 10. Transformation to an annular region.
(a) Original geometry.
(b) Geometry after four corner-removing mappings.
(c) Geometry after c c'-cle mappings and two inversions.

Fig. 11. Boundary construction for a segmented grid.

may not be concentric, it is necessary to perform a final linear fractional

mapping. The steps of this transformation procedure are illustrated in figure

10 for one of the segments of the three-circle case shown in figure 11. An

alternative approach to the annular mapping problem has been described by

Ives 7 . Since his method is noniterative (except for the mingle-body map-

pings) it is perhaps more efficient. However, the present method can use,

simpler functions and the overall procedure is only slightly nore expensive

than computing two independent single-body mappings.

-- "ROW
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Grids produced by this technique for two- and three-element cases are shown

in figure 12. In each case, a simple construction of straight lines and/or

circular arcs in the multiple-circle plane was used to define the region

boundaries. Point spacing around each airfoil element is similar to the spac- I
ing around the single-element airfoil of figure 1, with high point density at

leading and trailing edges and no glaring sparse areas on the airfoil sur- t

faces. Possible drawbacks of these grids include the presence of sparse areas

near the corners of the outer boundaries and the necessity to locate bound-

aries too near the airfoil surfaces. (Moving the boundaries too far away

produces sparse spacing on the airfoil surfaces.)

(b)

rig. 12. Grids generated using the annular mapping.
(a) Two-element airfoil.
(b Three-element airfoil.

HYBRID GRIDS

Improved grids can be obtained by combining the method described above with

the string mapping illustrated earlier (figures 3 and 4). Instead of specify-

ing the region boundaries arbitrarily, use can be made of curves generated

using the string mapping. Region boundaries can be constructed using any of

the curves surrounding all airfoil elements, together wida sets of curves

which run between the airfoil elements. In this way, two of the four corners

(and their corresponding sparse areas) on the outer boundaries of the grid

* segments associated with the forward and aft airfoil elements are eliminated.

It is also possible to extend the grid as far from the airfoil system as

desired, by using a portion of the string grid dirertly in this region.

Grids produced by this technique for tvo-, three- and four-elemant cases

are illustrated in figure 13. These grids retain the desirable features of

the grids of figure 12, while eliminating moet of their drawbacks.

.4'
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(a) (b)

Fig. 13. Hybrid grids generated using both annular and string mappings.
(a) Two-element airfoil.
(b) Three-element airfoil.
(c'. Four-element airfoil.

CONCUSIONS
A chronicle has been given of the search for the type of conformal grid

most suitable for use in computing the inviscid compressible flow around

multielement airfoils using a distributed-source field-panel approach.

Although many of the grids were deemed not suitable for this application, they

were included In order to illustrate the great diversity of types of conformal

grid which can be constructed. The final grids, for the most part# have

44
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desirable point distributions around each airfoil element, of a form to which

the efficient flow analysis techniques developed earlier can be readily

applied. They are possibly close to the best which can be derived without

sacrificing the conformality properties.
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CONFORMAL MAPPINGS ONTO MULTIPLY CONNECTED REGIONS WITH
SPECIFIED BOUNDARY SHAPES

A PRELIMINARY DISCUSSION OF COMPUTER IMPLEMENTATION

ANDREW HARRINGTON
School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332

A4 NTR ODUC p |

We 4erzibe-a method of calculating conformal mappings of any given finitely

connected region onto a region with arbitrarily specified boundary shapes. If

the specified shapes are rectangles, then this method can be used to generate

* conformal grids which should be useful for numerical solution of many partial

differential equations, for example in calculating the airflow past an airflow

wit flaps or the flow of cooling water past fuel pins in a nuclear reactor.

Shke-u ot has proved that there exists a conformal mapping of any given

finitely connected region onto a region with arbitrarily specified boundary

shapes. The construction in the proof has been adapted for computer implemen-

tation. Some examples have been worked to determine the region bounded by

circles which is the image of a given region in the extended complex plane

under a conformal mapping taking 0 to 0. Mappings have also been calculated

of the form indicated by figure 1/below.) A region whose outer boundary is a[- d
a2  A

a2  A1 A2

D0 D

e4 83 A4  A 3

Fig. 1. Conformal mapping onto a region bounded by rectaugles.
f(a) A j - 1,2,3,4.

r-
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rectangle is mapped conformally to a region with all rectangular boundaries,

and the vertices of the outer boundaries correspond. Mappings onto regions

bounded by rectangles should be of considerable use in grid generation for

numerical solution of partial differential equations. Grids have been calcu-

lated for one simple example. --- _ "

Conformal transformations are particularly useful when calculating fluid

flow from the Navier-Stokes equations. In many formulations of these equations

there is a system of linked partial differential equations in which the

highest order part of each differential operator is the Laplacian. If a grid

is generated based on a nonconformal transformation to a computational domain,

then the transformed equations become more complicated. The Laplacian,

*however, is invariant under conformal transformation, so the second order

part of the equations remains simple, saving considerable calculation. Thus

conformal transformations have long been used for fluid flow problems in

simply or doubly connected regions, where a variety of known conformal mapping

techniques are applicable. Multiply connected regions also arise in flow

problems. Examples are airflow past an airfoil with flaps and flow of cooling

water past fuel pins in a nuclear reactor. Conformal grids have not been

used generally for such problems because of a lack of appropriate mapping

techniques. The method we describe is applicable to these problems.

The paper is organized in the following manner: We discuss the theoretical

formulation for the mappings between regions containing - in §1, and then

* our present numerical formulations and some possible improvements ir §2.

In §3 we discuss the differences in these formulations when we consider

mappings between regions with outer rectangular boundaries. In 14 we discuss

further possible improvements, and end in §5 with data about some specific

examples worked out on the computer.

§I. THEORETICAL FORMULATION

The method involves matching potentials. Suppose D is an n-tuply connected

region containing -e in the extended complex plane. We shall call a multiple

valved function / a (complex) potential on D if

1) i is analytic in D and continuous in the closure of D, except

=(z) -log(z) + O(1/z) near =.

2) Re(*) is constant on each component of the boundary of D. We call

these constants the boundary potentials.

Associated with each such potential is a charge distribution p($) on the

boundary B of D such that

.. ..
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*(z) -f P(Oi) log(*-z)Ijd*I
B

Suppose 0 is a potential on the region D0 . Let bl,b 2 ,-.b be the boundary .4

potentials and let q1 ,q2 .. q n be the total charges on the components of the A

boundary.

Now suppose we are given n simple closed curves r1,r2,.r. Let

N = (Mi,M 2,.M n ) n and IR ( 2,..Rd cR n with each R > 0. Let

BJ(NR) - {R z + M :z c r 1, a shape similar to r . For an open set of valves
XRn the sets - 1,2,.-n, are the boundary components of an

n-tuply connected domain containing -, D(M,R). Let Oi(z) - i1(z;M,R) be the

complex potential for the domain D(M,R) with total charges ql,q2,..qn on the

boundaries.

For some (1,R) with M - 0 and R - 1 suppose there is a conformal mapping
n n

' f of D onto D(N,R) with f(z) - cz + 0(l) near -, c > 0. Then

t- (2) 00(t) - *(f(z)) + log c.

Suppose W(z) = 0 for z - z c Do , J - 1,2,".n-1. The points z are the

critical points of the potential *0. Now f'(z 0, and (z

*. (f(z))f'(zj) so I must have critical points at f(z ) J - 1,2,-..n-l. The

maximum number of critical points that any complex potential can have off of

Its boundaries is n-l, so the points w1 - f(z1 ), j - l,2,**'n-1, are all the

critical points of * in D(M,R).

Let us collect the cornditions we have on *(z;,R). Let b1 be the jth

boundary potential for *(.;M,R). Then from (2) b - b + log c for j -

1,2,.**n. We take b b + log c to define c. Then we have, for some or-
n n

dering of the critical points w1 of 1:

(3) *(wj) - IP0(zj) - log c

b b* - log c j - 1,2,.n-1

This 3(n-1) real equations. We have 3(n-1) real parameters free in (N,R)
since we have fixed N and Rn . This author has proved with a homotopy argument

Mn n
that, even if we do not start off knowing a conformal mapping of Do onto

some D(M,R), there is an (M,R) solving these equations such that

(4) *(v) $0(z) log c

implicitly defines a conformal mapping w - f(z).

4T
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§2. NUMERICAL FORMULATION

Our initial objective was to rapidly write programs that demonstrate the

feasibility of implementing the theory Just described. Since accomplishing

that, numerous improvements and extensions suggested themselves. In a subse-

quent paper we shall report on the implementation of the latter ideas. In

this paper we will describe the ideas behind our first approach, some of the

further ideas generated, and some of the numerical results of our initial
: approach.

Given a domain D and shapes rj we can break the problem into six steps:

(i) choose charges qj, (ii) approximate 0, (iii) calculate critical points

zj, potentials O0 (zj) and boundary potentials bj, (iv) devise a subroutine

V, to calculate the corresponding quantities for D(M,R), (v) use this subroutine

with a nonlinear equation solver to find a domain, D(M,R), conformally equiva-

lent to D., and (vi) solve *(w) 0 (z) - log c to find the conformal mapping

and/or its inverse.

So far we have bypassed step (ii) by first choosing *0 as a discrete sum

4Wo0 (z)= - a4 log(z-zj) and choosing aj'a and ba's so *0 is the potential
-' 2

for an n-tuply connected domain. For example with * 0 (z) -i log(z+2) -

I log(z-l) and boundary potentials - log 2 and -- I log 25/8 on the left and3 3 3
right boundary components we get a domain D illustrated in Figure 2. For a

more general domain D0 , V,0 may be calculated in the same manner that we cal-
culate O(z;M,R), de cribed next.

D

7.1

Figure 2. Domain with potential - - log(z+2) - A log(z-l)
3 3
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We approximate t by a variant of Symm's method. We approtimate a boundary

charge distribution p(O) and then approximate the integral *(z) "

- p(O) log(O-z)Id . For simplicity we took all boundaries to have the same

shape r and use related N dimensional approximation spaces to approximate on

each boundary component BlB 2 ,*o*Bn . Suppose r has arc length parameterization

y(o) and y has period N, the length of r. Let Y. - '(m) for each integer m.

First we construct an approximation space of functions on r with basis
N

(era -1 where each basis element has support in a neighborhood of y and has

integral 1. Initially we take N-4. Later we shall increase it. Next define
N n

the corresponding approximation space of functions with basis le lj

where e (R (y(O)) + Mi) = i-em(Y(o)), a real, and e (0) = 0 for *' Rk.
j j R m N Min

We take the function approximating p to be p(O) - X - a e (*). where
M1 jl Imi Si

the constants a will be chosen shortly to satisfy a linear system of equa-

tions. Let (z) - -f p(4) log(O-z)jdOj be the corresponding approximation to
:f B"

the potential.

Letmj - R jym + M'' m - 1,2**N, J m 1,2,.*'n, be the points on the boun-

daries B corresponding to the points Y. on r. The conditions determining

the approximate charge density p are that there are constants bj, J 1 ,2,*--n

such that

(5) X amj - qj J -

M-I

Re (O) - ' m- 1,2,---N, - 1,2,...n.

The first equation says that the total charge on B3 is qj, as with P. We

cannot ensure that Re is constant on all of 5, but only that it has the

same valve at N points * " m - 1,2,...N. This gives (N+I)n equations in the

(N+l)n unknowns qm ,b 1 . The equations and variables cn easily be reduced

in number to (N-l)n by replacing the second set of equations by

Re((,) - ( ) - 0, a - 1,2,--.N-1, j - 1.2,...n and eliminating the

variables a., by solving the first equations for them and substituting into

the second set of equations. The linear system becomes

kln k.

* * *-r*
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N-i n
(6) 1 1 [(C jst-CjNt) -(C Njst-C NjNt) ]am

Mj JmN

N

= CNjst-CNJN t)qj  = 1,2,..N-I,

J-i t =1,2,..n

where

(7) C --f e (M)logfs - Ijjdoj,
it B j atB

the real part of the potential at 0st due to the charge density e m. In our

calculations of the numbers C we consider two cases, where the point and
mj s

the charge density lie 1) on the same boundary component and 2) on different

components.

Case 1). Here j = t. We may map back to r and use the fact that e has

integral 1 to calculate Cmjsj a m(O)ioglYs-Y j jd j - log R . Thus the
r

difference Cs-c is independent of M,R, and J. We put the unknowns a in
mjsj miNjis injm

an (N-l)n dimensional vector whose (m+(N-l)J-l))th entry is ami and similarly

order the equations. The matrix of the linear system has (N-l x kN-1) blocks

on the main diagonal which are identical and are independent of M and R. We

can evaluate this (N-I) x (N-1) block once accurately without worrying much

about cost.

Case 2). Now j 4 t. In this case Cmjst is strongly dependent on M and R,

so it must be repeatedly calculated, so we would like to do it cheaply. We

are helped by the fact that the charge density emj has support just on a

neighborhood of * mJ on B1 , and 4st lies on a different boundary component, so
the interval of integration is short and the derivatives of log(O-0 t) will atq'

be much smaller in general than when 0 and s lie on the same boundary

component. We should be able to use a relatively low order approximation.

In practice thus far we have used the lowest order approximation,

Cmjt -logJ -j . We will have a discussion of errors and possible

Lmprovments later in 13.

The linear systm is solved directly with a canned subroutine to calculate
the am 's. The boundary potentials are determined using the calculated valves

of the a 'S and C ta. We also need to find the critical points and
NJ mj at

potentials at the critical points. The critical points all lie away from the

i. . ...- "7:+.. + .. ,i+ +:in ...,
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boundaries so we use a low order approximation of

OO(z): C(z) 'v - I Ya log(o -z) and *'(z) a /(.J-Z). We use Newton's
ji mj mj m

method to determine the critical points. Thus for a given domain D(M,R) we

could approximate the boundary potentials and potentials at critical points.

We used a canned nonlinear equation solver to find the right valve of (N,R)

so the potentials match those associated with DO. The nonlinear equation

solver efficiently employed a secant method so that after some initial calcu-

lations only one time-consuming function evaluation was needed at each step.

If the initial guess was bad, however, the secant solver had a hard time,
2

-* so a nonlinear equation solver like the one used by Trefethen to find

A Schwarz-Christoffel parameters would probably be better. He used a solver

which started with the method of steepest descent before the secant method

became effective.

T The closeness of the valve of (M ,R ) calculated by the nonlinear equation

solver to some (M*,R*) such that D0 is conformally equivalent to D(M*,R*)

depends on the accuracy of our approximation of ' and improves as N increases.

The cost of calculating the approximation to * also increases dramatically

as N increases. We have first used a value of 4 for N to cheaply get a fair

* approximation to (M*,R*)and used this approximation to (M*,R*) as an initial

guess when calculating with a doubled valve of N(and halved mesh size on B).

This doubling procedure can be repeated to further improve the accuracy of .

As we halve the mesh size on B the quadrature formulas we have used also im-

prove in accuracy.

( §3. REGIONS WHOSE OUTER BOUNDARIES ARE RECTANGLES

The final step of calculating the conformal mapping has been carried out

so far only for a problem with a slightly different formulation. A given do-

main D bounded by an outer rectangle and n inner boundaries is to be mapped

onto a region D bounded by an outer rectangle and n squares on the inside.

We require that the vertices of the outer rectangles correspond. The potentials,

parameters and conditions in this situation are slightly different from before.

We can avoid calculating a charge density on the outer boundary by expres-

sing our potentials in terms of the elliptic functions sn(z;k) which are

meromorphic and doubly periodic in z for each valve of the parameter k,

0 < k < 1, and are defined by

sn(z;k)
f dt0

I

• 4 . .
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We denote the smallest real and imaginary periods of sn(z;k) by 4K(k) and

21K' (k). For simplicity we consider only domains D whose outer rectangle

has vertices 0, K, K'i, and K+K'i for some k, 0 < k < 1. This means we

allow outer rectangles of all proportions, since K'/K goes through all

positive real values for 0 < k < 1.

We take our complex potentials 4 in this situation to be multiple valved
analytic functions on D, continuous on the closure of D, with constant real I
part on each boundary compontent, and with l(iK') - 0. With this definition

4 may be represented in terms of a charge distribution on just the inner
boundary components,

(8) * (z) =-f P( ) log(A(z,O,k))Id~j

and

(9) A(zOk) sn2(zk 2-s2 (0;k)

a 2 (z;k)_sn2 (O;k)

We could have used an integral representation for *(z) involving a charge

2 distribution on all the boundaries, but the elliptic functions are easy to

calculate and avoiding approximating a charge distribution on the outer

- boundary considerably reduces the size of the linear system to be solved to

approximate the charge density.

The potential was formulated by considering a doubly periodic domain re-

lated to D, as illustrated in figure 3. The figure shows a period module

q q

1 2I

S-i'

i Fig. 3. Period module for the doubly periodic region derived from the shaded
region D.

for the periodic domain derived from the shaded region D. There is also a

doubly periodic distribution of charges to generate the potential. The

/!A
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boundary components are labeled with total charges showing how opposite charges

are placed in the reflections of D across the real and imaginary axes. The

charge distribution with periods 2K and 2K' determines a potential with
2

the same periods, which are the periods of sn (z;k). The symmetries of the

charge distrib-,tion ensure that Rez) is constant on the outer rectangular

boundary of D. The pole of sn(z;k) at iK' ensures that *(iK') - 0, (using

the princIpal branch of the logarithm).

The possible image domains are now denoted D(M,R,k) where k is the elliptic

parameter determining the outer boundary and M and R give the positions and

magnifications of the n inner boundary components in the same way we did be-

fore. Thus we have 3n+1 real parameters. We will also have 3n+1 real condi-

tions relating potentials on D and some conformally equivalent D(M,R,k).

We choose positive total charges qk for the inner boundary components of Do

so the corresponding potential *0 on D has n-i distinct critical points in DO .

We set *(w) = *(w;M,R,k) to be the potential on D(M,R,k) with the same

total boundary charges. All the potentials are normalized to be 0 in the

upper left hand corner of their domains, and thus the outer boundary potential

is 0. In order for the equation *0(z) - O(w) to implicitly determine a con-

•' formal mapping of D onto D(M,R,k) with outer vertices corresponding, we must

have that the imaginary part of the potentials at the other three outer ver-

tices, the real part of the potential on the n inner boundaries, and the com-

plex potentials at the n-i critical points all correspond for the two poten-

tials. This gives us the 3n+l real conditions for a nonlinear equation solver.

The numerical formulation of this problem parallels that of the first

problem. At one point we need to do a little extra work. Analogous to the

* quantity Cmjst we need to calculate
Tita

(10) Dmist -- f em (0) loglA(0,stk)jjdj;

i
Again we consider the two cases J-t and J#t.

1) Jit. We rewrite

B- e1 ()log - Idoj - C
Milsj B i i ajmiii*

Generally the only singularity of logIA(,$j,k)l for * near the support of emj
is at sj" We have cancelled out this singularity in the integrand and

introduced the quantity C from (7), which as we have said in §2, need
miii

only be calculated once. The removal of the nearby singularity in the inte-

a';

., , ,
*': . - - 9 - . : i"

''9<P ,--
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grand allows us to make a simpler approximation of the integral. Again

we have used the simplest approximation,

D 'ulog l5 i-mj1j *-o , -4I J - C mjsj

for m0s, and the quotient is replaced by the analytically calculated limit of

A(i, sjk)/(O-O ) as 0 - s if Ms•

2) jot. Generally in this case all of the singularities of log A(0,0 ,k)
St'

are far from the small interval of support of ejk, so a fairly simple quadra-

ture formula can be used. Again we used the simplest approximation,

SmJst .- logl&( Mj ,0st k)J. This was probably a place we introduced a large

part of our error. In future versions we should analyze the errors more com-

pletely and, at least when we have located M,R, and k quite closely, we saould

improve the approximation in our quadrature.

Another possible major source of error is our approximation space for the

potential. We shall now discuss some possible spaces and their relation to

possible quadrature formulas. We start with only a few widely spaced nodes

0 on each boundary component so approximations with a high degree of smooth-

ness do not seem appropriate. Away from any corners on the boundaries, piece-

wise linear functions of arc length seem sufficient to approximate the charge

density. Thus the basis element e will have support from to Y~ 1 and

eM(y(O)) - 1 - Im-oj, u-I < a < m+l.

When the number of nodes increases it may be appropriate to switch to a higher

degree spline approximation, say with cubic splines. In the examples we worked

out we used a compromise, piecewise quadratic function of arc length.

So far we have used the same approximation at the corners of the squares,

also. In fact the charge densities will be singular there. Using appropriate

singular basis elements in the approximations should give a considerable im- --k

provement. For instance suppose we translate a corner on an inner square to2/3
the origin. We can remove the corner by the conformal transformation w - z

If the corresponding charge densities In the z-plane and w-plane are p(z)

and p(w) then *(z) - p*(w) 11 P* (z2/3) 2/312-1/31andz

The new density P* will not have a singularity at the origin. We can

approximate p* with the same kinds of functions discussed above for smooth

boundaries. For instance, if we are using piecewise linear functions and .

boundaries.

* 2 - .. .A
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2 (1_o2/3 ) 1/3
Ois a corner, then e0(r()) - a )ao/j, -1 < a < 1. In this case

the integrals C can be evaluated exactly. We still need quadrature for-
mi sj

mulas for the integrals D mjst, however. Since all the integrals involve

weight functions e of known form, quadrature formulas of Gauss type suggest
mi

themselves. The proper weights need only be calculated once.

Once the proper values of H,R, and k are determined so that Do in the z-

plane and D - D(MR,k) in the w-plane are conformally equivalent, the last

step is to calculate the conformal mapping. We can easily generate a grid of

points wii in the domain D bounded by rectangles. We would like to calculate

the corresponding points zij in D. which satisfy *0 (zij) " *(wij). So far we

have only worked out one simple example with one inner boundary where the

potential *0 had the form -O(z) w log(A(z,(K+iK')/2,k)). We simply solved
the implicit equation for zij by Newton's method. If 0 were more complicated

this would be very time consuming.

Another coimon method of calculating grids in related situations takes

advantage of the speed of elliptic equation solvers for rectangular regions.

First we divide the grid points w in D into rectangular blocks. We can
'ii

calculate the few grid points zij corresponding to points wij on the boundaries

of the rectangular blocks by solving the implicit equation. The remaining

points z ij corresponding to points wi in the interior of any block can be

4. calculated with a fast elliptic solver since Re(z) and Im(z) are harmonic

1 functions of w. If we want more accuracy than is provided by the elliptic

solver, then its answers will make excellent starting values for finally

solving *O(E±j - *(wi) by Newton's method.
Another advantage of the equation lO(z) = ~(f(z)) determining the conformal

V mapping f:D0 4 D is that we obtain an analytic expression for the derivatives

of the mapping,

,z Iij
) . #;(Zijl/*.(w j

This derivative Is needed for the solution of most PDE's using the grid. Non-

conformal grids are routinely calculated as the solution of a system of finite

difference equations. The grid points in the physical domain D0 correspond to 4

the grie points in a computational domain D under some nonconformal mapping

that is not completely specified. The partial derivatives of this mapping

function at the grid points must be approximated by finite differences. This

introduce* an error which we can avoid because of our analytic expression.

, . . . 4. . -.... . .' .. . , - .
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£4. FURTHER POSSIBLE MODIFICATIONS

We shall describe two further possible modifications of our procedure.

The first will be to change the net boundary charges. Initially we chose all

the charges to be positive. They were chosen, as they always can be for a

given domain, so that the critical points all lay away from the boundaries.

For the theoretical paper , this was convenient. In practice, however, we

must then locate each critical point with some effort. A more practical

choice is to have a charge -1 on one inner boundary, and j zero net charge on

each other inner boundary. Suppose * 0 and * are potentials with these net

charges for D0 and D. Such potentials will have no critical points in the

interiors of their domains. Let Fo(z) = exp(o(z)), F(w) = exp(*(w)).Then

F0 and F map D and D conformally onto regions bounded by circles and circular

0 3
arcs with center zero. See Nehari . The boundaries with nonzero net charge

map to whole circles. The boundaries with zero net charge map to circular

arcs. See Figure 4. We want to choose our parameters so FO(D0) and F(D)

are the same region. Then f(z) - F oF o(z) is a conformal mapping of D0

onto D.

In place of worrying about potentials at critical points we must make sure gb.
that the endpoints of the circular arcs in F0 (DO ) and F(D) coincide. These

endpoints may be easily located. See Figure 5 showing a neighborhood of one

boundary in D with zero net charge. The boundary will always be split into

two sections so the charge density is positive on one section, negative on the

other, and zero only at the two points in between, labeled a1 and a2 . The

endpoints of the image of the boundary under F are F(a) and F(a2 ). There

are only three real parameters associated with F(a1 ) and F(a2 ) since IF(a 1 )1 -

JF(a 2 )1 - exp(the boundary potential). The other two parameters are the

arguments of F(a1 ) and F(a 2), that is Im(V1(a1 )) and In( Va 2 )). The points

a and a2, where the boundary charge density changes sign, may be easily

calculated. We avoid finding critical points of V in the interior of D.

The last modification we shall discuss may be useful when the dimension

of the linear system solved to calculate the approximate charge density on

the boundary of D(H,R,k) is large. Repeated direct solution of the system

with different parameter values would be very time consuming. The linear sys-

tem has special features making it seem well suited to iterative solution.

Suppose, as we discussed in 2, D(M,R,k) has n inner boundaries of similar

shape with corresponding N dimensional approximation spaces for the charge

density. Let Lx - b be the n(N-1) dimensional linear system to solve. First

we will restructure the linear system. Let A
(J ) 

be the (N-1) x (N-1) matrix

1A

wI,.

.' , *1. 
'

* - - -

• ...
2.4. "
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+1 _______

P (D)

Fig. 4. Alternate boundary charges 11re shown for a potential associated with
the intermediate conformal mappinSA onto a slit ring region.

E(a) F(D)

Da --- - - -
I negative

po,,i tive

Fig. 5. Ch itiuinon one boundary component in Figure 4 and ths
intermedi.4e conformal mapping F In the vicinity.

-~with entries - (

(11) (C mjtC (sC lj

The elements of AQ' appeared in (6). Let A be the matrix with submatrices
A ,J - 1,2,**"n on the main diagonal and zeros elsewhere. Let B L-A.

We may rewrite Lx-b as
(12) (I+A1IB)x- A-1b

The matrices A and B measure the effect on potential differences along boun-
daries coming from varying the charge distribution on the same boundary and
on different boundaries respectively. Particularly if the boundaries are well
separated, the norm of Al1l should be small.

Because we are using the same sort of approximation space on each boundary,

* - - .-
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independent of M,R, and k, the matrices A(J ) are identical and independent of

M,R, and k. Thus A- 1 need only be calculated once, and the only work is in

inverting one submatrix A(D. The considerations make it seem that (12) can

can be solved iteratively quite easily.

-. We will need to solve (12) repeatedly as we look for the right values of

M,R, and k. The values should vary little from one step to the next as we

home in on the right values, so the linear system should vary little. If x

is the solution at the previous step, we need only solve for y - x-x in

-1 -1
(13) (I+A B)y - c where c - b-(I+A B)x.

When the magnitude of y is small relative to x, we can solve (13) in fewer

iterations than we can in (12) with comparable absolute errors.

§5. SOME EXPERIMENTAL RESULTb

Two main steps in the problems we have discussed are 1) picking values

of (M,R) or (M,R,k) so *0 and * match in the r tht 1 iaces and 2) calculating

grids. Tables I and 2 describe searches for (M,R). Table 3 describes a

search for (M,R,k). Plot 1 and Plot 2 are corresponding grids.

We looked for domains bounded by three circles with specified boundary
potentials, bl, b29 and b 3 and with specified complex potential at its..

critical points, z1 and z2 . We assume the total charge on each boundary is

one. We tried to guess the right values for the centers, Ml and M2 , and radii,
R, and R2 ' of the first two circles if 3  0 and R3 - 1. Tables l and 2

show the number of subdivisions N of each boundary used to approximate V,
j the number of iterations taken, and the values of M and R calculated

at the end of the iterations leaving us with a maximum error in the potentials

as specified, In successive columns with higher N we use the previous values

* of M and R as initial guesses.

In both tables 1 and 2 the parameters are for a domain symmetric across ..

the real axis. Our potential approximations did not preserve this symmetry

automatically. We can see how the number of digits agreeing in H, and M2 and - .* .

in R and R2 correspond to the maximum errors In the potentials.

- -.7
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TABLE 1

SOLVING FOR (H,R) SO b 1  b2  1 .111, b3 0 0, 4(z) - -1.3, (z) -1.39, WITH

INITIAL GUESS M = 20+101, M2  20-101, R1  R2  1

N 4 810

Iterations 7 4 5

M 19.9911938+9.83435871 20.0103733+9.83483381 20.0108152+9.83507531

M2  19.9911935-9.83435811 20.0103735-9.83483411 20.0108152-9.83507531

R 1.0136412 1.0137188 1.013715623

R 1 0136429 1.0137185 1.013715621

maximum 2.7 x 10
6  8.5 x 10

- 7  5 x 10
- 9

error

TABLE 2

SOLVING FOR (M.R) SO b1 - b2  -1.03, b3 - 0. 4(z1) - -1.4, *(, - -1.41,

WITH INITIAL GUESS M1  19.5 + 10i, M2 -19.5- 101, R1  R 12 -3

•N 4 10

iterations 3 4 i
'- H1  18.2536288+9.73733041 18.424888+9.7952151

M2  18.2585680-9.74638261 18.424872-9. 7952301

R1 3.053838 3.059700

R2 3.052190 3.059702

maximum 10-4  10- 6

error

Table 3 has a similar form, except now we are looking for (M,R,k) parame-

terising a domain whose outer boundary Is a rectangle and whose two inner
boundaries are squares. Here we are trying to match up with specified values

Iu(%) at three vertices of the outside rectangle, Re(*) on the two inner

boundaries, and 4 at the critical point.

.- 4

I .. . .. ... ....
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TABLE 3
SOLVING FOR (MR,k)

INITIAL GUESS: k - .31622, M1  . +.81, M2 =1+151, R, .1, R2  06

N 4 8 16

iterations 4 2 2

k .3164766 .3164395 .3164345

M1  .6110767+81218811 .6111020+.81218511 .6111145+.81219241

M2  .9943007+1.49388761 .9942437+1.49399121 .9942284+1.49400091

R .1253212 .1271056 .1279121

R .0914252 .0927318 .0933205
2 9. 9 -.5 10

maximum 4.4 x 10-  9.4 x 10-  2.5 x 10
:t er ror

corners of the squares. That probably explains why the error increased from .,

column one to column two. When the number of subdivisions was increased the
.4 potential approximation changed enough that even after two iterations the

* error was larger then before.

In plots 1 and 2 we show corresponding grids in a domain Do and in a con- ,.

formally equivalent domain D. The domain D is bounded by a square on the
outside and a near circular inner boundary centered at the center of the

square. D was chosen to have a particularly simple potential associated

with it, *0(z) - -log A(zC(K+iK'), I/r2) . In the same manner as with the

more complicated domain associated with Table 3, we calculated the proper

parameters for a conformally equivalent domain D with a square inner boundary.

The symmetry of the regions provides a partial check of our procedure. We

started with initial guesses where the outer boundary was not a square and

IM1 was not in the center, but the paremeters converged to the correct ones

* which provided symmetry. At the outer corners of Do where our program
specifically arranged to make a match with corners of the computational

domain, we see that there is little distortion in the grid. The computational

domain does have extra corners introduced on inner boundaries. The grid in

D shows the extent of the local distortion near the points corresponding
0

to these corners in D. The distortions at corners would be similar if there

were more interior boundaries. In our example we used a doubly-connected re-
gion Do merely to simplify the logic in the grid generation. In actual .; . . "

practice, however, a doubly-connected domain would probably be mapped onto an

annulus in order to calculate a grid. Our method becomes useful particularly

j'ij $
.'WOW
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Plot 1. Top half of phyaical domain Do with conformal grid.

IIU

-: Plot 2. Top half of computational domain D correspondiug to Do in Plot 1.

4;~~1' .P *
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for domains of higher connectivity.

Much more can be done to develop this conformal sapping method. We have
indicated some of the directions to follow, and we have demonstrated the

promise of this approach to a previously intractible conformal mapping

problem.
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INTRODUCTION

>. ZUeat transfer and fluid flow over circular tubes have vide applications in

the design of heat exchangers and nuclear reactors. However, it is often

difficult to accurately calculate the detailed velocity and temperature dis-

*_ tributions of the fl'w because of the complex geometry involved In the

analysis, and a lack of an appropriate coordinate system for the analysis.

Boundary conditions on the surfaces of the tubes are often interpolated. This

interpolation process introduces inaccuracy. To overcome this difficulty, the

present study used the technique of the boundary-fitted coordinate system

In this technique, all the physical boundaries are transformed into constant

coordinate lines in the transformed coordinates. Therefore, the boundary

conditions can be specified on the grid points without interpolation. "

COORDINATE TRANSFORMATION

The coordinate transformation technique used for the present analysis is

based on the numerical solution of a sot of elliptic partial differential

equations (PD).1-3 The transformed coordinates (C, n, C) are independent

variables; the physical coordinates (x y. a) are dependent variables.

Constant values of one of the curvilinear coordinates (C. n, ;) are specified

as Dirichlet boundary conditions on each boundary. Values of the other curvi-

linear coordinates are either specified by a monotonic variation over a

boundary as Dirichlet boundary conditions, or determined by Neumann boundary

conditions. In the latter case, the curvilinear coordinate lines can be made

to intersect the boundary according to soe specified conditions, such as

being normal or parallel to coe given directions. Also, the spacings of the

curvilinear coordinate lines can be controlled. The PO used for coordinate

generation in the present analysis is of the general form,

4;'
-- --

:4+" +,,V ,
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Cx+ C = 0(, i

" + n - Q(C, ) 1

subject to boundary conditions,

Fo ese~ - :(~ Y] (Z, y) CT (2)

where Cis a specified monotonic function of x and y, i~is a specified

constant, P and Q are functions for controlling spacings and T is the physical
boundary. P and Q vere set equal to zero for the analysis presented here.

Fo aein specifying the boundary condition, the dependent and independent

variables in Eq. (1) are interchanged a

OXCE- 2 0xCn +yx, ,

*yC- 2oy~l + Y7 TIl " 0 (3) !

where

a X2 + y2

Y X2 + y2 (4)

The transformed boundary conditions for the present case of an infinite square

array of circular tubes are given as -

sRin

- Ifor -3< C <3 and

LCos n--

-U-6
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R sin

for C - -3 and (5)
[Ran -3 < n ( 3,Ri ..

[Rsin

where R is the radius of the tubes. The grid spacings on the surface of the

tube are uniform. Symetry condition is imposed on the lines of symetry as

shown in Fig. 1. This symmetry condition causes the grid lines to be normal

to the symatry lines. The computational meshes so generated are shown in

* Fig. I for the case of pitch-to-diameter ratio (S/R) of 1.05. The inlet
conditions of the flow and the geometry are also given in Fig. 1. All the

* . physical properties are assumed to be constant. Equations (3) and (4), sub-

ject to the boundary conditions, Eq. (5), were expressed in finite-difference :

form and solved by successive-over-relaxation technique. Once the curvilinear

coordinates are generated, the conservation of mass, momentum, and energy

equations in term of the transformed coordinates are solved.

A computer code (BODYFIT-IFE) 3 based on this procedure was developed at
Argonne National Laboratory. BODFIT-lFE is a three-dimensional, steady-

state/transient single-phase thermal-hydraulic code for rod-bundle applica-

tions. It solves the comlete Navier-Stokes 9-d energy equations by a cell-

by-cell numerical procedure. It uses a modified staggered-cell arrangement

where velocity, energy, and mass-balance cells are all staggered at different

locations. Detailed descriptions of the code are given in Ref. 3. Brief

descriptions of the methods used in the code are given as follows.

CONTRL VOLUMES

*In the conventional staggered mesh arrangement, the horizontal velocity, u,

Is stored at the middle of the vertical grid lines, and the vertical velocity,

v, Is stored at the middle of the hirizontal grid lines. Pressures are stored

at the centers of the cells formed by grid lines. In this arrangement, all
velocities are sandwiched between pressures. Furthermore, the z-mosentum

equation for the u velocity depends on only the x-derivative of pressure,
while the y-momentum equation for the v velocity depends on only the y-

A!
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derivative of pressure. Due to this characteristic in the Cartesian coordinate
system, specification of pressures at physical boundaries is not required.

This avoidance of specifying pressures at the boundaries is a great advantage

of the conventional staggered mesh arrangement. However, in the boundary-
fitted coordinate system, the K-momentum equation for the u velocity depends

on both the C and the n derivatives of pressures and likewise for the y

momentum equation for the v velocity. Because of this unique characteristic

for the boundary-fitted coordinate system, either the pressure at the boundary
has to be specified or the one-sided differencing scheme has to be used to
evaluate the gradient of the pressure at the boundary. In order to avoid this
difficulty, the conventional staggered mesh arrangeant has been modified.

In the present scheme, both the horizontal and vertical velocities are

stored at the intersections of grid lines as shown in Fig. 2. Pressure,
temperature, enthalpy, and density variables are stored at the centers of the

cells formed by the grid lines. In this arrangement, one can again avoid the
specification of pressures at the boundaries. The control volumes used for
momentum calculations center around the grid intersections as staggered cells
shown In Fig. 2. The control volumes used for energy calculations are formed
by the grid lines as basic cells shown in Fig. 2. However, the control

volumes for mass-residue calculations are shifted half a cell in the C

direction from the basic cells. This shifting of the control volume In the C

direction is necessary to eliminate the numerical oscillation of cross flows,
as to be explained next.

The present scheme of computing the pressure at a given cell is based on
the mass residue of the cell. If too much mass is accumulated at a cell, the
pressure of the cell is increased to push the mass out of the cell. If too

little mass is accumulated in the cell, the pressure of the cell is decreased
to pull in more mass. However, it is possible that the flows are in opposite
directions at adjacent points of the computational cell such that the mass is
nearly balanced and the mass residue is very small, and hence the pressure

correction is negligible. In this condition, the above pressure correction

scheme fails to correctly adjust the pressure and the oscillation of cross
flow results. Furthermore, the rate of calculational convergence is extremely
slow. The remedy to the above difficulty is to shift the control volumes for
computing the mass residue half a cell up in the C direction such that the
cross flow velocities are .ikt the aiddle of the surfaces of the control vol-
umes. This new arrangement entirely eliminates the numerical oscillation of
cross flows and enhances the rate of calcullational convergence significantly.

V..
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NUMERICAL METHODS

The transformed Navier-Stokes and energy equations were expressed in the

finite-difference forms in the control volumes previously described. Donor-

cell differencing was used for all the convective terms in the governing

equations; central differencing for all the other terms. All variables were

expressed in the current time step except the principle variable which had

values at the current and previous time steps. Since the fiuite-difference

equations were solved by using cell-to-cell calculational procedure, only the

principle variable was expressed in the current iteration step such as

t+At,u+l t,n + t+Atn + t+At,n+6wi I wi 2i+l "3i-I ,(6)

where superscript t refers to the previous time step; t+ht, the current time

step; superscript n, the previous iteration step; superscript n+l, the current

iteration step; subscript i, the principle call to be solved; subscripts 1+1

and i-I the neighboring cells; a's, the coefficients; a, the source term; and

w, velocity or enthalpy variables to be solved. All the terms involving wi

were factored to the left hand side of Eq. (6) to form the diagonal term to

enhance the rate of calculational convergence. Equation (6) was first solved

for velocities and then for enthalpy from cell to cell until all the

computational cells within a given plane of the fluid domain were exhausted.

The mass residues of all the cells were computed and the pressures were

adjusted proportionally to the mass residue. This proportional constant used

* in adjusting the pressure has a sensitive effect on the rate of convergence.

This constant was determined by substituting the finite-differenced momentum

equation' into the finite-differenced continuity equation and taking the

partial derivative of the continuity equation with respect to pressure to
obtain

ask
a-i,j k

whore S. was the mass residue of the continuity equation, and P was the pres-

sure of the cell i,J,k. The reason for using the finite-differenced momentum

equations instead of using the differential equations was that the rate change

and the convective and viscous terms in the momentum equation can all be

included to derive a relation between the velocity, vi,j,k and the pressure,

Pi,J,k of the cell as

:" I

. : .,. 
., , , .
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vi.'k J k (aP)i'j'k' + "ia, (7)

where i'J'k' are sumed over the neighboring points of the ijL cell and sij
is the source tern including vi~joks of the neighboring cells. Equation (7)

was substituted into the finite difference continuity equation

(sm) j I (av)ijk + " * (8)
ijtk

to compute the partial derivative of S, with respect to Pijk as the factor

(Bs/P)ijk. The inverse of this factor gave the required change of pressure
proportional to the mass residue of the cell as

(Apili - (AS, 1.) • (9)

The use of the complete momentum equation instead of the conventional trun-
cated momentum equation gave more accurate proportional factor for Eq. (9) and • .

* hence a faster rate of convergence for velocity and pressure calculations.

In most reactor applications, there exists a predominant direction of
flow. A planar-uses-balance technique was used to speed up the convergence of

the pressure calculation in these cases. The planar mass residue was computed
by adding up all the cell mass residues, Eq. (8), for a given plane. Based on

these planar mas residues, all the pressures across and downstream of the
given plane were changed uniformly according to the planar mass residue. This

technique provided a very effective way for speeding up the rate of conver-
gence. Therefore, in the case of flow having a predominant direction, there

were two procedures for pressure corrections, one in the cross-flow direction,

and one in the axial direction of predominant flow.

The velocity, enthalpy, and pressure calculations ware performed from cell
to cell for a given plane, and then in a plane by plane swep down the etire
flow domain. This procedure was repeated until a converged solution was

obtained.

N '4
--. -iJ l 
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APPLICATIONS

Several cases of infinite square array of tubes of different S/I ratios

with the saw hydraulic diameter and inlet conditions war* studied. Water
with the uniform velocity of I cm/a in flowing parallel to the axis of the

cylindrical tubes arranged in a square pitch. Uniform heat flux was used to

simulate the reactor fuel rod-bundle. Both the velocity and the temperature

profiles were developing along the tubes. Since the analytical solution in

the developing region for this configuration was not available, only the velo-

c-ty and the temperature in the fully developed region were compared. For the

axial velocity, Figs. 3(a) and 3(b) give the comparison between the BODYFIT

results and the analytic solutions by Sparrow and LoAffler." The agreements
r. are in general very good. The total number of computational grid lines

between tubes is fixed to be nine for all cases of different S/R ratios. In

the case of large S/I ratio where tubes are far apart, the number of grid

lines used in the present analysis my not be fine enough to resolve the

detailed velocity profile. This slight inaccuracy can-be seen in Fig. 3(a)
for the case of S/I - 4.

For the comparison of temperature distributions, Table I gives the DODYFIT-

calculated Nuaselt number as a function of the dimensionless Z- (Z/D,)/(RePr)

for various SIR ratios. The Nusselt number at Z - is given by the analytic

solution5 for the case of constant heat flux. Reference 6 given the similar

analytic solution for the case of constant peripheral temperature. In the case

of large S/ ratios, the two cases are very similar. In the case of small SIR

ratios, the tu cases differ quite a bit. However, the constant heat flux

case is closer to the condition in reactor application than the constant

peripheral temperatures case. The same information in Table 1 is plotted in

Fig. 4. It is observed that the temperature profile reaches fully developed

profile ore slowly as the S/ft ratio gets smaller. For the case of SIR

1.05, the temperature profile did not fully develop at the length of 156 times

of hydraulic diameter, Do. This phenomenon also affects the comparisons shown

in FIS. 3.

From the study, it Is concluded that BODYIT-IFi can provide detailed

velocity and temperature distributions with good accuracy. This information
Is valuable for designing a mechanical heat transfer component. Furthermore,

the code is very flexible and can provide analysis of the complicated

geometries In most nuclear reactor applications.

I r~'
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Table 1. (BODYFIT Calculated) Nussult Number

As a Function of Z for Various S/R Ratios

Zxi0 3  S/R-1.05 S/R-1.1 S/R-1.2 S/R-1.3 S/R-1.5 S/R-2 S/R-3 S/R-4

0.873 19.95 20.74 21.47 22.10 23.31 26.69 34.07 41.92

1.75 11.89 13.84 14.72 15.35 16.65 20.33 28.34 37.21

2.62 8.23 10.89 12.36 13.16 14.59 18.43 26.78 36.12

3.49 6.31 9.11 11.00 11.94 13.49 17.49 26.10 35.70

4.36 5.15 7.89 10.05 11.12 12.77 16.92 25.73 35.52

6.11 3.88 6.30 0.75 10.01 11.86 16.24 25.39

" - 7.85 3.20 5.33 7.86 9.27 11.27 . . . . .

10.47 2.62 4.44 6.95 8.49 10.68 15.50 - -

13.96 2.19 3.74 6.16 7.79 10.16 15.27 25.17 35.34

27.92 1.58 2.61 4.73 6.47 9.26 .- --I 5 5 .8 4 1 .1 9 2 .0 2 3 .8 9 5 .7 2 .... .. ..

* - 0.92* 1.68 3.68 5.82 9.29 15.05 25.23 36.64

*Analytic Solution (Ref. 5)

A1
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INTRODUCTION

S./INMESH is a computer program for the generation of two-dimensional

Sboundary-fitted coordinate systems which allows the creation of an unlimited
number of different types of meshes. This general program enables the user to

design a mapping configuration suitable for even the most complicated geomet-

ric domains including those with multiple-counectedness. This versatility is

achieved through the use of segmented computational regions tailored to handle

• - the, topological complexities of each individual problem. The proper choice of

mapping configuration is particularly important for problems which contain two

"£ " or more boundaries of different shapes, especially if these boundaries vary_ ...

with time, Several computer programs have been written such as TOMCAT Z %ad

GRAPZ-1.2w-ich allow the user to automatically generate a boundary-fitted co-

ordinate system for a given geometry with some control over the distribution

of the coordinate lines. These programs, however, are limited to certain pre-

determined mapping configurations. INEESH is not restricted in this manner

and thus some of the previously-experienced need for coordinate system control

has been eliminated. Its modular construction makes INKESR a convenient and

efficient tool not only for the generation of curvilinear coordinate systems,

but also for the numerical solution of partial differential equations using

those coordinate systems.

DZSCRIPTION OF THE METHOD

1NMSH is based on the method introduced by Thompson [31 in 1974 which

uses either the Laplace or Poisson equation to produce a mesh which adapts to

the physical region of interest. The physical region under consideration in

(x,y)-space is sapped to a computational region in (4,q)-spsce composed of the

union of rectangular grid sections. The desired transformation represented by,

; " (xy) and q = I(x,y) (1)

Is computed using nunerical methods employed by Haussling & Coleman [4,S to

* -!
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generate similar mappings. The transformation* are required to be solutions

of the equations

xx +  yy
and (2)

qxx + yy.,

subject to appropriate boundary conditions. The source functions P and Q way
be zero (a Laplace generating system) or nonzero (a Poisson system) in order

t to influence the spacing of coordinate lines in the physical region. At
present, INMESH does not have the capability to automatically supply the pro-

per values of P and Q needed to attract lines Into or repel lines from specl-
fied regions of the physical plane. This feature may be added in the future,

but the proper choice of mapping configuration should provide sufficient coor-
dinate system control for most geometries.

For computational purposes, Equations (2) are transformed to (Q,0)-space
- . by Interchanging dependent and independent variables to yield

x c - 2x n + *YX + J2(p + QX)- 0

- ~ and (3)

*y ny 2y + yr + J 4+ Qy) 0

where
2 2 Px+yyya x n ~ r 

+  Y n + y C n

2 w 2- v x (4)
+2 x Y X xY +:

t

Each derivative in Iquations (3) and (4) is replaced by the appropriate con-
tral difference approximation, and the resulting system is solved using suc-
cessive over-relaxation. A more complete discussion of this solution techni-

.* qua can be lound in previous work (51.
* ' The computational region comprises rectangular grid segments which are

mapped onto sections of grid in the physical region. The sides of the grid
segments in computational space are joined together in such a way that the
desired distribution of corresponding grid lines in physical space is

. ,v _4 .

- , ' - Ft', -.
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achieved. The sides of each rectangle are designated as one of three funda-

mental types: Fixed (F-type), Hatching (H-type), or Re-entrant (R-type). For

the F-type side, the x- and y-coordinates of the grid points are fixed and

hence do not change during the computation of the mesh. An F-type alde would

be found in a grid section adjacent to a boundary in physical space such as a

wall or far-field boundary. H- and R-type designations are used to connect

* two sides of different segments or different sides of the same segment. The

two sides that are joined must be of the same type and have the same number of

points. An H-type connection has an overlap of two grid lines while i-type

sides are joined with an overlap of three grid lines. An R-type connection is

-often needed where a coordinate line in physical space lies partly along a

boundary and partly in the interior of the region such as occurs when a body

is mapped onto a slit. Unlike F-type sides, the physical coordinates of M-

and R-type sides are not determined in advance but must be computed.

USE OF THE PROGRAM

To create a coordinate system with INHESH, the user must first decide on

4 the mapping configuration that best suits the geometry of his particular prob-

len. This step often involves making a sketch of the coordinate system as it

will appear in the physical plane. The grid in the physical region is then

broken up into sections which ensure that each side of each segment in theJ

computational region is either fixed to a physical boundary or is joined to

another entire side. The sides are defined as one of the three types (F,M, or

R), with connections specified where appropriate. Finally, the coordinates of

the fixed aides are set and the program is ready to be run. The coordinate

system generated may be returned in a form suitable for graphical display or

*in a form to be used in the solution of a partial differential equation aris-

ing from a physical problem.

All user-supplied input to the program is given in the form of 80-column

card images with variables in free format. The input consists of values of

parameters which define the mesh segments, designate 
the type of each side,

and provide the linkage between these sides. This input is simple with two

parameters required for each segment to define its dimensions and at most

three parameters per L~e to establish connections among the segments. The

physical coordinates of the fixed sides must be specified where necessary.

Also included In the input are values of parameters needed for the initial

guess and iterative solution of the mesh. Generation of the initial guess can

IIV
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be a problem in cases where some segments have no fixed side. This difficulty

is currently being studied in an effort to improve the initialization
algoritthm.

GENERAL REMARKS

Almost any type of boundary-fitted coordinate system can be created with
INMESH. The coordinate system that is generated may be easily changed by al-
tering the number of and connections between grid segments in the computa-

q tional region. Grid lines are added to or removed from specific areas simply

by changing the number of points in the appropriate segments. This capabi-

lity, along with the fact that the coordinate lines are smooth throughout the

entire physical region, is used to control distribution of the lines so that

the functions P and Q may be set to zero in the generating equations (a

Laplace system). The flexibility provided by INMESH is especially useful for

multi-body problems in which different mesh configurations are needed in dif-

ferent parts of the physical region.

Until better methods are devised and perfected, the choice of a "best"

* mesh for a particular problem will be made by examining different coordinate

- systems as they appear in the physical region. INMESH can aid in this deci-

sion by enabling the researcher to efficiently produce a wide variety of grids

for the same geometry. This versatility will be enhanced when an interactive

version of the program becomes available so that in a single terminal session

a user can quickly generate and display a variety of meshes for the same

region.

*EXAMPLES AND APPLICATIONS

* As a first example of meshes that can be created with INMESH, consider 37,

the simple computational region of Figure Is and the associated physical re-

* gion of Figure lb. This figure illustrates a polar or "O-type" coordinate

system about a circular body. In this and succeeding examples, -type connec-

tions in the computational region are labeled as such. Unlabeled connections

are thus *-type. Sides with no connections given are fixed. Although not to
scale, sketches of the computational regions show how linkage of grid segments
sides determines the nature of the coordinate system as it appears in the

physical region. The number of grid lines in each direction Is also indicated
for the segments since sides that are Joined must have an equal number of

points. In Figure Is the horizontal sides of the single computational segment
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correspond to the outer boundary and the body in physical space and are thus

F-type sides. The two vertical sides represent a cut between boundaries in

the physical region and are joined here by an H-type connection.

The second example demonstrates how the same type of coordinate system

may be generated for a region with more than one body contained within a

single outer boundary. Figure 2a shows the computational region for an 0-type

coordinate system about two foils; the physical region is shown in Figure 2b.

H-type connections again form cuts between the outer boundary and the bodies

while an R-type connection generates the coordinate line running from Body 1

to Body 2. Four separate computational segments are needed so that each side

is either fixed or joined to another entire side. A coordinate system having

a line both within the physical region and on the boundary usually requires a

more complex computational space than a configuration without this property.

Coordinate lines which change character in this manner are easily handled by

INMESH but do necessitate a computational region with multiple segments.

Although the 0-type grid seems to be a good choice for the circular body

of the first example, this type of coordinate system may not be best suited

for bodies shaped like those of the second example. Perhaps a more natural

grid for a foil-like body is the "C-type" grid seen in the next example.

Figure 3 shows the computational and physical regions for a C-type mesh about

a foil. Note that three computational segments are required because the co-

ordinate line that lies along the body also lies within the physical region.

This is an example of a simple mesh that has many applications.

Both the inner and outer boundaries must often be considered in choosing

a grid system for a particular geometry. As the next example, consider a rec-

tangular region containing a foil-like body. Figure 4a shows the segmented

computational space needed to map the body to a slit and Figure 4b shows the

resulting coordinate system in physical space. Again the R-type connection is

used to generate a coordinate line which "splits" to form the upper and lower

portions of the body. Also note that different portions of the body are map-

ped to different grid segments for this configuration. A close-up view of

this "slit-type" mesh near the body is given in Figure 5.

The slit transformation is easily extended to a multi-body situation.

Figure 6 shows computational and physical regions for a grid system surround-

ing a cascade of foils. If the vertical arrangement of the foils is slightly

changed, the mapping configuration is somewhat more complicated as illustrated

by Figure 7. The increase in complexity of the computational region arises

411 -]-
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FIGURE 2. 0-type mapping: multiple bodies
a) Computational region; b) Physical region
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FIGURE 3. C-type mapping: single body
a) Computational region; b) Physical region
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FIGURE 4. Slit mapping: single body
a) Coisputational region; b) Physical region
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FIGUME 6. Slit mapping: cascade of foil.
a) Computational region; b) Physical region
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from the increase in the number of discontinuous coordinate lines in the

physical region.

Another type of transformation well suited to a region with a rectangular

outer boundary is the "box-type" mapping. Figure 8 shows the computational

and physical planes for this system as applied to square rogion containing a

-. a circular body. In this configuration, portions of the body are mapped to four

4" separate grid segments. If the body is shaped like a foil, a useful coordi-

nate system might be one derived from a combination of the box and slit trans-

formations, the "modified box" mapping. The coputational and physical

regiona for the modified box are given in Figure 9. This a.rangement, where

the body is napped to three different grid segments, accoomodates both the

blunt and sharp characteristics of the foil. Figure 10 provides detail of the

grid near the body. The modified box mapping can be used in a straightforward
i i manner for a staggered cascade of foils, as indicated In Figure 11.

As a final example, consider again a rectangular region containing a

foil-like body. In order to obtain more grid lines around the body than are

provided by the modified box mapping alone, we choose a combination of the C-

type and modified box transformations as shown by Figure 12. This configura-

tion has coordinate lines which wrap the body yet become more rectangular near

the outer boundary. In Figure 12b, note the irregular five-sided cells which

appear both above and below the foil where the grid system changes character.

The coordinate system illustrated in Figure 12 has been used as the ini-

tisl mesh for a preliminary calculation of the potential flow resulting from a

hydrofoil moving beneath a free-surface. A finte-difference technique was

used along with a marching scheme for the advancement of the time-dependent

free-surface, requiring that a new mesh be generated at each tine step as the

free-surface evolves. Details can be found in a previous paper by Bausesling &

Coleman [4. Figure 13 shows the development of the free-surface for various

times t as the foil is abruptly put in motion. This computation was easily
performed on the segmented grid since the same general subroutines used to
generate the mesh were also used for the flow calculations.

CONCLUSION

A computer program (IMMSR) for the generation of boundary-fitted coordi-

nate systems has been written which makes use of segmented computational re-

giona. This program is not restricted to certain predetermined mapping con-

figurations and therefore can be used to produce an unlimited number of dif-

1Y
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FIGURE 13. Free-surface 4ievelopsent f or translating hydrofoil

* ferent grid systems. The fact that the user may design a computational region

suited to a particular gi-ometry makes 116USD a useful tool in the creation of

curvilinear coordinate system. The use of 1111151 was illustrated by a series

of sample grids ranging from simple coordinate systems to complicated mashes

that would have been difficult and time-consuming to generate without 1101151.

A application also demonstrated thpt the segmented computational region my
be used suecessfully in the numerical solution of a fluid dynamics problem.
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GRID GENERATION BY ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS FOR

A TRI-ELEMENT AUGMENTOR-WING AIRFOIL

REESE L. SORENSO.1
Ames Research Center, NASA
Moffett Field, California, U.S.A.

ABSTRACT

The Augmentor-Wing is a promising new development in airfoils for transport

'aircraft. It consists of a main airfoil with a slotted trailing-edge for blow-

ing, and two smaller airfoils shrouding the blowing jet. Impressive short-

takeoff-and-landing (STOL) results have been observed in flight, and both

wind-tunnel tests and computational studies predict remarkably low drag in the

cruise configuration.

Two separate efforts to numerically simulate the flow about this airfoil

". in the cruise configuration are being pursued. One uses an unsteady viscous

flow-solver, and the other a transonic full-potential approach. The inviscid

full-potential approach will be used as a preliminary design tool to test a

variety of configur3tions because of its relatively high speed; the viscous
flow-solver will be used as a design verification tool to supplement experi- ":

mental testing. The grid-generation program GRAPE has been adapted to satisfy

the significantly different needs of these two studies. The flow field is

divided into zones, and continuity of grid lines and their slopes across zonal

boundaries is assured. In addition, grid cell size anid skewness at body

boundaries is controlled. This new apI ication of grid generation by elliptic

partial differential equations for thiscreal-world, --multielement problem

is described. "'7-

THE AUGMENTOR-WING

The Augmentor-Wing,l designed and built by De Havilland Aircraft of Canada,

Ltd., consists of a thick nonsysmetric main airfoil having a slotted trailing-

edge for blowing, a large flap, and an additional airfoii element, called

the shroud (see Fig. is). The shroud is located above the blowing jet and

the flap below it, forming a channel and acting together as an ejector, or

thrust augmentor. Air for blowing is ducted from the bypass flow of the

turbofan engines.

The flap and shroud are fixed with respect to each other and rotate downward

together for the landing configuration, directing the blown air and entrained

@tZVIOUS PAGIE
1' SLANK I
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MAIN AIRFOIL SHROUD

(a) Cruise configuration (b) Landing configuration

Fig. 1. Sketch of Augmentor-Wing airfoil.

air downward and providing powered-lift (see Fig. ib). Blown air in cross-

ducted, eliminating the danger of asymmetric lift in the engine-out case. As

a result, It is not necessary to use four engines--as opposed to the potentially

more economical twin-engine arrangement--for safety considerattons, as it is

in some other powered-lift designs. To test the concept, a Lz ;a..illand

Buffalo aircraft was modified by adding Rolls-Royce Spey jet engines and an .

" +Augmentor-Wing fixed in the landing configuration. Five years of research

flying with this aircraft showed good short takeoff and landing (STOL)
* performance. 2,3 j

Theoretical studies and wind-tunnel tests of scale models4- 6 indicate that

* this airfoil in the cruise configuration will be competitive with, if not

superior to, a cc,.ventional supercritical airfoil section of the same thickness-

to-chord ratio. Advantages clAimed are increased drag-rise Mach number,

improved buffet boundaries, and reduction of "effective" drag because of

full-time blowing. It is expectei that a large part of the main-airfoil

boundary layer can be ingested into the augmentor and reenergized, resulting

in increased propulsive efficiency. Further, boundary layers formed on the

flap and shroud do not tend to separate; this gives a "flatter" pressure **

distribution over the entire airfoil and reduces peak suction pressures, which

lead to high values of critical Mach number. In addition, the 18% overall

thickness-to-chord ratio (including flap and shroud) allows the main-airfoil

element to be extreseely thick, at 26%. This facilitates the placement of large

low-lose blowing .4icts, gives more room for fuel, and yields structural

advantages such as reduced weight and increased torsional stiffness, thus per-

mitting higher aspect ratios.

THE G"M" GRID-GMSRATIONd ALGORITHM+. +. ,.'!
The grid for discretizing the flow about -he Auqaentor-Wing is constructed

using a component adaptive grid interfacing (,IAGI) technique which employs

-'. +
/ , ,+ + , .

f*
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*Sorenson's grid-gener~ation program GRAPE.7, The GRAPE algorithm generates

grids by solving a set of two Poisson differential equations after the manner

of Thompson et al. :9

S+yy = P  
(la)

xx + n yy

These equations are solved by iteration in the transformed plane:

. ,x 2Bx, + yx _j2(Px + Qx) (2a)

my - 2By n + Yy _j2 (py + Qy ) (2b)

where

, .xx n + Y+Yn (2d)

* y = x 2 + y 2  (2e)

j = x y n - xTIy (2f)

The GRAPE method differs from that of Thompson et al. 9 in that it uses

inhomogeneous terms P and Q, which though simpler, yield the ability to

arbitrarily impose two types of control on the grid at boundaries. The

computational coordinate & is directed around the airfoil; thus, lines of

constant & are those which intersect the airfoil boundary. The first type

of control which may he imposed is of the angle of inclination, denoted e in V
Figure 2a, with which the lines of constant t intersect the boundaries.

Grid lines directed around the airfoil are of constant n. The second type of

control is of the distance between the airfoil boundary and the next constant-n

line, denoted A in Figure 2b, and measured along constant-& lines. Both e

and A may be constants, or any reasonable and smooth function of t. Thus,

for example, near-orthogonality may be achieved at the boundary by setting

e to a constant value of 90*; the "normal distance" off of the body to the . ,

next grid line, A, may be set to any fraction of the chord length, such as

..w. . , 4. I.

' ' .i
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S.

V (a) Control of angles (b) Control of spacing

Fig. 2. Two types of grid control at boundaries

0.01 times the chord length. This control of 8 and A may be exercised at

the inner or outer boundary, or both.

The constraints on 8 and A are embedded implicitly within the equations ,.,

governing the grid mapping, and thus control of 8 and 4 is dependent on

the accuracy with which the equations are solved. Some compromise of this

control must be accepted, for example, near any point where the slope of the

* boundary is discontinuous. But in most places on most grids the control is

quite effective.

, APPLICATION OF GRAPE TO THE TWO FLOW SIMULATION STUDIES

* The two methods discussed here for numerical simulation of the flow about

the Augmentor-Wing--the inviscid full-potential and viscous thin-layer Wavier-

Stokes methods--both require surface-conforming grids. Bach method has its

own particular grid requirements. The CAGI approach satisfies these require-

ments by partitioning the flow region into computational zones, each in thu

shape of a distorted "C."

In the viscous flow-simulation effort, Lasinski et al.1 0 use a steady,

thin-layer Wavier-Stokes solver based on the work of Stager,ll with the main

airfoil modified to have a sharp trailing edge for the no-blowing case. This

method requires a body-oriented C-type grid about each element, with the lines

of constant n clustered to the body surface and lines of constant C nearly

normal to the body. Thus, in the CAGI approach four zones are requiredi

a thin zone conforming to the flap, another thin zone conforming to the shroud,

a zone conforming to the main airfoil and passing between the flap and shroud - " °

grids, and a fourth zone filling the outer, or far-field region. Figure 3a

illustrates the four zones (not to scale). The GRAPE method is then used to

make grids for each of the zones in turn. Function and slope continuity of

Q , .: : . .... .. . .... ,

I -. T,. . , .; ' - I.'; .F • " . -;" :.?
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MAN AIRFOIL

' 0

(a) Physical space (b) Computational space

Fig. 3. Grid mapping.

coordinate lines across zonal boundaries is achieved by using GRAPE'S ability

to control angles and spacings at boundaries.

* t The first step in this method is to locate the zonal boundaries. This is

done in an automatic and arbitrary fashion. Short line-segments are projected

* normally outward from the body points. The outward end-points of these line-

segments are connected to form the C-shaped lines denoted f-g-h-n-m (about .
the flap), p-o-j-k-I (about the shroud), and f-g-h-i-j-k-l (about the main

airfoil), as shown in Figure 3a. The line-segments normal to the bodies are

then discarded, leaving the zonal boundaries.

A grid for each zone is then made in turn, using the program GRAPE as though

it were a subroutine. Because the computational variable C is proportional

to the distance around each airfoil element, lines of constant E are those

which extend outward from each airfoil element in a radial-like fashion. It is

ensured that lines of constant C are continuous across zonal boundaries by

using the sae boundary points for adjacent zones. Further, it is ensured

that lines of constant E have continuous slopes and continuous point-spacing

in the q-direction across zonal boundaries by either (1) imposing a fixed

point-spacing and the condition of local near-orthogonality at boundaries **

where zones are adjacent, or (2) generating the grid for one zone, then imposing

the angles and point-spacing of its constant-C lines at the boundary upon

the adjacent grid as an a priori condition.

Technique (2) above is best understood by an example. The grid in the

zone conforming to the shroud is made first, with 8 at the inner boundary

tat to 900 and A at the inner boundary set to 10-5 times the chord length

i ' '" ---- mow

,N, . .
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of the main airfoil. No control is exercised at the outer boundary of this

zonal grid. The angles and spacing that result at the outer boundary of this
grid, however, are used as constraints in subsequently generating the two
adjacent zonal grids. To illustrate this, note the line j-o-p in Figure 3a.

This line is part of the outer boundary of the g":id conforming to the shroud,

and is also part of the inner boundary of the far-field grid. Thus the angles

and spacings along this line j-o-p resulting from the generation of the grid

about the shroud are imposed as 6 and A along that part of the inner

boundary of the far-field grid. The result is that angles and spacing vary

smoothly across zonal boundaries.

The four-zone physical domain for the viscous case is mapped into a computa-

tional domain consisting of four distinct blocks, as shown in Figure 3b. These

blocks are adjacent along parts of their boundaries, as shown by the connecting

lines between the blocks. The flow solver must take careful note of how and

where the blocks join. Of special note are points j and h; three zones are

contiguous at each of those points.

Work is proceeding on the viscous case with blowing. 12 The upper and lower

surfaces of the main-airfoil element approaching the trailing edge are faired

'J to be parallel with the x-axis, and are truncated at the point which gives the

proper blowing jet width (see Fig. 4). Zonal boundaries are extended rearward
from the top and bottom of the truncation, as extensions of the coordinate

boundary conforming to the surface of the main airfoil. Thus a fifth zone is

created and a grid for it is made. Within this new zone, lines of constant n

are directed generally fore and aft and are clustered to the two new zonal

boundaries. The lines of constant 4 are roughly vertical, and have end

points that Lne up with those of grid lines of constant E in the adjacent

MAIN

AIROL 
P

Fig. 4. Creation of fifth tone for blowing case.
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,.

zone. Beczuse lines of constant approaching the new zonal boundaries from

both sides are forced to do so with the same e (900) and with the sabe A,

function and slope continuity of coordinate lines across zonal boundaries is

maintained. The Navier-Stokes flow solver is being adapted to utilize the

fifth zone with appropriate boundary conditions. An example grid for the

blowing case is presented below in the results section.

In the inviscid flow-simulation effort, Flores 13 is adapting the TAIR

full-potential solver of Holst14 first to use a C-type grid, and then to accept

the flap and shroud as residing in slits within the grid. Thus the grid about

the flap and shroud locally resembles an H-type mesh. GRAPE has been applied

to the generation of this grid, using a two-zope approach, with one zone
conforming to the main airfoil and to the i-;oard (toward the jet) surfaces

* of the flap and shroud, and with the second zone covering the outer region and

conforming to the outboard sides of the flap and shroud. The point-spacings

along lines of constant & at the body surfaces are much larger in the invis-

cid case, being chosen to give cells with aspect ratios near 1. An example is

discussed below in the results section.

BODY-SURFACE DISTRIBUTION

It was realized at the outset of this effort that the distribution of grid

points on the surfaces of the three airfoil elements would be a problem

requiring serious attention. In all computational aerodynamic applications,

the distribution of body-surface points is important. The points must be
dense enough to resolve changes in the gradients of the flow variables along

the surfaces. In addition, point distribution around the body must be smooth.

Yet this must be done with a minimal number of points, for the sake of compu-

tational efficiency. However, in this multielement airfoil problem the body-

surface-point distribution is even more critical, since the points on one

element must "line up" with points on another element; the number of points

on the two sides of a channel, such as between the flap and shroud of the

Augmentor-Wing, must agree.

A method for distributing body-surface grid points that is simple and

straightforward yet effective has been developed. The procedure is one of

relating the surface distance around the airfoil, s, measured clockwise from

the trailing edge, and illustrated in Figure 5a, to the computational variable

S, with integer values of C corresponding to actual grid points. The

function s(), described by the curve in Figure 5b, shows an actual surface-

point distribution. This function must be smooth and monotonically increasing.

4
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4 S 4

1 3

(a) Arclength s and control points (b) Sample s vs g distribution

• Fig. 5. Surface distribution algorithm

Where the slope is small, the surface points are close together; where the

slope is large, the surface points are far apart.

Plots of s(t) such as that in Figure 5b are commonly used to examine and

evaluate a point distribution, but in this method the function s(C) is used

to create the distribution. Because index values in the E direction, hence

values of &, are assigned a priori to physical locations on the body, some

small number of points on the s (C) curve are predetermined. The remainder
of the s (F) curve is found by fitting the given points with a spline function. .
As a result, the entire s( ) function is fopnd, and a distribution is created.

The term "control point" is used here to mean a point on the airfoil

surface to which we wish to assign a particular value of j, the index in the

C direction. By assigning index values to physical locations in this way,
clustering or declustering in the regions between control points can be
enforced. For example, Figure 5a shows five control points on the main-airfoil

element. Suppose that it is desired to put 100 points over the entire surface

of this airfoil. In this case a uniform distribution of grid points [which

would make s(&) linear] would result in eight grid points between control

point No. 1 at the trailing edge and control point o. 2 at the entrance to

the lower channel, since this distance is 8% of the circumferential length

of the airfoil. Then suppose the body-surface spacing in this region is

halved. This is done by requiring 16 points in the region, necessitating the

removal of 8 points from other regions. A correspondence between the 16th

9-value (j - 16) and the s-value of that control point is therefore required,

and the function s(g) is no longer linear. Other correspondences between

s-values locating control points and t-values specifying clustering are

established around the leading edge and the upper channel. These control
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points and their c-values could be plotted on an s(&) graph such as the points

on Figure 5b. Any reasonably smooth and monotonic curve passing through the

control points would serve as the desired surface-point distribution. In the

present method this curve is found by fitting the control points with a cubic

spline. The actual values of s, denoted sj, which define the distribution

of body points, are found by evaluating the spline fit at integer values of F.

The body shape is represented parametrically by the spline fits x(s) and y(s).

The actual coordinates of the body surface points are found by evaluating the

x(s) and y(s) spline fits at the parameter values sj.

A similar procedure is followed for all three airfoils. It can thus be

ensured that there is an equal number of points on both sides of the channel

" . by specifying the same number of points between opposing control points. In

practice more control points than are shown in Figure Sa are required to

control the second derivative s"(). Some trial and error is required, but

the method is effective.

A solution-adaptive approach to surface-point distribution based on the

work of Johnson15 and Nakamura and Holst 16 is also being investigated. A

partial differential equation involving the second derivative of the fluid j
density is solved to give a reclustering. Although this method appears

promising for simpler single-element airfoils, problems relating to the
multielement aspect of this airfoil have been encountered. The method tends

to give surface-point distributions in channel regions wherein points on one

side are aligned poorly with the points on the opposing side, causing lines

of constant to be highly skewed.

RESULTS

Figure 6 shows a grid generated by the present method and used in calculating

some of the results for the no-blowing viscous case reported by Lasinski et al.10

Of particular interest is Figure 6c; it shows a close view of the region near

the leading edge of the flap, including the point labeled h in Figure 3a,

at which three computational zones come together. Where "chord" is taken to

mean the chord-length of the main airfoil element, the standoff distance to

the first point, A, is set to 10-5 chords for all three airfoil elements.

The total thickness of the grids conforming to-the flap and shroud, that is,

the length of the line-segments used in creating the zonal boundaries, is
0.01 chords. The total thickness of the grid conforming to the main airfoil

lot.. element varies but is about 0.03 chords. The far-field grid extends 4 chords

upstream, 6 chords downstream, and 6 chords vertically upward and downward.

* . .**, '.
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•(a) Entire grid (b) Confluence region .
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(c) Leading edge of lower flap (d) Trailing edge of main airfoil

Fig. 6. Grid for viscous treatment of Augmentor-Wing, no blowing.

There are 25 points in the direction "normal" to the surface in the grids

conforming to the flap and shroud, and 96 points in the tangential direction,

including the wake. Similarly, the grid conforming to the main airfoil element
is 37 by 150 points. The far-field grid is 37 by 142 points, summing to a total

of 15,604 points for the entire gria.
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This grid was used in calculating the results presented by Lasinski et al. 10  -I
for Re = 12.5 x 106 (based on the main airfoil as unit chord), M - 0.7, and

an angle of attack of 1.0*. This solution requit'ed approximately 16 hr of CPU
time on a CDC 7600 computer. Generating the grid required 93 sec of 7600 CPU

time. GRAPE has a feature that will accelerate its convergence by more than an

order of magnitude, if for each zone the maximum number of points in both

directions is of the form 3n + 1 for n an integer. However, because of the

need for points to line up across zonal boundaries in this problem, that

condition is not met in three of the four zones.

- "A five-zone grid ( a region of which is shown in Fig. 7) for the viscous

study with blowing has been generated and is presently in use on a CRAY-IS

computer. A grid for the two-zone full-potential case has been generated, and

is illustrated in Figure 8.

6.q1

Fig. 7. Trailing edge of main airfoil,
with blowing.

CONCLUS IONS

Computational grids for a complicated, multielement, airfoil shape have

* been successfully generated using the GRAPE elliptic partial differential

equation grid-generator program. It has been demonstrated that the approach

of dividing a complicated flow region into an arbitrary number of zones and

ensuring continuity of grid limes, as well as their slopes and point distri-

butions, across the zonal boundaries is practical and effective.

a.. ...
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ABSTRACT
A A technique is presented for constructing a boundary-conforming grid throughout
a general three-dimensional flow region as a composite of subregion grids.
Bach aubregIon grid is generated numerically by solving a quasilinear system of
elliptic equations. The boundary values represent nodal points in a
quasi-two-dimensional grid that covers the curved surface bounding the
subregion, and are generated nmerically by a modified elliptic system. The
boundary values are used to compute grid control parameters that are contained
in the elliptic systems. This provides flexible control over the distribution
of grid points in the interior of the region, in that the interior grid
distribution is governed by the distribution of points on the boundary as well
as by the boundaryls geometric shape. A primary feature of the technique is
that the composite three-dimensional grid remains both continuous and smooth
across the surface of juncture between any two adjoining subregions. The

and displays numerical results for both surface grids and space grids.

comprehensive results are displayed for a three-dimensional grid about a simple
wing-body combination. A numerical example is presented'dt a surface grid on a
NACA 0012 airfoil, with high resolution of the wingtip region.

. I- INTRODUCTION

To simulate complex three-dimensional fluid dynamic phenomena by a direct

numerical solution of the partial differential equations that govern the flow,

" one first mst have a spatial grid that covers the flow region. The grid

defines each of the nodal points or spatial cells for which the equations are

to be represented by a discrete approximation.

The three-dimensional grid generation technique described below is designed

to construct numerically a boundary-conforming grid within a three-dimensional

region A bounded by a closed surface. An example is shown in Figure 1 of a

quasi-rectangular region bounded by six surface segments represented in a

Cartesian coordinate system. A boundary-conforming grid is one in which grid

points are distributed smoothly throughout the interior of the region R and

along its bounding surface. For a region such as that in Fig. 1, this is

equivalent to defining a new curvilinear coordinate system C,vl ,C such that each

* Work sponsored by the -AM Ames fesearoh Center and the
Lockheed Independent Research Program
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PV@US POA"

17S Sm.A



668

of the six boundary surface segments is a coordinate surface E-const.,

n-const., or C-constant. When plotted in such a coordinate system, the region

R takes the form of a simple rectangular solid that may be scaled so that each

edge is of unit length. This forms a cube as illustrated in Fig. 2.

The problem of constructing a boundary-conforming grid thus may be viewed as

the search for a transformation

x,y,z ----- > nC
4 = " I(x,y,z)

* " i(x,y,z) (I)
n "(x.y,z)

that maps a general region R onto the unit cube in C, , € coordinates. If the

mapping functions (1) were known, then it would be easy to construct a grid in

R by first constructing a grid in the cube of Fig. 2. The image of this grid

in R then could be computed directly by solving 3q's (M) for x,y,z; that is, by

inverting the mapping transformation. It is easy to construct a uniform grid

in the cube as E j- (:I)ag I j1 J:< (2a)

S(k-1)ain , 1 <k< K (2b)

(1-)ar , <l< L (2c)

where we have chosen

A - 1/(3-1), Ave- 1/(K-1), AC " 1/CL-I)

A general class of grid generation techniques has evolved in which the

transformation functions in (1) are taken to be the solutions of an elliptic

system of partial differential equationsl,2,3. The grid in the physical region

R that is the image of the uniform grid (2) is generated numerically by solving

an elliptic boundary value problem for the cube. For a simply-connected region

R such as that in Fig. I, the boundary values represent the Cartesian

coordinates of nodal points in a quasi-to-dimensional grid that covers the

boundary surface of R. These points may be distributed .on-uniformly in any

fashion one may desire to resolve local features of the surface shape, such as

regions of high curvature, etc. The main problem with these elliptic grid

generation techniques in general is that the form of the elliptic equations

dictates the positions of the grid points in the interior of R and the spacing

between points. This makes it difficult to control the interior grid to

achieve the flexibility of spatial resolution that is needed to solve practical

flow problem by finite-difference or finite-volm methods.

.. 4
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The present technique overcomes this deficiency by using a special system of

elliptic partial differential equations that contains informti about the

boundary valuesl. The distribution of grid points throughout the region I then

is controlled by the distribution of points assigned on the boundary surface as

well as by the geometric shape of that surface. This is in contrast to methods

which rely on ad hoc wgrid control functions" that are introduced into the

elliptic equation system, and that usually must be individually tailored to the

peculiarities of each probla
2
,'.

II. THIU-DZI4U SOAL GRIDS FOR SIMYy-CO MCED IMGIONS

In the present technique, the mapping functions (1) are taken to be

solutions to the following system of quasilinear elliptic equations

V
2

n - #(C,n,C)Vnj
2  

(3)

: -.. r where , and w are universal grid control parameters whose use will be

explained shortly. The equations that govern the inverse transformation are

obtained from (3) by interchanging the roles of dependent and independent

varlabls
2

. This yields an e iptic system of quasilinear equations that can be

written in the vector form
+ ,;,, , + +,;::,, + , m

1 + * 2 (rq*rq) + Q3 (CC4wr)+2(0rC, + 62 rn + B3rC) -0 (4a)

r (x,y,S) (4b)

a.12 C9 12 (vVVi a- 2)C-C.. ,- 3 ,v .V , a - t v., "" vr.Vr,

0. 22 2

3 ~ 2w 1 3 Vn-VC 03- (VC*V&)

The gradients of the transformation functions in Eq's (4) are given by

- J3 i( r"

where 33 denotes the Jacobian determinant of the inverse transformation

J3 (6)3"03 " 3(x,y,z)l/S(lC,il,) (6)

1I+++P p+/ + •.+ . y , ,

--" + " ++j " ",? * +* +d '" + + + -- + + r .... ..... ..+ -- + "r + + ++ + r,' .. .' " + + 1 +1 + +.J 1 -- + ''I

++J~ .. ,+ - +++ -;++t,++ + "y ;
" ' " + ' ' ' ... +++ 1+ + ' " + 1dt "
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The coefficients ai,Bj are scalar of functions * and it's first partial

derivatives with respect to C, Y1, and r., and can be written in terms of the

metric coefficients of the transformation simply by inserting Eq's (5) into the

definitions (4c) and expanding the repeated vector and scalar products to

obtain + - )2

u2'.( I; I Ir 1)2 - ( r)2
11' 1)2 4. +-2

0 32 rC+rI) - (rC)Ir2

03 -(rE'rnO(rn'r) - E)r2

The Cartesian coordinates (x,y,z) of grid points in a physical region R such

as that of Fig. 1 are computed numerically by solving Xq's (4) on the uniform

grid in the computational cube of rig. 2, subject to Dirichlet boundary values

specified on the six faces of the cube. For each such face, the boundary

* values are the Cartesian coordinates of nodal points in a quasi-two-dimensional

grid covering that surface segment of the physical region R which maps onto the

face in question. Thus, to obtain the boundary values for the

three-dimensional problem, we must first construct a set of six two-dimensional

grids, one for each surface segment that bounds the physical region R. We

shall see later that each of these two-dimensional grids can be generated by

using a special two-dimensional elliptic equation system that takes account of

the shape, slope, and curvature of the surface. Once the boundary values have

been obtained in this fashion for all faces of the computational cube, the

control parameters m, , i mst be defined so that the three-dimensional grid

can be generated nmerically by solving the elliptic system (4).

rn the present technique, the grid control parameters *, *, and * are

S .'" evaluated in terms of the boundary values. This is accomplished as follows.

First, a limiting form of the elliptic system that is valid at the boundaries

is used to compute local values of the control paremters at each point on the

boundaries. The parameters then are interpolated linearly into the interior to

obtain a continuous representation of *(,.n), *(C.',€), and m(Q v,C)

throughout the coputational cube. Solved numrically, the resulting elliptic

system creates an interior grid that mimies not only the spatial distribution

++ .... .. A T
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of grid points on the boundaries but the geometric shapes of the boundaries,

inasmuch as the locations of the grid points -e each boundary surface reflect

the shape of that surface. In essence, this technique makes partial use of

ideas from both algebraic grid generation techniques and other elliptic grid

generation techniques. The latter usually are based on Poisson equations
2
,3

whose source terms are selected to affect the geometric behavior of the

internal grid lines, whereas algebraic techniques generally use elaborate

direct interpolation procedures
5 

to project the surface grids into the interior

of the region. In the present technique, the surface grids are used to compute

local values of the grid control parameters w, *, u which then are projected

into the interior of the computational cube by simple linear interpolation.

Solution of the elliptic system containing these parameters then merely

constitutes an elaborate indirect interpolation mechanism for projecting the

surface grids into the interior of the region.

The first step is to evaluate the grid control parameters at the faces of

the computational cube (Fig. 2). under the mapping, each face is the image of

one of the surface segments that hound the physical region (Fig. 1). Consider,

for example, the upper surface C-1. The grid control parameters can be

evaluated locally in term of boundary values, provided that constraints are

imposed on the slope and curvature of the family of C-directed grid lines

transverse to the boundary surface segmentl. The simplest case results if this

family is taken orthogonal to the boundary. The orthogonality constraint my

" ibe stated as

rr'rt -0, rr.rn -0, on C-1 (81

which follow from the fact that the vectors rg, r. are locally tangent to the

boundary surface, whereas the vector I, is locally tangent to the transverse

C-directed coordinate lines. The coefficients 02.4 3 In Bq. (4) then vanish,

and a 2 ,a 3 are correspondingly simplified [see Sq. 0i").

A further simplification results if the boundary values come from a ,

surface grid which itself is orthogonal, for than we have

rt r11.0(9)

Two independent uncoupled equations for evaluating the parameters *,$ at the

boundary -I1 then can be obtained by taking the scalar product of 5q. (4) with

the vectors rcorl, respectively, which lie in the tangent plane. That is, we

take the local projection of Bq. (4) onto the C-directed and n-directed

coordinate lines (grid lines) that comprise the known grid on the boundary

NO~
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surface i-1 . The resulting equation for* is

* -- s - I C + C (10a)

s - /I (1Ob)
where

(1) 12 1 . )/l* 1,* 12 (100
C " C (rErc cI rc (

The quantities that involve C and yj derivatives can be evaluated directly from

boundary values (i.e., from the given surface grid) using standard difference

operators to replace the differential operators. Hoever, the ter C(C )

contains derivatives in the transverse C direction and cannot be evaluated from
boundary data alone.

One can show easily that each of the terms in Sq*. (10a) has a simple

physical interpretation (see Appendix). For each C-directed coordinate line

such as P in Fig. 1, S(U) represents the logarithmic derivative of arc length

between the known grid points along the line, whereas Ch ) is proportional to C-

the curvature of the TI-directed coordinate lines in the surface grid. The term

C similarly is proportional to the curvature of the c-directed coordinate

• .lines transverse to the boundary surface, and may be specified arbitrarily.
SH owever, note that the available boundary data for the surface grids in the

t transverse boundary surface segments C-0 and C-1 can be used to evaluate C(c)

at the and points P,Q of each 4-line in the surface C-1. This transverse

boundary curvature information is used to control the curvature of interior

c-lines by interpolating C( c) between its value. Cp, and CO at the end-

points P and Q as follows. p 4") and "c) are both non-zero and have the

sam algebraic sign, then C (C) is found by interpolating the signed radius

of curvature R - I/C linearly versus arc length a - f I* Id. The curvature
itel Cc) tO *)

itself is linearly interpolated if the algebraic signs of C ) and CO are
different.

An equation for # that is similar to Eq. (10) is obtained by taking the

scalar product of Eq. (4) with ,,. The described procedure thus allows one to

evalute the grid control parameters #,,# at each point of a boundary surface

segment C-const. when the surface grid on that segment is orthogonal.

In the mre general oase where the C, n grid on a boundary surface .const.

is not orthogonal, q's (9) and (10) no longer hold, but the same approach can

be employed to evaluate the parameters #,*. Upon taking the scalar product of

Nq (4) with r and with 4, one obtains a pair of linear equations that can be

• . ." <,.k .
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solved easily to obtain unique expressions for evaluating and in term of

the given boundary values at faces r.const. of the computational cube. A

similar procedure in used to evaluate all three grid control parameters , ,w

at all faces of the comutational cube. In general, this defines each

parameter at four of the six faces. One can infer from the structure of Eq.
4, (4) that the parameter # is associated primarily with the spacing of grid

points along &-directed cooedinate lines. This inference is consistent with

the fact that the described procedure for evaluating + from boundary values at

the faces of the cube defines # at only those four faces in which C is an

interior coordinate parameter. This excludes the two faces E-constant.

Similarly, * is defined at all save the two faces in-const., and wi at all save

the faces C-constant.

Once the grid control parameters $, ,w have been determined at the faces of

* the computational cube, a continuous representation of each throughout the

interior of thi cube is obtained by linear interpolation. Consider, for

example, .he parameter # which is known at the four faces C-0,1 and TqO,1. In

each plane &-const., 0< 1, of the computational cube, we have a square Oaq,fr1

on whose perilter + is known. A continuous representation i ( ,w .) in the

interior of the square is obtained from a generalized linear interpolation

based on the equation

which can be integrated analytically subject to the known boundary values of*

at the perimeter of the square. The elliptic system (4) then can be solved

numerically to 94nerate the three-dimensional grid once the parameters 4,, ,

have been defined throughout the coutational cube of Fig. 2.

I1. TO-DDIaIUMU AL GRIDS 0N CURVD SURFACRE

The boundar. values for generating the three-dimoensional grid are obtained

by constructing a two-dimensional grid on each of the six surface ssqeto that.

bound the physical region R depicted in rig. 1. Bach surface grid is generated

by solving a two-dimensional Dirichlet problem governed by a two-

dimensional elliptic system that is similar in form to the three-dmeLnional

system (4), but that contains terms describing the slope and curvature of the

surface. The two-dimensional elliptic system is deduced from the throw."

dimensional system (4) as follows 1 . The surface on which the grid is to be

generated is taken as a coordinate surface r-oonstart. By requiring that the

superflucus € -directed coordinate lines both have sero principal curvature and 5'

M
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be orthogonal to this surface, one obtains the simplified 3D system

a rt *) - 2BrE. + yr,+ #rn + (cG3 /8)Ewj4 CZrW58)C1-0 ha

I1+I
2  + + 1 lb

r110 rc * i * y 12 I* 2I2b

where -0(b

Let the surface on which a grid is desired be defined in Cartesian coordinates

by the function z-f(x,y), where f is single-valued and twice-differentiable.

Then Eq.(I1) can be manipulated to yield the following set of equations for the

* projection of the grid onto the x-y plane1

c~t x) 2xn+yx,+#q x (12a)

aMy~ + #y ) -2$y~n + y(ynn + *yn) + f3,G 0 012b)

r - (x,y,z) I z - f(x,y) 0120

eG 0 j2 2 [(Itfy2Jfxx -
2fxfyfxy +(t+fx 2?fyyl/(I+fx 2+fy2 ) (12d)1 1 *.

J- 3(x,y)3(4 In) - AEY - Ny 0120

where J2 denotes the two-dimensional Jacobian determinant. These equations

can be used to generate a boundary-conforming grid within any closed, simply-
connected region that lies on a given surface z-f x,y). *Consider, for example,

the top surface segment C-const. in Fig. 1.

The surface grid is generated by solving Bq's (12) on a uniform FC,' grid

over the unit square on the face C-1 of Fig. 2, subject to Diricblet boundary
values rjk assigned along the perimeter of the square. These boundary values

represent the coordinates (xoy,z) of grid points along the perimeter of theI surface segment C-I in Fig. 1, and ay be distributed along that perimeter in
any fashion desired. Xn analogy with the throe-dimsnsion,-. case discussed

earlier, an expression for # or # along each segment of the boundary curve is

obtained by taking the projection of Sq. (Ila) onto the vector xor *rtangent

to that segment 1 . The parameters #,#$ are then interpolated linearly into the

computational square from the boundaries, and the resulting elliptic system

(12) Is solved numerically to generate the surface grid1 . This requires that

X"
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boundary values (i.e., grid point locations) be assigned a priori along each of

the four segments of the boundary curve. Since the spacing of grid points

between the endpoints of each boundary segment can be parametrized easily in

term of a single quantity, the arc length, one need not be burdened with the

task of manipulating individual grid points, but may distribute grid points

* along each boundary segment with the aid of a general one-dimensional

*: stretching function such as that devised by Vinokur 6 .

IV. COMPOSITE GRIDS AND MELTIPLY-COMN3CTD MGIONS

The technique outlined in the preceding section provides the Dirichlet

boundary values for solving Sq's (4) to generate a 3D space grid within an

arbitrary spatial region such as that depicted in Figure 1. One proceeds as

. follows. First, the technique of Section III is used to generate a

quasi-two-dimensional grid over each surface segment that bound the region.

*; This requires the a priori selection of a very small subset of nodal points in

the three-dimensional grid, namely, those points which lie along the curves of

intersection between the surface segments which bound the physical region.

* . These are the curves that map onto the edges of the computational cube. The

bounding surfaces, and hence, their curves of intersection are known. The
'locations of grid points along each such curve can be parametrized easily in

terms of the arc length, end the points may be distributed along the curve with

a general one-dimensional coordinate-stretching function6. Once the surface

grids have been constructed, the surface grid point coordinates are used as the
boundary values for the three dimensional Dirichlet problem on the cube. The

grid control parameters that enter into the elliptic system are evaluated at

the faces of the ccmputational cube and are interpolated linearly into the

S-interior. The Dirichlet problem then is solved numerically by some iterative
method. .

This direct approach is likely to be inadequate for geometrically

complicated regions, and is invalid for mltiply-connected regions. These *-

situations always can be treated by subdividing the region into a collection of

contiguous simply-connected subregions, each of which has a more or lees

uniform geometric character. Bach subregion grid is generated Independently.

and then is joined with the others to form a composite grid for the original

region.

An important feature Inherent In the present method is that the composite

grid automatically remains both continuous and smooth across the surface of

juncture between any two adjacent subregions as long as the sam boundary

* o , -MANE.++ . . . , +. . ,, ... . ....
.- " ': i , " ; " ,c •
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values are used at that common surface when generating the grid for either sub-

region. This feature is a direct consequence of using the boundary values to

evaluate the grid control parameters #,#,o that enter into the generating

elliptic systm. An example of such a composite grid is presented in the next

section.

V, NURICAL RESULTS

Three-Dimensional Composite Grid for a Ming-Body Combination

The technique outlined in the preceding section has been applied to

construct a three-dimensional grid about the simple wing-body combination

depicted in Fig. 3. The configuration consists of a cylindrical fuselage with

spherical end caps and a straight wing that has a super-elliptical planform.

The axis of the cylinder coincides with the Cartesian y axis, the wing

-. mid-chord line coincides with the x axis, and the wing cross-section is

symmetric about the plane z-0. In the positive half-space 00, the wing

surface Is generated by the oquation

(9x)n + yn [(T-Z)(T- 1 
+ z)in/

2

- 0.2, T 0.25, n-S

*.j whore T is the thickness-to-chord ratio in the plane w0 and £ is the

chord-to-span ratio. The configuration in symmetric about each of the three

coordinate planes x-O, y-0 and z-0.

The surface grids shown in Fig. 3 on the cylinder, the sphere, and the wing

were generated by the method described in Section I11, treating each of the

three parts as an independent subregion.

To form a bounded region in which to construct a three-dimensional grid, the

configuration in enclosed by an outer "freeastrea boundary surface ontsisting

of an elliptical cylinder with an end cap formed by the matching ellipsoid of

revolution. Since the region is symetric about the three coordinate planes,

we consider only the positive octant x,y,s > 0, and include the planes wwO and

s-0 as boundaries. This region was subdivided into two subregions separated by

the plane normal to the y axis that passes through the ophere-cylinder juncture

of the body. The composite surface grids on the body, wing, and syetry

planes are displayed in rig. 4. A three-dimensional view of each subregion is

given in Figs. S and 6, and shows the grid on each visible surface. Figure 7

shows the composite grid formd by joining the two subregions.

" Zn Figur 4, the surface grids o n the nosecop and on the symmetry planes for

the forward subregion are joined to those for the aft subregion to show that

.....
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grid lines remain smooth between adjoining subregions. This smoothness also is

evident in Figs. 8 and 9, which display several interior coordinate surfaces of

the composite grid.

The number of grid points in each of the two subregions depicted in Figs. 5

and 6 is 26 x 11 x 21 w 6000. For each subregion, solution of the elliptic

system by successive line over-relaxation (SLOR) required approximatcly 150

*iterations and 15 min. of CPU time on a VAX 11/780 minicomputer.

Surface Grids

The surface grid generation technique presented in Section III has been

applied to a standard NACA 0012 symmetric airfoil with a winqtip formed by

rotating the profile about its central symmetry line. Figs. 10-12 show plan,

end, and perspective views of the grid on the upper half of the wing surface.

Note the relatively high resolution of the critical region near the wingtip

that is obtained with the 21 x 20 grid.

Experimentation recently has been performed with wing-body surface grids

having a topological structure different from that used in Fig. 3. An example

is displayed in Fig. 13 for the same spherically-capped cylindrical body Joined

to the blunt NACA 0012 wing instead of the sharp-edged elliptical wing. The

body grid has no polar singularity at the nosetip, unlike Fig. 3. and has a

topology similar to that employed in Reference 7.
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APPENDIX

Geometric Interpretation of Terms in E n (1___)

In Equation (10s) that is used to evaluate the grid control parameter * at a
boundary surface, each of the terms has a simple geometric interpretation. It

follows from the identity

and from the definition

of arc length s along a &-directed coordinate line that the term S 1defined by

Eq. (lOb) can be rewritten as the logarithmic derivative of arc length

(C (n) C)

Hence, this term depends only on the spacing between grid points along the

line.

The term C( C) defined in Eq. (10c) can be interpreted in terms of the

curvature of C-directed grid lines. The principal curvature K of a space curve

such as a C-directed coordinate line is defined classically so that the rate of

turning of the unit tangent vector

+ +

t =r,/rc

.*0

4.
with respect to arc length d IrC Idr is given byO

dt

where the unit vector is orthogonal to t. Upon performing the indicated

differentiation, the result can be cast in the form

-c IrC12 xp + (in sC)C rC

If one takes the scalar product of this equation with the unit vector tangent

to the C-directed coordinate lines, the second term drops out bscause of the

orthogonality condition (8)* and the ters C is found to be proportional to

the curvature, K.

I-
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zp

Fig. 1.Physical region R.f

77 71 tX,y,Z)

0

Fig. 2. Physical region R mapped onto a cube.
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- I

Fig. 3. View of wing body combination showing surface grids.

Fayi

Fig. .opoie sfaegso wing, bodycminto ahwnd suface pans.
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Fig. 5. outer surfaces of forward subregion grid.

Fig. 6. Outer surfaces of aft subregion grid.

'a
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Fig. 7. Outer surfaces of composite grid.

Fig. 8. View of composite 3D grid showing grid lines on body
surface and on two interior "body-normal" coordinate surfaces.
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Fig. 9. Views of composite 3D grid showing grid line. on interior
*body-like' coordinate surface.
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THREE-DIMENSTONAL GRID GENERP'7,L.t USING POISSON EQUATIONS*

C. F. SHIEH
Calspan Field Services, Inc., AEDC Division
Arnold Air F-rc-e :,tation, Tennessee 37389A(
SUMf4ARY

tA method for constructing a boundary-fitted grid system for arbitrary three-

dimensional (3-D) configurations is presented. The grid generation procedure is

formulated through the Poisson equations. A feature of the scheme is that grid

lines in the grid system are smoothly interconnected between the boundary co-

ordinates. The contrcl of the grid d..3tributions in the interior of the system

has been implemented by the forcing functions appearing in the Poisson equations
and by the boundary coordinates. Reasonable cell sizes and shapes are obtained

even for extreme boundary shapes which normally tend to cause poorly controlled

grid distributions.

INTRODUCTION

For the numerical study of fluid dynamics problems, the generation of compu-

tational grids is generally required in the finite difference or the finite

element solutions of the governing flow equations. A poorly constructed grid

system may cause erroneous results and/or bring about slow numerical convergence.

The grid generation technique is, therefore, a critical element for supporting

numerical flow simulation, especially for three-dimensio.ial flow-field computa-

tions. The purpose of this paper is to present a method for constructir..f a

boundary-fitted grid system suitable for the solution of fluid dynamics problems

associated with complex 3-D configurations.

* In recent years, the creation of a grid system for arbitrary flow regions has

been approached by several ways including conformal mapping, algebraic construc-

tion, and partial differential equations solutions.1 Among these methods, an

extensively used scheme for grid generation uses the Poisson equations and has

been applied successfully to various two-dimensional (2-D) geometzies. 2 - 4  In

this method, the Cartesian coordinates of the grid points in the physical plane

*The research reported herein was performed by the Arnold Engineering Develop-

ment Center, Air Force Systems Coemand. Work and analysis for this research were
done by personnel of Calspan Field Services, Inc., AEDC Division, operating con-
tractor of the flight dynamics test facilities at AZOC. Further reproduction is
authorized to satisfy needs of the U. S. Government.

'N'
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are computed as the solutions to the grid generation system formulated by the

Poisson equations. Because of its potential for creating smoothly connected

grid lines between the specified boundaries, this grid generation scheme has

been adapted and extended in the present study for 3-D applications.
5,6

In previous studies, a similar grid generation technique is employed for

wing/body configurations using multiple block structures in the transformed

plane. In the present approach, however, a single block structure is utilized

and control of the interior grid distributions is implemented by using both the

specified forcing functions incorporated in the elliptic grid generation scheme

and the specified boundary coordinates. The forcing functions are used for the

stretching of coordinate lines toward other coordinate lines. The grid spacing

distribution, however, is specified by the boundary coordinates. Reasonable

cell sizas and shapes are obtained even for extreme boundary shapes which

normally tend to cause poorly controlled grid-point distributions.

GRID GQERATION PROCEDURE

In the physical x,y,z-space, the region under consideration for grid genera-

tion is bounded by a body surface (inner surface) and a surface surrounding the

body (outer surface) (Fig. la). In transformed t,n,C-space, the region appears

as a single block as shown in Fig. lb.

Outer Surface Grid Body Surface, B~~y /-a- Generation---

B:dY Surface ' Algorithm

I X

-- 77

max -max Outer Surface

a. x,y,z-space b. t,n,C-space

*1 Fig. 1. Illustration of the region wherein the grid points *are generated. -•

%low-l
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The system utilized for generating boundary-fitted grids is based on the

approach of Thompson, et al.2 The transformation of the grid coordinates from

the Cartesian space, i.e., x,y,z-space, satisfies the following Poisson equa-

* tions:
x + y + z = P ( n
xx yy zz

n + n + n - Q (Inl) 11)
xx yy zz

4 + + C = R (t IC
xx yy ax

By interchanging the dependent ( and independent (x,y,z) variables in

Eq. (1), the following nonlinear equation is formed:

a (X + x) + (x + x) + a33 (x + Ax)

(2)

,+ 2 (a12 x(a n + a 13 +a x 0

where
3

a., = Z A MAmj
1 i M i

and A mi is the cofactor of the (m,i) element in the following matrix

xx x2

The equations for y and z are the same as Eq. (2) with the variable x replaced

by y and z, respectively.

The variables *, i, and A in Eq. (2) provide a means for controlling the in-

terior grid distribution. 3

j2p .
P.= a2- 13

2

a (3)
22
2

A = 
R

a
3 3

where x x X

3 (x,ytz) y y y

z z z

- -
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In the present study, a central-difference numerical scheme is applied to

Eq. (2). The finite difference form of Eq. (2) is then solved by an alternate

direction implicit (ADI) method with the coordinates at the boundaries and the

functions *, i, and A being specified. In the iterative procedure, the func-

tions 0, i, and A are treated as local constants. The method for selecting
these functions is discussed in the next section.

GRID SPACING CONTROL

To solve Eq. (2), the physical coordinates of the boundary-grid points are

specified with user-desired grid spacing. However, the control of the interior

grid spacing, which is governed primarily by Eq. (2), depends on the choice of

the forcing functions, *, i, and A. One can verify that the following exponen-

tial form is a solution of Eq. (2) with the parameters *, *, and A constant:
x = c I e

-O + c2 e
-0n + c e A

where c's are constants and
7xy

For positive values of *, J, and A, the magnitude of the gradients of x with

respect to t, n, or are reduced as E, n, or ; approach E = t n or

;max' respectively. Therefore, the grid spacing is reduced accordingly.

However, the grid spacing becomes larger as F, n, and A approach their maximum

values for negative constants *, J, and A. In order to illustrate these re-

sults, the grid networks generated for a multic'ylinder case (Fig. la) are shown

in Pig. 2. Comparing Fig. 2a, i. e., A = 0, with Fig. 2b, i. e.,

A = sin (N _- 27), where r = 4max and Co = 4min' it is seen that positive -c

values of A tend to stretch the C = constant plane toward the outer boundary.

For negative A, however, the grid lines are attracted toward the inner boundary

(i. e., the body surface). Based on these observations, the following exponen-

tial form for the forcing functions was selected:r 1

nc - n (exp - (n -no)2 2

a ~= f *c p b (3b)2 T N - o  b 2  ( N  - ) ( I - T1()1

*., " ' : " . .'; " -
-

..-...... . " ---. .. .. ' :
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c - r 1 2
A [a ~ b (3c)A-a 3  o -

N  o) (

where the subscripts "N" and "o" denote the "max" and "min", respectively. The

subscript "c" denotes a control station between "N" and "o". In Eq. (3),

the value of the adjustable parameters b, which controls the decay rate of the

exponential function, is always positive. The adjustable amplitude factor, a's,

however, may be positive or negative. Positive a's tend to stretch the grid

lines toward the control station (i.e., & , T1 = nc, or C c ). Negative

a's, however, tend to stretch the grid lines toward either inner or outer

boundaries. The function f of Eq. (3b) provides an additional control of the

decay rate of i in the C direction.

( 2
n N n 0 - - )

-In n I exp b 4 N  0 C (4)

where b4 is a positive numiber. The value of f is set to zero for n = nc . Ap-

plication of Eq. (4) causes 4 0 at = or 4 ;0.

F~ i  N

, 1.3..

a. A 0 b. A sin 2o 2)

Fig. 2. Grid network generated with * = - 0 for a

multicylinder as shown in Fig. la.

Figure 3 shows an example of the application of Eq. (3) to grid generation

for a body with an H-shaped cross section. The grid network shown in Fig. 3

,.o,," ' .h.% 2 . in i ..... I . . . . I.-
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was obtained for the case a, 0, a. a3  0.8, b2 =b 1.0, and f L.0.

The grid network generated for the same body with 0 = = A 0 is shown in .

Fig. 4. The effective grid spacing control using Eq. (3) is clearly seen if

one compares Figs. 3 and 4. However, refinement of the grid spacing and cell

shapes of the corners and in the neighborhood of the inner boundary is

necessary.

-y 771C

i a. H-shaped body geometry b. Grid network generated by upecify-

ing a1 =0 a2 0.8,

b2 = b = 1.0, and f - 1.0

Fig. 3. Grid network for an H-shaped body.

Fig. 4. Grid network generated with I V - A 0 for
.n H-shaped body (Fig. 3a).

A method for controlling grid spacing in the C-direction was also developed

and is accomplished by specified boundary coordinates at the - o plane shown

in Fig. 5. Control of grid spacing is implemented by requiring that the ratio

of arc length, S, to the total length, St, along the grid lines in the

. i .
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;-direction equals the ratio at the = plane. By definition,

S
St Sto

This condition is satisfied by an iterative method.

Outer

Boundary Inner Boun ary

202

Fig. 5. Definition of the coordinate system , , and
for an H-configuration (Fig. 3a).

As the grid generation proceeds, the values of 4 and *, which are specified

in an exponential form such as in Eq. (3), remain unchanged on each iteration

4 *. level. The values of A, however, are adjusted by

AA = - - (6)

Grid computation is conducted in two iterative steps. First, the coordinates

are calculated with specified forcing functions. Then the A function is updated

using

An "l  An + AA (7)

where the superscript "n" denotes the number of iterations and the value of AA -k

is approximate4 by

AA =- (An - A (8)

The effectiveness of this grV control procedure for the H-shaped body as

shown in Fig. 4a is demonstrated in Fig. 6. The grid network shown in Fig. 6

* is generated by specifying a 1  0, a2 - a 3 - 0.8, b 2 b - 1.0, and f 1.0.

The value of A is obtained from Eq. (7) at each iteration level.

I
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a

a. An example of the generated b. Grid network at the plane next to
grid network the H-shaped body (only the upper

half surface is shown)

Fig. 6. Grid network generated by the present iterative method
for an H-configuration (Fig. 3a).

CONCLUSION

A 3-D grid generation technique based on solving the Poisson equations has

been presented. A satisfactory grid spacing distribution is obtained by adjust-

ing three parameters in the forcing functions. The present method can be used

to generate a 3-D grid network for advanced flow calculations about complex

geometries of practical interest.
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GURMITZ Of THRE-DISIONAL BCUNDAW-FZTIUD CURVILZn3A 0WMM

SYS U6 TOR WZnG/WZING--fP GZMMWU USING M 3rLI PTXC SOLVZI IMTEOD

FRANK C. TSAMUS
WM& Langley Research Center, Hampton, Virginia

AS8TRAcI

:A three-dinetnional elliptic solver technique is utilized to generate

surface-fitted coordinates about wing/wing-tip configurations. The method

is applicable to wings of arbitrary section profile and amber, leading-edge

sweep, taper ratio, and spanwise thickness variation. The basic theory of

three-dimensional elliptic mappings is deve1oped along with a method to con-

pute interior coordinate control functions. Examples of grids generated about

several wing/wing-tip geometries are given. A 49 x 33 x 17 grid requires

about 3 minutes of CPU time an a CYNEK 203 computer.

SYMB4OLS

D physical t computational domain

f coordinate control functions (see eqs. (Ia), (2a) and (4)),

i - 1,2,3

Sdeterminant of Jacobian matrix, N

SJamcobian matrix defined in equation (2d)

-Pi boundary condition functions for the ii-coordnies in

physical space (see eq. (lb)), i - 1,2#3

qij bou condition functions for the x --coordinates in

computational space (see eqs. (2b) and (3)), i - 1,2,3;

8,T transformations from physical to omputational domain

(fig. 1)

xlX12,X3 Cartesian coordinates

X coordinate triple (xl,x2?,X3

ik metric coefficients defined in equation (2c), J,% - 1,2,3

Ojk oeactor of Jacobian matrix, N; J,k - 1,2,3

Ai,j.k mb-plane J.k of the Ci I constant coputational domain

plane (se fig. 2 (c))

4- - --

I' ,. ,
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1 , ,3 computtional domain coordinates

-coordinate triple, (91Y

3c coordinate control function (see eqs. (4)-(10))

V2  three-dimensional Laplacian operator in Cartesian
coordinates

Subscripts

1,2,3 Cartesian or computational plane direction indicator or 4i
simple counter

L,Jk coordinate direction counters

Min minim value

am maximam value

Suveractiots.
C pertaining to computational domain

ZMR0OUTIOI

The develojment of methods to generate surface-fitted cu villner coordi-

nates about relatively complex three-dimensional geometries has logged co&-

siderably behind similar work in two dimensions. There ae two principal ..

" "reasons for the lack of progress in this area: (1) the work is, at best,

quite difficult and (2) even if methods ware available, they would be of
limited usefulness because current computers simply are not large and fast

enough to solve complex sets of three-dimensional partial-differential equa-

* tions. There have, however, been sme developments and several of these are

smmarized briefly below.

Canghey and 3.mesean patch together grids suitable for transonic potential

solutions for waispot-type wing-body onfiguration utiszing a sequence of

sheared wfomal mapigs. Zost 2 salves similar floW problems by stringing

togother a series of two-dimenAiaal grids generated using the two-dmnieaonal

elliptic solver aproach. 3 Kiddelooff and ThMas 4 utilized a similar approach

to develop grids for nozzle-afterbody geometries. Rissmam has developed a

rather general algebraic mapping method applicable to both two and three
* .dimensions and has generated a surfae-fit oordinate system for an Isolated

ving. 5  The first applications of the three-dimensional elliptic solver

methods were perfozred by Mastin and 2hoso for sixcal-shaped bAdies 6

and isolated wings. 7 yu8 has used the Bme methods to develop surface-f it
L curvilinear systems for general transport aircraft wing-body configurations.

* - '--.4 -
-', 

. .
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The remainder of this paper is divided into four sections. The first two

cover the form of the transformation and its generation, including discussions

of the governing elliptic system and choice of grid control functions.

computed results and conclusions are presented in the last two sections.

FOMU O Tim TR a MF&ONS

in choosing the form of a transformation, one must keep in mind its ulti-

ate use-namely, what partial-differential equations are to be solved on

the resulting coordinate system. The present work concerns the developent

of boundary-fitted coordinates for wing-tips suitable for Savier-Stokes equa-

tin omputations. There are many ways to transform wing-tip geometries.

Two of the more comon approaches are illustrated schematically in figure 1.

The transformation 8 depicts the so-called slit-plane approach which,

although adaptable to a wide variety of complex three-dimensional geometries,

* ,T" does a rather poor no on surfaces with sall radii of curvature. Another

approach, denoted T in figure 1, "slices" the wing along the leading and

trailing edges and then Ounfoldso the wing and tip and maps then anto a

portion of the lower surface of the computational plane. The T-fors aes

chosen for the current work for two resuos: () The wing-tip geometry is -J
represented with a higher fidelity and (2) the coding of the Navier-Stokes

algoritbs of the factored, block type9 I, which are to be used for the .. -

flow solutions, is considerably simpler if the body geometry lies cn a

boundary of the computational domain.

Figure 2 presents a more detailed look at the T-tranafocoation. Utscall

that the computational plane is created by slicing through the physical

domain along the dotted Line (fig. 2 (a)) and unfolding the domain such that
form shown in figures 2(b) and 2(c) result. These figures illustrate sev-

eral points. First, the transformation has the form of a "sidewaysm three-

Sdismnsional C-rid as can easily be noted from parts (a) and (d) of figure 2.

Second, and perhaps unfortunately, the transformation has an axis singularity

similar to that occurring in standard cylindrical coordinates. note that the

Line a 3 -c 3 in figure 2(a) maps onto the cross-hatched plane forward of the

wing-tip area in fiance 2(b) (plane A3 , 1 . 2  in fig. 2(c)) and the line

63-g3 maps onto a similar cross-hatched plane aft of the wing-tip area in

figure 2(b) (plane A 3,1. in fig. 2(c)). This singularity presents no

difficulty in the coordinate generation process; however, it will affect

the form of the fluid flow differential equations whose numerical solution

is carried out cm the curvilinear system. Special, lmiting foms of the

i* a

re,

:4 
-
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equations must be developed for the singular regioms of the coordinate XSstAMR.

Note also that in certain instances, the transformation may not be singular.
For example, if the forward C2- constant boundary plane were taken aft of

forward of the wing trailing edge, then the singular regions would be avoided.

Examples of this form of the transformation were developed and are presented

below. Third, note that the planes on either side of the singular surfaces

both forward and aft of the wing are periodic boundaries created by the Oun-
folding" operation described above. That is. planes A3 ,1.1 and A,.
are the samet physical surface as are planes A3,. and A 319-As a final

point, we require that the computational domain be 3,glal-pcd.Ti
requirement allows asto assume a uniform spatial step miss (usually, unity)

for the differenoe approximations ade in the computational domain.

rGRUU3TO Or TO TVIMMYOMOR?

Having established the desired structural form of the mapping, the trans-

formation must nov be generated. There are many methods of accomlishing

this-we choose the elliptic solver approach.

Governing MIMations

In reference 6, Nlastin and Thompson set forth th-- mathematical foundation
for the extension of two-dimensional elliptic solver tachniques 3to three
dimensions. Their results showed that if the curvilinear coordinates,

*with boundary conditions

-~~~ 6 - a D, 1 1,2,3 fb

then the Cartesian coordinates, (x,r 2 z 3 )# mist satisfy the coupled quasi-

linear met

jml h-l kwi
with boundary conditions
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1 1,2,3
x" qjl, . E aD*, ....6 (2b)

Wheres

3

ajk - n 0,jB, jk - 1,2,3 (20)

ijk is the of actor of the (jok)-elesent of the Jacobian matrix

;3 (x 1 1x2 ,x3 )

- a l'~2~3~(24)

, and J is the determinant of M. Here D is som suitably bounded domain

and D in the image of D under the transformation end, as mentioned above,

* the nmerical solution of equations (2) (to generate the transformation) and

the nuerical solution of the physical problem of interest. The exact nature

of the transformation (as evidenced, for example, by its appearance in
physical Spam ) i governed by both the differential form of equaticns (1)

* -U.- this instance, three-dImensional Laplaciams) and the properties of the

f-function.. TMe f-functions are covered in detail in the next section.
Rquations (lb) and (2b) tend to imply that all boundary conditions are of

the Dirihlet type. Actually, mixed Diriclet and Sewoman conditions can be

used. However, it is important to keep in mind that both boundary function
and normal directional derivative values cannot be specified everymiere on

aD or )D as this Would over-specay the ditfferetIl equations. Zn the

current work, only Diviablet canditems are ieed.

lies equation CLa) is never astaIry sem4, we will met elaborate an

the boundary ounditions far this eqaFti,%. "s bomdmay aonLtio.m for

equation (2a) wte "

Xi il 9,- (F')~'2'C3]' !Al' A 1  1,, Ja
qx 'T  .a 1UC])M 1 . 1 1  2 eAl

.7..

WAN

{ -
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q13 I 1O 2 - (Ymino g3]' e A 2 1 ) 123(b

{q4 ~I 2 = (Y2mamrE3j E A2,2)

Xj - i - 1.2,3 (3b)

qi5It10EC3- (Y1,111 A3 1

- 1= 1,2,3 (3c)

(q16[ It 2P3 - (E3)==]e A3 2

One aspect of these boundaxy conditions deserves con t. It was mentioned

in the previous section that the C = (3) plane (i.e., A3 , 1 ) contaiJned

periodic sub-planes (namely, A3 ,1.1 wit" A3,. 3  and A3,,. 7  with

A3.1.9)0 yet the first of equations (3c) implies that Dirichlet boundary

data ate specified for all 3 e A . In fact, Dixichlet data are specified

an all of A3 1  for the solutions given in this paper. This is done to

allow the user to control the x 1-coordinate spacing in these regions. (If

this is not done, the elliptic equations tend to mooth-out" the x 1 -

distributions in these planes in an unsatisfactory manner.) unfortunately,

93-der vatives of the x 1-coordinates will, in general, be discontinuous

across these planes although specification of the Dirichlet data maintains

continuity of the zi-oondS.ntes. However, these discontinuities can be

eliminated by smoothing the zi-coordinate distributions in the periodic

planes after the elliptic equations have been solved.

Control Functions
The functions fk appea ing in equations (la) and (2a) are used to modify

the distributien of the CL-coordinates in the domain D. The basic mathe-

matioal theegy which describes why these funtions produe various effects is
covered in reference 3 and need not be repeated here. For the current work,

these ftnotions will be computed usi g the boundary distribution comati-

blity method first developed for two dimensions by Cha, Dodge, and Rankey

4and rediscovered later by iddlecoff and Thomas. The method has been used

in three dimensions by Tu.a

To Implement the approach, the fk-funations are redefined as

*,f.. (4)

-_"_ _-._. -7- -- - .

K ""-. ,-_=i .- • m---,uu a
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Which, when substituted into equation (2a) yields

J2-1 k-i 4-
The +k are user-specified functions. The efc fti usiuini

two-fold. First, it removes the numerical polm soitdwt h

Jacobian determinant, J. To see this, note that in equation (1a) ~
multiplied by 32 wichi, for viscous grids, is very small near a solid

4-boundary. Thus, to have any effset at all, the magnitude of f must be

very large in these regions. (Values of 0(10 ) are not unusual.) Therefore,

multiplying a very large number by a very small number-an undesirable situs-
iftefr ie neutin(* .ipeetd tecmue scntnl
tion. The substitution given by equation (4) eliminates this problem by

dividing J2 out of the equation. The second advantage of the equation (4)

substitution is that the controlling functions, #kare multiplied by the

*k coefficients which are direct measures of the arc length distribution

(~.along the s-coordinates. Thus, by multiplying Okk by *kV we are in

effect altering or, to some extent, controlling the rate of arc length change

along the C-coordinates, which is exactly what we wish to accomplish.

Consider the sketch of the three intersecting physical domain coordinate a

given in figure 3. if we assume that the E- 'C and -C coordinate

planes intersect the - boundary plane almost normally and with

sam 1al curvature, then we can neglect the first and second ~-and
derivatives of x 3  along the dotted Vertical "no. The iL 3 component

of equation (5) then reduces to

+ 0 (6)

[T 3 - Id2d 3I (7a)

A. similar analysis holds along the dashed vertical line so that

Is
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r_, ,- 3] ' - [-!.,

If the boundary distributions of x3  are given along the two lines, then

equations (7) can be solved for the two #3-distrbutiona. (It is mt

practical to perform these solutions nmerically for (EPain - C 3 < (C 3)nAX
using central .fference approxaions for the deivaLtves. Tae values of

03 at %)Yin  and (93)=xa are irrelevant.) The *3-distributice at the

rmaining interior points can then be computed by linearly interpolating

between these two boundary 
distributiois. That is

3; 3
31c 2 I K., - al) ,,,],

where

143 5 0 [( . "2 9] 0 2,.LL'2% e

A yLn equations (7) and (8) for all (tYl2m < !92 < (Ci2amsz coletes the

*3-function computation. Note that 43 in cmputed fo a use-speified

distributio, of physical domain coordinates-an approach that is superior to

the hit-or-miss methods used in the early stages of elliptic solver grid-

generation work.12  urthermore, since orthogonality was assumed in develop-

ing equation (6), the #.-distributon obtained by solving this equation
will tend to force orthogonality at the bounary. 3quation (6) ce from . -

evaluating oe component of the field differential equation (eq. (5)) an the

4 boudarrheno, this method of computing control functions is terms" the
boundary compatibility method.

A similar analysis for te # -d 2 functions yields the formulas

2' (Y3min

il/

1-

,. .- 4 . .. ... . .. -- ..,*. .- -4.. .. . ... . . - 4--:
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-~~3 .- d (9b) . . . . . . . . . .

/2

2 9b

S 2rE1'g 2* min (93 - d - I jdzi/ (10a)

--j2 'f2 l'3na IMob

domain Di

intraon fsothu lsi ducrneqtion (tanda seondbeused acite cetal

tiffrese (9e anded0 to ppue te all d2erte aerin cmuinoal

diomsin (5.D ef...z.. zn oiaa sdfrtecosdrvtv

Sieumthe syste o three ofatn toe bce isolv~ed ins (S)he llingi

forle 1 arIs scessthe wilingve-ipconfigonn for) hich-directiona

grifa eree gerneedt prxmt l eiatvsapaigi q&

tica (5. Th fax-conarPoit fomul, wa usd fr th crss-drivtiv

Perfammoos~~~ ~ ~ ~ ~ ~ of~, th ceei'ouetdi h olwn

-. 4L



704

Root Tip Leading T Rot

Wing Airfoil Airfoil Edge semispan
Section* Section Sweep

1 0012 0012 0 1 1.009 1

2 9312 9312 0 1 1.0089 1

3 0012 0012 22.5 0.5 1.0089 1

4 0012 0012 30 1 1.0089 1

5 0020 0010 0 1 1.0089 1

RACK 4-digit airfoil designation.

This value allows an analytic trailing-edge closure.

Isometric views of these five configurations are given in figure 4. MACA

four-digit airfoil sections were used for convenience in generating the

boundary data--the method is not restricted to these shapes. The wing-tip

surfaces were created by rotating the wing-tip airfoil section thickness

: distribution about the section mean line. The tip cross-sections normal to

* the tip-section mean line are, thus, seai-circles with a diameter equal to

* the local tip airfoil section thickness ratio. Again, this tip generation

procedure was used for computational convenience and is not a restriction on

the overall approach.

A fifth-order polynomial was used to stretch the x-distribution (i.e.,

the strammise coordinate) for these wings rather than the more conventional

ooeine distribution. For those cases in which the physical region extends

forward aa/or aft of the wing itself, use of the cosine xI-distribution on

the wing leads to Junp discontinuities In the second derivatives of x1  at

the leading and trailing edges of the wing. The polyniL distribution avoids

this probl by requiring the first and second derivatives of with re-

spect to F to be sero at these two locations. It is relatively easy then

to add-on the x I-distributions fore and aft of the wing in an independent,

* yet mooth, manner. The spanwise distribution of coordinates pictured on

*figure 4 ae somewhat arbitrary. Those can, however, be altered to suit the
userIs needs.

The outer bowary for all cases studied in this paper consists of a semi-

cylindrical tu, llustate4 in figufe 2. Boundary points on curves such as

• , . ,-
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- b2 - b3 - b4 - were distributed on an equal arc-length basis.. Dis-
tribution of boundary points on the "loft* boundary shown in figure 2 (i.e.,

along lines such as a1 - bl, a5 - b5 , etc.) was specified using a stretch of

the form x3 where n is sme real number. Distribution of the longitudinal

(i.e., x 1 ) coordinate was chosen to be uniform or to match the x 1-distribution

for the inner boundary. As noted above, any of these distributions can be

altered to suit the user. For exsnple, one interesting alteration would be A

to "square-off" the outer boundaryl the resulting configuration would be

representative of a semi-span wing in a wind tunnel.

S-awle Results

Sample coordinate systems generated for three of the wing configurations

listed in table 1 are shown here to illustrate the mappings. Figure 5 pre-

sents an isometric view of the boundary data for a Wing-l configuration and

a similar view with three C2 - constant planes superposed on the boundary

data. A similar set of results for the Wing-3 geometry is given in figure 6.

All features of these grids appear to be desirabe except the rather severe

distortion of the 2 - constant planes fore and aft of the wing along the

periodic boundary planes. This distortion implies failure of the ucin

A modified *2 -funation interpolation is suggested below which should help
Salleviate this problem. The grid size for the results shown in figures 5

and 6 is 33 x 49 x 17. Figure 7 shows the boundary data and several views

of a Wing-5 configuration solution. Note that for these results, the region*

fore and aft of wing have been eliminated. Thus, this coordinate system has

no axis singularity and is quite well behaved. Figure 7 also illustrates a I
point uad in a previous section concerning the form of the transformation-

namely, the structure of the grid is quite good in the tip-region, but

-;Y rather poor near the wing leading edge. The grid sine for Wing-5 region

shown is 33 x 27 x 17.

Etffe of the Control Functions

illustrated in figure 8. Note that the influence of the #,-function on the interior grid distribution is

"pinching" of radial grid lines toward the 1-coordinate plane connecting

the amdline of the tip with the outer boundary. This behavior is caused by

the change in sign of #L at the CL-coordinate plane described above. In

most ces the effects produced by $l are not particularly desirable. If

the pinching ffect is wanted, a redistribution of points on both the tip

-- -
.. /o

...... i' .. .. . .. ' • 1
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surface and outer boundary will produce a more uniform result. The

function v set to zero in all caputations reported here save the one given

in figure 8.

The results given in figure 9 document the influence of the *2 -funct na

on the grid structure. Unfortunately, *2 ge-ms to have very little effect

as it seem 1unae to eliminate the *kink* in the C3-grid Lines. These

Okinhk vil lead to problems in the finite-difference solutiona of applica-

tios equations carried out oan this grid since some of the grid metric oo-

efficients will be discontinuous. A fix that may improve the performance of

2 in to replace the linear interpolation sche currently used to distri-

but* this function in the interior field with a weighted nonlinear method

that "concentrates" the interior boundary values of *2 (see eq. (10))

nearer the inne boundary. This approach has not been tried as yet.

Alterations in the interior grid structure induced by the control-

function are shown in figure 10. Note that induces a very regular radial
434

stretching replicating that specified on the boundary, which was the demied

effect.

Rerfome of the Xamerical Method

To access the performance of the SWM iteration schm, computer runs for

three different msied grids for three of the wing configurations were made.

The average of the timing and Iteration nount information from theme runs

is shown In figure 11. As anticipated, both the time eand iteration count

increase at exponential type rates with grid sze. For example, a 50,000-

point grid would require about 25 minutes of CPU time. For this and larger

grids, a mOre efficient solution algoritm such as the multi-grid algorithm

should be used.

An approach has been developed to generate surface-fitted coordinates

about arbitrary wing/ing-tip geometries using the three-dimensional elliptic

solver method. Grids having 0(30,000) points were generated about five

Sdifferent wing geometries. COnfiguration variables inoluded wing-section

shpthichoes, and cambersp wing leading-edge uweepo taper ratios and

asawise thickness distribution. computation time required to develop each

of thes"e syts averaged about 3 minutes an a CIM 203 cmputer using a

smple X= solution algorithm. A set of grid cantrol-funations we developed

to poovide soe measure of control over the interior grid-poLnt distribution.

*. . . - ._ _, . .~~~~- .-. .p :-

I.-
* *2 - 4"
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Although the method presented in this paper was able to develop curvi-

linear system suitable for accurate finite-difference calculations on qi~-

general wing/wing-tip geometries, the need for further work in two areas vms
clearly identified. These are:

a coordinate central function development

* o faster solution algorithm development
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(a) Wing-i (b) Wing-2

* * (C) Wing-3 (4) Uing-4

Fig. 4. samtria vi~s of five Ving/Wing-UP 0ocmfigiwtic*a

4
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-i (a) JBoundary data

(b) Boundary data and three cmaputa d

, 2-coordiate planes
/t

rPig. 5. c-Oordinate *yato generation: Wing-i configuration

(a) Boundary data

(b) Boundary data and three cc:uted

g2-oornhate ]plIWAk

"'. .
... .

Vig. 6. OdlmAate yst generatioA Wing-3 configuration

J.* .•24
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(a) boundary data (b) Wing upper mrface boundary and
computed El. and a2 oordinate planes

Fig. 7. Coordinate syat generations Wing-S configuration

(a) 0 0 (b) co mpuWted frn eqations (9)

rg. S. control funatics effects$ *1 -ftota-

:-*-' -. . '
- .
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(a) #2i0 (b) # 2 ampu.d fromquatios (10)

Fig. 9. Ontol function offeates #2 -funotion

*L I

(S 3 0 (b) 43 Oate4 from .qpataaa 7M

Fig. 10. ComtIVl function effects *3-tomstie
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NUMERICAL GENERATION OF THREE-DIMENSIONAL COORDINATES BETWEEN BODIES OF

ARBITRARY SHAPES

Z. U. A. WARSIt AND J. P. ZIEBARTH
Department of Aerospace Engineering, Mississippi State University,
Mississippi State, Mississippi 39762, USA

INTRODUCTION

This paper is devoted to the numerical solution of a set of second order

elliptic parti&1 differential equations for the generation of three-dimensional

curvilinear coordinates between two arbitrary shaped bodies. The central

idea of the method is to generate a series of surfaces between the given

inner and the outer boundary surfaces and then to connect these surfaces in

such a manner so as to have a sufficiently differentiable three-dimensional

coordinate net in the enclosed region.,.

The basic analytical foundation of the present method has already been

laid out by Warsi in §2 of Ref. 1. However t is important to state here

that the proposed equations for the numerical solution form a consistent

set of second order elliptic equations which are a consequence of the

equations of Gauss for a surface. Additional constraints are then imposed

which, besides yielding the simplest form of equations for numerical

purposes, also preserve the essential geometric properties of the generated

surfaces.

Formulation of the mathematical model

To fix ideas, let it be desired to generate the coordinates between the

* two surfaces designated as n = (the inner surface) and n ro (the outer

surface) respectively as is shown in Fig. 1 , The two coordinates which

vary in these two surfaces are then labeled as & or I and C or K. The

surfaces r " B and n - n. are the known surfaces in which the Cartesian

coordinates r m (x,y,z) are given as functions of and , that is,

r r r(,C) , r - r

are known either numerically or analytically. The method to be discussed

tProfessor
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generates a surface for each fixed value of C or K starting from a curve on

a and ending at the corresponding value of C or K on the outer boundary

surface. Rafer to Fig. lb.

--I K

surface s- conat

Fleferring to sq. (18) in Warsi 1  we now impose the restrictions

A 1 L( 1 1' lT 1
2& (2G91 2T 1 2 - 9 2 2 T 1  2 1 T 2 ) - 0 ' 1

3

a 1L2 2 T2 T2) 0,(22n a (G 1 2 1 2 - 2 2 1 1 - 1 1T 2 2 ) 2
3

for C-const. in Eqs. (1) and (2) Ai is the Beltrais second order
1,22differential operator, and

2 2 2
911 +y E +(3a)

x2 +2 2 3o
g 2 2  n 11 11

2
3 g 1 1 g 2 2 12~

T_ 1 g1 Lg2'1 (4&)11 G3 922 C + 12 an~ at
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2 1 ag2 2  ag2 2 ag 12
T 2 11aS2G- [g n 9 +  ' n ' (4b)

22 3G 11 1n 2 24 an

1  
1 ( g1 2  ag2 2  ag2 2 (T 22 2G g2 (2 --- ) - 2- - (4c)
3

T
2  

1 - 12  ag1 - g1  (44)
3

1 1 a1 1  'g22 4T12 2G3 g22  n- g1 2 7 ) (4e)

2 1 ag22  ag11
-12 23(gl a gat -- ) (4f)

Based on the structure of the Christoffel symbols Ta  in Eqs. (4) we conclude
By

that the constraining equations (1) and (2) are essentially a set of differen-

tial constraints on the variations of the metric coefficients ga. Thus

under the constraining equations (1) and (2), the three equations for the
Z generation of the Cartesian coordinates x, y, z can be obtained. Below

we write the equations when it is desired to have a concentration or expansion

-k in the coordinates & and n, (refer to Eqs. (38) in Warsi ) For brevity of

notation we use the same coordinates (&,n,;) either with or without

coordinate redistributions. The equations are

£ -XR , (5a)

ey - YR , (Sb)

Ez - ZR (Sc)

where

2g aa + a ,a (6)L gg 2 2 at - 29 1 2 at + g 1 1 n an t

x . (y zn -yz /G--' , (7a)
~n n ~ 3'

Y - (x z n/G-- , (7b)

n- (xn 3 (7b)

Zu NXY (Xi~/~ 7c)

Cyn NYC
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R= (Xx + Yy + Zz ) (gllr22 - 2g 1 2 r12 + g 22 r 3 (8)

3 1 agg1  ag1 2  agn. ag13  ag 11r 1 -= -+G (2 - -- )] , (9a)
11 2 5 a + 6 ac - -- )G 3 (- - (9

3 1 a1 1, a922  'g1 3  'g23 'g12(b)

r F2 [G5(2 +n - + G6 (_ + G3( ,n (9cI)"

r1 2  2g -L 5 - an 6 a& 3Ga-+ 3&-a-

3g an ag

r3  1 ag32  g22  a 2 2  'g2 229c
22 2g 5 (2-a * G6 - 3 an '.

G5  gl 2g23 -gl 3g2 2 ,(10a)

G6 =gl 2g1 3  gllg23 ,(lb

g = g3 3 G3 + g13G5 + g2 3 G6 , (1Oc)

and G3 has already been defined earlier in (3d).

A successful program of calculations based on the set of Eqs. (5) - (10)

now rests on how effectively one can devise a calculation method for the first

.- -partial derivatives r, - (x , y , z ) in the field. In this connection we

first note that based on the prescribed values rB(E,), r (&,) the partial

derivatives with respect to 4 and C of any order can be evaluated on the

given bodies. Thus we must somehow connect the evaluation of rC in the field

with the partial derivatives in the surface. To maintain the intrinsic

geometrical properties of the C-lines in the field with the C-lines of the

inner and the outer boundaries, we consider the differential equations for
1,3the surfaces n " const. Following the method in Warsi we find that the

coordinates , in any surface (including the given boundaries) must satisfy

the equations

(2) (2) (2) (2)
. g 3 3 r - 2g 3r + glr + (G2A ;)r, - G(k1 2  )n ) (11)

where the enclosed superscript (2) in Eq. (11) means that all the quantities

have been evaluated on the surface n - const. Also

G 2 gllg3 3  (91 3 )2 (12a)

--.--.---.-- --- --m---.- -
-

.llllm (4
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'
(2)(2) (2) 1)iG 2 (k 1 +k 2  9 3 30 -2 2g 1 3 T ()+ g 11 S (2 (12b)

U(2) n (2) . r ,T (2) (2)2)2) n (2)r

and

(2) (2) (2) (2)
-(x ,Y ,Z ),

where

b y(2 = (y Z - y a/G2, 1bx ((2) x 1y/G 2 (14a)

(2) (x -x )1
Y (x 2' )fG (14b)

(2)
Z = (xy -xy)//G (14c)

It may be noted that (k1 +k2 )/2 is the mean curvature and S, T, U are the

coefficients of the second fundamental form of the surface n - const.

Based on Eq. (11), we now formulate the following weighted integral

formula for the evaluation of r in the field.

r, - f[f(n) (r) B + f (n) (r d; (15a)

where

G2  (2) (2))(2) 2 g1 3 r g33
(r = [ (k +k )n
-"g g11  1 2 911  gll

2 .(.B, (15b)
(9 2 C B,:.

and .

flln 1 ( , f1(n.) - 0 - 0 , f 2 (n.) 1 . (15c)

The functions f 1 (n) and f2 (n) must satisfy the conditions (15c) and should

be chosen to reflect the effect of the coordinate redistribution function Q

appearing in Eq. (6). It is also to be noted that the coordinate r need not
(2)

in general satisfy the Beltrami equation. That is, in general A2 C 0 0 .

A

.. .~ -f

. ..-. . , . :. " .;.:. ° .;, - . . • .' .: - a
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Numerical solution of the equations

The numerical method used in this research for solving the system of

Eqs. (5) is the method of finite difference using the point-SOR. First the
coordinates 4 and r for both the inner surface (n - nB) and the outer surface
(n -n) are to be generated using the available x, y, z values for these

surfaces either analytically or by a computer program developed by Craidon.4

In this research we have used both the analytical methods where possible,

and also the subroutine in Ref. 4 to generate the given body surface coordin-

ates, with equal success. Three practical problems have to be resolved before

an effective solution algorithm for Eqs. (5) can be developed. They are:

- Ci (i) a specification of the functions f () and f2 (n) appearing in Eqs. (15),

(ii) specification of the redistribution functions (concentration or expansion

functions) p and Q, and (iii) a method to obtain the same coordinates on the

inner and outer boundaries. We now discuss each problem in succession.

i) Before discussing the specifications of fl(n) and f2 (n) we may state

that each value like n - n and n - n. is a parameter to start with rather

* than an integer. The difference n. - n is the most important difference

and is known as the "modulus of the domain." The determination of n- - nB is
0 1a formidable problem in three dimensions but fortunately there is no need

for it in the case of numerical coordinate generation. Writing

- (16a)

we find that the function f defined in (15c) should be a function of Z only,

so that

f (1) 1 , f (O) - 0 , (16b)

and

f I =  1 () . (16c)

In the present computations we have taken f and f2 as linear functiom of -,

that is

f (1 )  (17a)

Other simple possibilities which have been tried are

Ile,'

• 4,4

..-. -=nmn,--,- m nmnm--,n<-Kmn !m
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f i) - 0.5(i+92) (17b)
1

f (Z) " (l-e-)/(l-el) (17c)

and these produce the same overall results as Eq. (17a). Many other higher

order polynomials in 2 can also be tried for f l( ).

(ii) In this research we have experimented only with a contraction of n-lines

near the inner body surface. The details on this aspect have already been
1,3given in earlier papers (refer to 13.4 of Raf. 1). In the new coordinates'

( ,T), the function n(n) is taken as follows.

where K 1 1 corresponds to no contraction while K > I produces sufficient

contraction. Prom (18) the function Q appearing in the operator (6) is

obtained as

d 2 ll 
[ 2+ n IK

'7Q _.n?~, / l. (19) ".

Q 11- -2 (19
dn dn 1.on-. LnX

As is seen from (19), the function Q does not depend on the original para-

metric difference n.-e and therefore we can now treat (and so also Z) as

integers for the purpose of enumeration from one node point to the next.

(iii) Before the start of any numerical or analytic solution program it is

important to establish a unique correspondence between the points of the inner

and the outer boundary surfaces. That is, the Cartesian coordinates r a nd
r of the inner and the outer boundaries respectively must be expressed in
the same coordinates , (for n - const.). In symbolic form

rB  *(,) ,

*The Eqs. (5) are now considered to be in , coordinates.

1A

:-
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Though for convex surfaces the method of spherical projection seems to be

most desirable, we have for the present investigations, used the geometrical

method of first surrounding the inner body by a sphere of diameter equal

to the major length of the inner body. Next, each point (x,y 3 , zB) on the

inner body is projected to a point (x,y , Xs) on the sphere surrounding the

inner body. The correspondence between the inner and outer body is

then made by extending a straight line fron the center through (x,ys , z" 5

to a point (x., y., z.) on the outer sphere.

A number of program runs have been made for prolate ellipsoids of various

thicknesses surrounded by sphere of large radii. Also a thin body of

revolution with circular sections, resembling the fuselage of an airplane,

surrounded by a sphere has been considered. These numerical results with

*and without coordinate concentration are shown in Figs. 2-7.

i *-- I I | I I i-'*'--i*--i-*- , I I I I I I I I' I I

* Khe--1L 1. I ,i1

I

+1L

* 0

*I a I a a * £ 1 * i L l t

-1 0 +1 - 0 +1-

Figure 2. Inner body a thick prolate ellipsoid with major axis 2 end
minor axis /3 surrounded by a sphere of radius 4. (a) Coordinate contours
for a section € - const. (K w 11) for all (&,n) or (I,J) values,
(b) for a section - const. (I - 1) for all (n, ) or (J,K) values. In
both cases no contraction in n, X - 1.

,,'~,A . ., -, ..-
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Figure 7. Cases (a) and (b) of Fig. 6, with contraction in n, 9 = 1.005.

CONCLUSIONS

This paper has been devoted to the numerical solution of a set of elliptic

equations for the purpose of numerically evolving a series of surfaces
and the intersecting surfaces in arbitrary three-dimensional regions in

space. The most difficult part of such a program is the generation of

surfaces between any two given surfaces. This has been considered here

for thick and thin prolate ellipsoids and a body of revolution forming

the inner bodies and a sphere forming the outer boundary. Many successful

numerical algorithms can be developed using the proposed equations as

the core equations for providing the coordinates around a complete aircraft

and other aerodynamical shapes.
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INTRODUCTION
This paper describes the use of semidirect/marching methods both for the

generation of two-dimensional grids using the elliptic generating equation

approach, and for the solution of electric field problems in those coordinate

systems. The efficiency of the semidirect/marching methods makes possible

interactive design of the electrodes for electron beam lasers using a modest

computer. Also described are the applications to the elliptic grid generation

problem of computer Symbolic Manipulation.

SEMIDIRECT/MARCHING METHODS: THE GEM CODES

Semidirect methods are rapid finite difference methods for solving various

* steady-state and slowly varying time-dependent nonlinear problems. Fast ellip-

tic solvers are used to solve linearized equations directly, which are then

iterated to solve the nonlinearity. Applications of semidirect methods to

problems, many in fluid dynamics, are given by Roache
I
. For the nonseparable

partial differential equations of interest here, the fast elliptic solver used

is some variation of marching methods for elliptic equations. The algorithms

involved have been described in detail and timing and accuracy tests of a

particular software realization of the marching methods, called the GEM codes,

have been reported 3 .

Although stabilizing schemes exist 2
, as a practical matter the marching

methods depend on a favorable cell aspect ratio A&/An to stabilize the inher- -. r

ently unstable spatial marching procedure. They are thus well suited to prob-

lems with a grid refinement in one coordinate in the transformed plane. The

marching methods are not suitable for problems in which there is a significant

grid refinement in both coordinate directions in the transformed plane. How-

* ever, for many practical problems, thapy are very well suited.

The advantages of the marching methods are their generality and speed. Un-

like "fast Poisson solver" algorithms such as FFT or odd-even reduction, the

marching methods (1) do not depend on siparability of the coefficients, and

(2) can treat the 9-point operator directly, even for nonseparable stencils. - &±<

%00
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Both these advantages are pertinent to non-.orthogonal grid problems, not only

in the solution of the grid by elliptic pde's, but also in the solution of the

"hosted equations" 4(in the present case, the electric field equations) no

matter how the non-orthogonal grid is generated. As for speed, the marching

methods will initialize in order (M3) operations for an MxM cell problem, and

will solve repeat solutions in the optimal order (N2 ) operations. For large

two-dimensional problems using a 5-point operator, repeat solutions by actual

timing tests are obtained3 in the equivalent of 2 point SOR iterations.

APPLICATION TO ELLIPTIC GRID GENERATION EQUATIONS

The semidirect/marching methods are particularly well suited to the solution
5of the elliptic grid generating equations pioneered by Thompson et al. , provi-

ded that the cell aspect ratios are favorable. In this system, two coupled

nonlinear equations are solved in the transformed plane (g,n) for the physical

coordinates (x,y).

* L(x) - 0, L(y) - 0

where, for e -xor y, +

L(e) = ae - 2Be + ye

The coefficients are nonlinear functions of x and y. See Thompson, et al. 5 for

details, and for the use of additional terms P and Q for coordinate adjustments.

In the semidirect approach, the equations ate first linearized about some lni-

tial guess for the grid, giving values of a° ,0° , etc. We then solve a sequence

of linear problems, indicated by
L°je

k ) 
,. S(e

k- 1
)

0 o

where L is based on the initial guess a , B , etc. and S is defined by

S(e) E -{(-a°)e -2(0-0°)e +(y-y°)e };0 nnl,

If immediate updating of the coefficients were used (true Picard method),

the coefficients in L0 would be re-evaluated at each iteration and the GEN

solution would be reinitialized, requiring order (M3) operations for each

iteration. Instead, we attempt a single initialization of the GEM code using

a quasi-Picard method. Depending on the adequacy of the initial guess, this

single initialization may be adequate, or we may require reinitialization

during the solution process. The decision to refnitialize is automated and is U
based on the requirement for at least an 80Z reduction in the ma imum change

in x and y at each iteration. Also, in the interactive design process, the

initialization from a previous design (i.e. a previous laser electrode geometry) " -

can be used for the next grid generation.

The semidirect/marching methods are particularly well suited to this problem

.'- ,
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of elliptic grid generation for two reasons. First, although two coupled

nonlinear equations are used, there is only one matrix for the two equations.

Thus, only one matrix initialization is used, and only one set of coefficients

,must be stored. Second, although the equations are nonlinear and coupled,

they are not coupled in the boundary conditions. This adds to the speed of

the iterative convergence process. (For the Navier-Stokes equations, the

coupling of the boundary conditions leads to time-like iterative behavior,
1,6which is comparatively slow 1

.)

ACCURACY AND TIMING TESTS

- For moderate geometries, the emidirect/marching methods give solutions

for the grid in typically 8 to 10 iterations, requiring less than 4 seconds

on a CDC 6600 for a 31x31 grid with poor initial guesses. We use an unusually

tight convergence criterion of dx,6y < 10 because we are interested in using
Richardson extrapolation to fourth order accuracy for the solutions of the

hosted equations. This requires no oscillations in the solution for either

the coordinate system or the hosted equations7 . The number of iterations re-

quired is not a strong function of grid size, and the marching error is toler-

able for most problems encountered so far (of the order 5x10 -6 for a 31x61

grid). As yet, we have had no experience with coordinate system control using
•the P and Q terms 5 . Fortunately, many geometries of practical interest to the

electrode design area do not require additional coordinate control, and the

present code is being used for interactive computer design of several laser

system.

The electric field solutions are also obtained with the semidirect/marching

methods once the coordinate system has been generated. The equation solved is

VV-oVf - 0, a - o(E), E - V#

* where + is the electric potential, a is the conductivity, and E is the electric

field strength. For linear field equations (a not a function of E) with 1-point 7.

or 2-point derivative boundary conditions, the equations are solved directly.

For the nonlinear field equations and for 3-point derivative boundary condi-

tions, iteration is required. A representative problem is solved in the order

of 10 iterations, requiring less than 5 seconds on a CDC 6600. However, we

have encountered nonlinearities in a which required 50 iterations.

The linear problm is of practical interest, and has been used as an accur-

acy test by comparison of the computed resultd with those of the Rogowski

electrodes, obtained by conformal transformation methods. With boundary points

quidistribuzed in arc length, we predict the E-field to plotting accuracy in

-I -I .*,
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a 25x25 grid. Using a distribution of boundary points weighted by surface

curvature, we have obtained plotting accuracy in a 13x13 grid.

It appears that a good multigrid code using nonlinear grid interpolation

(FAS) can achieve the same level of efficiency as the semidirect/marching

methods for the nonlinear problems . For the linear problem, the marching

methods as embodied in the GEM codes are the fastest. However, they are limited

in resolution to about a 00xlOO grid with favorable cell aspect ratios. More

importantly, they are attractive in 3 dimensions only for problems which are
2separable in the third coordinate so that a FFT can be used. The marching

methods appear to vectorize well, especially for repeat solutions, for the

5-point operator. On a vector machine, 9-point operators would be best treated

iteratively by lagging, as is customarily done with linear iterative methods.

The vectorizing of multigrid codes is an open question at this time. The com-
4parison of marching methods, multigrid methods and the simpler fully vectori-

zable iterative methods (such as hopscotch SOR) on vector machines will be a

complicated job, dependent on the particular machine architecture, the problem

size, and the coding details.

* CONTINUATION METHODS FOR DIFFICULT GEOMETRIES

Good initial conditions for the grid can be a problem, whether the grid

*generating equations are solved by semidirect/marching methods or by more con-

ventional iterative methods. Particularly, for slit-like geometries, initial

conditions obtained by simple interpolation in the transformed plane can give

crossed coordinate lines and negative Jacobians, which can prevent iterative

convergence of the nonlinear problem.

We have developed two continuation methods for this problem. Both attain

the final solution in N continuation steps (where N is selected by the code

user). The weighting function W varies from 0 to I for the sequence of prob- . .

lems,

W = 0, 1/N, 2/N .... (N-1)/N, 1.

The first continuation method builds up to the true boundary conditions.

With B - x and y boundary conditions, the continuation method is

Bk , (I-W)B
° + WB

t ru e

where B° is some trivial initial geometry, such as a rectangle.

The second method builds up to the true generating equations, and was sugg-

ested by Maliska's work9 using point SOR for the solution. The coefficients

a, 0, and y are built up from '-
k A (I-W) + W.Atrue where A - a and y.

~ ~ AA

~~. . . . . .. . .... ............... ' , ,. ....
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This starts from the linear, decoupled problem

x +x = 0
&E nil
Y& + y = 0

We have had success with both methods, but the second is preferable. It is

more systematic, and avoids some clumsy scaling problems of the first. For

a rather severe slit-like laser geometry, only two continuation steps were

required to solve the grid.

SOLUTION OSCILLATIONS NEAR GRADIENT BOUNDARIES

An illuminating behavior arose in the application of symmetry boundary

conditions to the hosted electric field equations. For symmetry at - 0,
• the transformed equation requires i

0 = - )/J&3 = 0, where J - Jacobian.

The marching code GEM requires one-sided differences for $ because the boun-

dary conditions must be separable in the march direction. Depending on the

curvature at the boundary (the sign of 0) and the march direction, this can

be analogous to downwind differencing along the boundary, and can produce

oscillations in the solution of the hosted equations. In analogy with the

well known fluid dynamics problems, we would anticipate that other workers

may have encountered this behavior using centered differences for *.

The cure, which almost certainly has been applied in practice elsewhere

although not reported (nor perhaps recognized) is to have a nearly orthogonal

grid near symmetry and other gradient boundaries, giving B = 0. (One could

also set 0 - 0 by reflection9 but this gives a discontinuity in the grid which

will slow the truncation error convergence.)

In the GEM solutions, true second-order accuracy is obtained by a deferred

correction approach, lagging the difference between the one-sided and centered

forma for * . It is even more robust, for geometries in which B might change

sign along the boundary, to lag the entire *, along with the deferred correc-

tion for the 3-point and any nonlinearities, and this is now our standard

procedure. Note, however, that the GEM code now cannot be considered a direct

method for gradient boundary conditions in a non-orthogonal grid.

SENSITIVITY TO CROSS DERIVATIVES

We have generally been impressed with the difficulty of code verification

for general non-orthogonal coordinate problems. In particular, the experience

related here violated out intuition on the sensitivity of the solutions to

AL
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the cross derivative terms like xg , * etc. The experience arose from a

coding error in which the cross derivative terms were all calculated a factor

of 2 larger than correct. The erroz was not detected early because the solu-

tions looked good for mild but non-trivial geometries. For electrodes in a

quadrant where the lower electrode was described by a cos curve and the upper

electrode by cosk, the grid generated and the solution for the E-field were

quite accurate. Likewise, the solution for the Rogowski electrode differed

by only 0.4% from the exact 0, using only a 13x13 grid. However, in systematic

convergence testing (performed by H. Happ of Tetra Corporation), the error did

not reduce as the grid was refined. The coding error was detected and correc-

- ted, and the previous cases were re-calculated. The factor of 2 error in the

cross derivatives proved to affect the coordinate generation by less than 0.01%

in the location of any x and y of the grid nodes, and to affect the E-field

(derivative of the 0 solution) by 0.016%. The conclusion might seem obvious,

that the solutions are very insensitive to the cross derivatives. However,

this is actually quite problem dependent. For a slit-like geometry, the coding

error seriously affected the grid generation. Iterative convergence was ob-

tained only with the extreme of 20 continuation steps plus the use of extensive

under-relaxation of boundary and interior points. The resulting "mesh" was 4
a mess, with coordinate lines that crossed and extended outside of the physical
domain, violating the maximum principle. When the coding error was corrected,

K the method converged to a perfectly good grid in 2 continuation steps. For

this class of problems, we conclude that the grid generation process is highly

sensitive to the cross-derivatives. Aside from coding errors, this experience

also seems to bear on the robustness of alternate elliptic generating systems

which use simpler equations in the transformed plane.

SYMBOLIC MANIPULATION AND GRID GENERATION

Coding errors such as the one described above plague all computational work,

and the chance for error increases as the complexity of the problems increase.

As noted above, we have been impressed with the difficulty of code verification

for the transformed grid problems. We have also been impressed with the com-

plexity of the 3-dimensional equations for general non-orthogonal grids.

In association with Prof. Stanly Steinberg of the University of New Mexico,

we are addressing this and related problems using computer Symbolic Manipula-

tion. These are not floating-point calculations, but symbolic operations,

e.g. the chain rule differentiation, performed by computer logic. The gather-

ing of coefficients is likewise done symbolically, as is the actual

• J 5 . ,-"1,.,. .-* .* * ,ii l
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writing of the Fortran subroutines to define the problem. The symbolic

code used is a VAX computer version of the code MACSYMA developed over many

years at the MIT Lincoln Laboratories.

To recapitulate: we are using MACSYMA to (1) analytically generate the

transformation equations, and (2) to actually write a Fortran subroutine to

produce the 9-point stencil defining the matrix problem.

Once the computer has written the subroutine defining the problem, the coef-

ficient matrices defining the stencil are passed to some canned solver, in this

case the GEN codes. Both the grid generation problem and the hosted equation

are solved the same way. Except 'or input/output and processing of the results,

* as well as the passing of the matrix problem to the canned solver, the user

obtains the answer without writing Fortran or similar code.

The general second-order two-dimensional equation has been solved in this

manner, and the results verified by comparison to the hand-coded coefficient

matrices. The analytic generation of the transformation equations and the

writing of the Fortran subroutine require about 10 minutes on a VAX 780. The

three-dimensional problem has also been solved, but the computer time increases

dramatically due to the computational complexity of the chain rule operations,

similar to the classic "sorting" problem. We are currently involved in the

code verification. Rather than generate a hand-coded version, we will obtain

three-dimensional solutions of the algebraic equations (using a hopscotch SOR

"canned" solver) and verify the code by convergence testing to the exact solu-

tion of highly stretched coordinate problems.

In the near future, we intend to work on the relatively straight-forward

problems of multiple equations, higher order equations, perturbation terms

in the source term formulated so as to give deferred corrections to higher

order accuracy and/or nonlinear terms, and validation of all these.

More difficult problems are conservation forms, upwinding (or other condi-

tional differencing), complicated boundary conditions (currently we have used

only Dirichlet conditions), and optimization. It is likely that the Fortran

code generated will always be less efficient than what could be obtained with

expert hand coding. This situation is viewed as analogous to the situation

of efficiency attainable from high-level languages like Fortran vs. assembly

language. The "efficiency" sought is not that measured by CPU seconds for

code execution, but by calendar years for code development.

Human errors are still possible in this process, but they are a different

level of error. Grand mistakes will occur, but not the petty ones of writing

S(I+1,J) when the term should have been S(I-1,J), etc.

r '• 4
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The following areas of application for Symbolic Manipulation appear most

promising.

(1) Combination of perturbation methods and numerical methods. These

"semianalytic" approaches have already been used with some success, and are

not difficult for regular perturbation problems. With insight, they can be

used for singular perturbation problems, and could be used in general grid

problems to remove grid-introduced singularities.

(2) Coordinate transformations, especially in conjunction with (3).

(3) Constitutive equation testing, in areas like turbulence modeling,

non-newtonian fluids, soil mechanics, gravitational theory.

(4) Generation and analysis of new discrete forms via finite difference,

* finite element, least squares, etc. methodologies.

The prospect of virtually error-free testing of constitutive equations and

difference forms is most attractive. I predict that the use of Symbolic

Manipulation in these and other problems will shortly be recognized as the

* way of the future, and that the practice or disciplines like computational

fluid dynamics will be revolutionized in the next decade as the power of

Symbolic Manipulation becomes widely recognized.

SFUTURE WORK

Besides the use of Symbolic ManipulatIon described above, we expect to

* extend the work described herein in the near future to include the following:

unsteady equations, 3 dimensional problems, maguetic effects (which give rise

to a tensor conductivity), dielectric interior boundaries (which require the

precise control of the grid at interior points), solution adaptive methods

to better resolve the maxima in the E-fields, and semi-automated optimization

of the electrode design procedure.
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2-D ELLIPTIC GRID GENERATION USING A SINGULARITY METHOD AND ITS

APPLICATION TO TRANSONIC INTERFERENCE FLOWS.

KARL D. KLEVENHUSEN

Department of Theoretical Aerodynamics VFW Bremen, W.-Germany

NOMENCLATURE

A square of incompressible velocities

A square of compressible velocities

c chord length

C local speed of sound

CL lift coefficient

Cp pressure coefficient

D diameter of an inlet

m doublet strength

N, Mach number at infinity

mass flow ratio

. S boundary

U 4D velocity at infinity

UV incompressible velocity components

u1" components of incompressible

*vJ disturbance velocity

cartesian coordinates

4y
S:, } "disturbance coordinates"

angle of attack

If streamline coordinates

0compressible potential function

&P potential jump at the trailing edge

PREVIOUS PAGE
IS ULANK

!li ';''" ' '" .:;-° . :"'-' ." " ,0



740

INTRODUCTION

It is well known that the solution of many mathematical problems

can be simplified by the use of a carefully selected coordinate

system. One example is the numerical treatment of boundary-value

problems in partial differential equations. An optimal computa-

tional grid for a finite element or a finite difference method

should be carefully adapted to the mathematical, numerical, phy-

sical and geometrical aspects of the problem. In such a case, one

can expect a reduction of numerical errors, a reduction of com-

puting time and, most important, an excellent physical presen-

tation of the results. The present paper describes a grid gene-

ration procedure to be applied to transonic flows with interfe-

rences. IThe well known full transonic potential equation in carte-

sian coo rdiantes (x,y) is:

2 ,2
2 I.xx yyI- -k-y-y =

* (1) j
, 2 2'

with B *

Then streamline coordinates (pV) are introduced with the

following properties:

~Px *YY :0:0 (2)

1 IVYy-

* ---y (3)

where @ and v are conjugated harmonic functions. It is known from

complex analysis that every pair of conjugated harmonic functions

in the x-y-plane (physical plane) are conjugated harmonic functions
in the W -9W-plane (streamline plane). This feature of harmonic

functions "lays an important role in the development of the pre-

sent grid generation procedure.

Equation (1) transformed to (',@) coordinates gives

4 ' 4 k, - .

.4 rI
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2 2( %

Swith B ( .4 2

This equation contains the additional factor

+ A
which can be interpreted as the square of an incompressible velocity.

To simplify equation (4) for practical application purposes the
incompressible streamlines are chosen as a good approximation of

the compressible streamlines. Then equation (4) can be reduced to

2 ( -w4*r)c- -O, BV 0
with (6)

assuming all first derivatives normal to the streamlines are incre-

mental and terms of second order can be neglected.

The new coordinates are orthogonal and body-fitting. The Neumann

boundary condition (7
On 0 (7) .. :

is transformed to

*- =0 (8)
* Equation (4) and (6) imply singular points at the stagnation points

of the coordinates (A - 0) if the compressible stagnation points

do not have the same location. A solution of that problem will be

discussed later.

The outlined transftrmation of the transonic potential equation

demonstrates: Choosin to use a coordinate system adapted to the

special physical problem may lead to simplifications of the go-

verning equations and consequently to computing time reduction. All

transonic calculations for this paper using the present method are

based upon equation (6).

.. . . ;
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GRID GENERATION BY SINGULARITY METHODS

Selection of a suitable singularity method

Singularity methods are classical tools in computational fluid dy-

namics. Since the basic work of Martensen and Hess a lot of sin-

gularity methods have been developed for calculating inviscid in-

compressible plane or spatial flows (panels methods). Most of these

methods in two dimensions approximate the curved boundaries of an

airfoil section in the simplest way by a polygon.
On each straight line of the polygon a constant or a linear or a

- higher order singularity distribution of sources and / or vortices
and/or doublets are assumed. The boundary conditions can be satis-
fied as Neumann- or Dirichlet- conditions at the internal or exter-

nal side of the boundaries.

! Hence it appears that a lot of different singularity methods can
be developed for the same flux problem. The user's problem is to
find the most suitable method for his special case of application.

Fig. i shows the selection procedure to find an appropriate singu-
larity method for calculating streamline coordinates. In contrast
to common flow computation, where the values of the velocities are

of interest, the potential and the stream function must be deter-

* mined as accurately as possible.

Consider a line segment of length I with an assumed constant source

or constant vortex distribution. It is known, that at a great dis-
tance r the potential function of the source element and the stream-

function of the vortex element are proportional to In r. This lo-

garithmic behaviour may cause an increase of unavoidable numerical

errors with increasing distance. Thus the method of source or vor-
tex singularities is not suitable for calculating streamline coor-

dinates. A more accurate calculation offers the method of doublet

singularities with normal or tangential doublet axes. In constrast

to the above method the values of the potential and the stream func-
tion decrease with increasing distance. Furthermore the doublet

equations are obviously simpler than the equations of sources and

vortices. This is "oportant if short computing times, have to be

considered.

At the midpoint of a doublet line of length 1 the following re-

lations are valid.

p4

3= .1.9.
*6~
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In the case of normal doublet axes the normal velocity Vn is pro-

portional to m/l and the streamfunction V, is proportional to m/l

where m is the local doublet strength and m' is the local slope

of m. In the case of tangential doublet axes Vn is proportional

to m' and the streamfunction yr is proportional to m.

Hence one may infer that there is only one suitable singularity

method using a doublet distribution with tangential doublet axes

satisfying the Dirichlet condition of constant streamfunction '

along the boundaries.

The singularity method in the physical plane

The incompressible flow around an airfoil of a piecewise smooth

boundary can be described by a modified Dirichlet problem:

*xx 41yy =0 in the flow field
.. i =const at the boundaries of (9)
* the airfoil

W WC at infinity 1
Before solving the problem by a singularity method a perturbation

* stream function is introduced by

and the Dirichlet problem is formulated as follows:

-Y in the flow field

z1' const-P. at the boundaries S (10)

p"0 at infinity X

The solution of this problem is
'---2 !n. Inr ds,1):"

S
where t denotes the tangent of the boundary . The doublet strenqth

m must be calculated from the integral equation

ir-const - A Inr ds (12)
S

"":" ' " " " "l- ',. • ., "
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along S. The solution is not unique and m can be chosen arbitrarily, at one

arbitrary point of S. Appropriately zero doublet strenght is assumed at the

lower side points of the trailing edges (see fig. 2).

Equation (12) can easily solved when assuming a linear distri-

bution over each straight line of the polygon (fig. 2) and satis-

fying the condition at each midpoint. For the case of .i straiqht lines

j doublet strengths can be calculated at j corners of the polygon.

In the lifting case a slit with constant doublet d';stribution is
, . necessary to satisfy the Kutta condition by appropriately assuming

the same constant doublet distribution on the rearmost line seg-

ment on the upper side of the trailing edge (see fig. 2). This

means a peacewise linear but continuous doublet strength can be

t2 calculated beginning at the lower point of the trailing edge going
clockwise around the airfoil and then along a slit up to infinity.

*, The direction of the slit can be chosen arbitrarily but it should

not intersect the airfoil or any element in the case of a multi-

element configuration. The conjugated harmonic function of Vr'is

,'-2 na m.In r ds (13j

S

witn tne same doublet strength of formula (11) but with normaldoub-

let axes. When the doublet distribution has been determined it is

possible to calculate p , ,x . Vy at any point of the physical

plane.

In this way one can determine the boundary conditions for a bounda-

ry value problem in the streamline plane based on Laplace's equa-
tion. This is the first step of the present grid generation pro-

cedure.

The singularity method in the streamline plane

The transonic potential equation (6) requires the knowledge of
the squares of the incompressible velocities px and ipy at every

point( , Vr ) of the streamline plane. Consider perturbation ve-

locities
u a YX  " UM '€os G(

v a toy - U 'sin a

"V, o .

: --'

., ./,,'- ,

o. '
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where U, is the velocity at infinity and a is the angle of at-

tack. u' and v' are conjugated harmonic functions in the V , plane

and vanish at infinity. Furthermore u and v'are known along the

upper and lower surface of an airfoil from the calculation in the

physical plane (see fig. 3). The plane behind the airfoil is slit-

ted along the body's streamline WO up to infinity.

The velocities at both sides of the slit are equal:

-. where Aq is the potential jump in the lifting case. Now consider
the airfoil in the streamline plane. The airfoil is mapped to a

slit with well known boundary condition at the upper and lower

side. The velocities at both sides are not identical in the lif-

ting case due to equation (15). Two different types of boundary

values problems for each velocity uand v'can be established:

? 1. The velocities are known along the whole slit up to infinity by J
integration of the body's streamline in the physical plane. Then

a Dirichlet problem can be formulated as follows:

Upq + u F =0 in the t -plane

with the boundary conditions

u uu  at the upper side of the slit (16)
u u at the lower side of the slit

u'--O for (or,') --- m

2. The velocities are known only along the upper and lower s.urface

of the airfoil. Then a modified Dirichlet problem can be formu-

lated:

h: u~r* 0 in the plane

•* with the boundary conditions

u - uu  at the upper side of the airfoil (17)
u - uj at the lower side of the airfoil

condition (15) along the slit behind the airfoil

-- u' - 0 for (tp,) -

14.4

7~

' Ar

"- . .,. .*,; ,.
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Analogous problems can be formulated for v'

The solution of both iroblems (16) and (17) is:

u. Im (u) .- inrds - I -11  1Ilnrds (18).,~2T F''J n Inrs rm

where S denotes the slit up to infinity. Presently, this solution

was proved numerically only. It describes a double singularity dis-

tribution with doublets having normal and tangential axes, which

is the same as a single doublet distribution with oblique doublet

axes.

The normal doublet strength with respect to u'is ml and the
tangential strength is m,(u). For v' one gets the result in the same way

" " ; ' ,.,.1/resultn in the sameds way

. In f Iv) 0 inrds - L m(V) Inrds(
S S

Since u'and v'are conjugated harmonic functions the following re-

lations are valid

CU) Mv .
M1  MrM 11  (0

C(u) = CV) (0

It easily can be shown that mlu) and mLv) respectively indicate

the potential jump along the slit S

(21)i~M V. o -' (,,~ o
V - v' -*00)

Taking equations (21) and (20) the solution of boundary value pro-

blem I can be determined at every point( V , W ) of the stream-

line plane by solving the integrals of equation (18) and (19).

In the case of boundary value problem 2 the douhlet strength

along the slit behind of the airfoil can be determined from con-

dition (15). For solving the problem numerically, the slit is

divided into a finite set of line segments. A line-r doublet dis-

tribution is assumed on each segment. But in contrast to the

6

p,, .

-' /.-i .
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singularity model of the physical plane the doublet strength is

determined by satisfying the boundary conditions at the endpoints

of each line segment. The slit behind the airfoil can be assumed

of finite length, i.e. 10 chord lengths. The conditions (15) and

(21) lead to a well behaved system of linear equations which de-

termine the doublet strength along the slit.

This procedure replaces the integration of the body's streamline

behind the airfoil in the physical plane and was used for all pre-

sent calculations.

In concluding this chapter it seems clear that every pair of

conjugated harmonic function of the physical plane can be treated
in the same way as the perturbation velocities u' and v' if they

are bounded at infinity.

In the case of the physical coordinates x, y it is necessary to

define "disturbance coordinates" by

x' X- ocos OU.sin a

*. (22)
y' =y- Tsin X- C.cos (.

At infinity x'makes a jump of -Acoso( and y'a jump of-A sine
across the slit and the according doublet strengths does not va-

nish.

GRID GENERATION FOR TRANSONIC FLOW COMPUTATION

Grid spacing

An optimal computational grid should be carefully adapted tothe

mathematical, numerical, physical and geometrical aspects of the -

problem. The spacing of coordinate lines, for example is of para-
mount importance to resolve large gradients. A similar problem

arises when approximating an airfoil shape by a polygon as indi-

cated in fig. 2. At regions of greater curvature, i.e. at the lea-

ding edge, the spacing of the line segments of the polygon should

be finer. This is well known from the application of singularity

methods to subsonic flow computation problems. Taking the mid-

points of the line segments of the polygon as mesh points was ':*.

found to be an appropriate grid spacing method in V -direction.

..- k

• *. .,..,,.
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For the case of the far field the spacing was done by an exponen-

tial law ensuring an increasing mesh size. The far field boundary

was assumed to be 3 to 5 times the chord length from the airfoil.

The stagnation point problem

When using the present streamline-type coordinate system the

stagnation point is fixed numerically. This seems to be a great

restriction of application and some critics of the method believe

-that such a coordinate system is not usable.

The physical transonic flow demonstrates the contrary.

Fig. 5 shows, the calculations around the modern supercritical

airfoil Va2 were done by the method of Bauer-Garabedian-Korn-
3

Jameson (BGKJ) using an O-type coordinate system for determina-

tion of the stagnation point shift. The maximum lift coefficient
CL max indicated by the dashed line, was found experimentally4

This indicates that lift coefficients greater than CL max are

physically non existent. From the graphic presentation at the~~right side of the figure it can be seen, that for all realistic !

lift coefficients the stagnation point shift is smaller than indi-

cated by the dashed line. The shift itself is not detectable by
& the BGKJ-method when using the standard number of 160 mesh points

around an airfoil which gives a minimum mesh size of 0,4 % of

chord length.
In fig. 6 the computational results of the present method agree

quite well with the results of the BGKJ-method.

In addition, a stagnation point shift may occur due to boundary
* layer effects. This effect could be taken into account by using

the singularity method in the physical plane. In this case an

additional singularity distribution of sources would be necessary. ".
But again It was found, that there is no need of a grid correc-

tion 5

On the other side, when the method of a plane streamline grid
, is applied to rotational transo'tic flow calculations, there may be

a need of corrections.

In the case of a flow around a plane inlet and a rotational In-
let with the same boundary conditions the stagnation points ofI both flows do not match. But if the internal velocity vp of the

..... ..... .
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plane inlet is assumed as

Vp V~r (23)

where vr is the internal velocity of the rotational inlet then the

plane and the rotational stagnation points have approximately the

same location.

Fig. 7 shows the computational grid around an inlet. The results

of transonic flow calculations agree quite well with experimental

data (fig. 8).

- . The numerical treatment of the compressible stagnation points

does not cause significant difficulties when using a finite dif-

ference method. A numerical singularity at this point can be avoi-

ded when solving Laplace's equation instead of the full transonic

potential equation. But in some cases the residue at the stagna-

tion point converges to a ronvanishing value. This phenomenon was

not analysed in more details because it was found that there is no

significant effect to the expected solution.

Application to traisonic interference flows

The present grid generation procedure was developed for appli-

cation to transonic interference flows such as a flow around a mul-

ti-element airfoil. Fig. 9 shows the grids around an airfoil witha

slit in the physical plane and in the computational plane. In

fig. 10 present results are compared with risults of Arlinger~s
6

method

An other important range of application is the calculation of

windtunnel interferences. Fig. 11 shows the grid around a NACAOO12

airfoil between walls. In Fig. 12 calculated pressure distributions

are compared with each other. In the case of vanishing free stream

Mach number wall interferences are neglectable. However for the

case of higher Mach number .75 the wlndtunnel walls cause a shift
of the shock position of about 10 % rearwards.

I''

. .:
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u, xx - component of the perturbation velocity
v 40 y- . . e.

yy

* _ _ _ _ _ _ _ _ _ _ _ - slit-

FIG.3: AIRFOIL IN THE PHYSICAL PLANE

doublets
upper side r slit
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FIG.4: MODIFIED DIRICHLET PROBLEM IN
THE STREAMLINE PLANE
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INTIODUCTION-:

") We-investigate the numerical generation of three dimensional finite

difference grids using a segmentation approach and biharmonics.' This work

is an extension of the two dimensional grid generation technique presented in

Reference 1. The present approach is a significant variation on the method of
Thomson et al. J

h approach is to construct a grid system in a region R as a union of

subgrids which are determined individually but which join smoothly at the

boundaries between subregions. To compute the grid on a subregion 7 we.

determine a transformation from a computational cube R to ysolving a

linear fourth order system of elliptic equations. Grid point locations on j
can then be defined as the image in $1 of a uniform * grid on R. The fact that

the system is fourth order allows enough boundary conditions to be specified so

that smoothness across subgrid boundaries is assured. The elliptic nature of

the system guarantees smoothness in the subgrid interiors. The governing equa-

tions are not only linear but also decouple, so that the x, y, and z compon-

ents of the transformation can be independently determined. These components

turn out to satisfy first boundary value problems for the biharmonic. Dis-

crete solutions to these boundary value problems are obtained by an iterative

technique which combines the conjugate-gradient method and Gauss-Seidel

iteration. The fact that the subgrids can be small relative to the composite

grid permits us to solve several small linear systems instead of one large one.

The ability to prescribe (discretely) the transformation on subgrid boundaries

gives a simple method for controlling the locations of grid points which are

interior with respect to the composite grid.

. . ..

-
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For the remainder of the paper we will adhere to the convention that the

uniform discretization on R used to approximate the transformation to 0 has
s

the same number of grid points as we wish to generate in Q . While this is not
s

generally required, when it is true we have the particularly simple situation

that each desired grid point in Q2 is the image of a grid point in R.s

ANALYTIC FORMULATION

We now consider the construction of a single subgrid. Each subgrid is

defined as the solution to a certain fourth order linear elliptic system where

the boundary conditions are used to specify the grid point locations, the

orientation of the grid line that intersects the boundary, and the local grid

spacing. These conditions provide the control needed at the boundary of each

subgrid in order to smoothly fit together the subgrids.

2,3Formulating the problem involves two steps. Following Thompson et al.

we first formulate equations describing the transformation from physical space

to computational space; then, we reverse the roles of dependent and independent

variables resulting in equations for the transformation from computational space

to physical space. We will consider an C-n-C computational cube R corresponding .
to a subgrid region Q2 in an x-y-z space as shown in Fig. 1.s

We now formulate a boundary value problem to determine the transformation

&(x,y,z), r(x,y,z), C(x,y,z) from Q to R. The specified locations of the grid
s

points on the boundary 2s give the boundary values for F, n, and . To specify
54

the slope and spacing conditions, we consider an E= constant plane (Fig. 2);

the n and planes are treated amalogously and the governing equations are ob-

tained by cyclic permutation of , The tangent vectors t and t at a
3.-

specified point P can be computed (later by finite differences) from the known -

boundary data. A normal vector n=tn x t can then be computed, and the three

vectors t ,t ,n•define a non-orthogonal local coordinate system at P. Let the

vector v give the specified orientation of the grid line intersecting the =

constant boundary plane. This orientation could be specified by two angles 8

*and 0 giving v relative to the fixed x, y, z coordinate directions; equiva-

*lently, we choose to describe v in the local coordinate system at P by

V
,

x
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v = n + at + 5t where a and B are the two specified quantities. This repre-

sentation is convenient since a and 8 are frequently zero, but it is straight-

forward to relate a and 8 to 6 and when desired. Since v lies along V x V ,

we have v-Vn = v-V = 0 which constitute the two angle specification boundary

conditions. The final boundary condition controls the local grid spacing and

is given by specifying IV I.

We want our transformation functions to satisfy a system of elliptic partial

differential equations in the interior of s . The differential operator will be
5

denoted L and will be determined later. To summarize, the transformation from

the subgrid 0s to the computational cube R satisfies

.. LE = 0 in 2 (2.1)
i s

4 L= 0 in Q (2.2)
r •5

L = 0 in Q (2.3)! s

, given oh (2.4)

v(n, ).Vn = 0 (2.5)

V O- = 0 on C 0,1 (2.6)

Sv~j given (2.7)

= 0 (2.8)

v(?,).V = 0 on n = 0,1 (2.9)

IVnl given (2.10)

v( ,n)'VE = 0 (2.11)

v (t,=) V - 0 on = 0,1 (2.12)

jvcj given (2.13)

where the functions v are given.

Since we are interested in the transformation x(E, , ) y(E,jl), z(,li)

from computational to physical space, we use the assumed invertibility of the

transformation to recast the equations by reversing the roles of dependent and

independent variables. This process is based on the fact that

"; ,. ' ' .

: '. .';"u " " .- " g'
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a(9, n, V a ";(X'y' Z)  -
a- ynl L nx zNYl,

: I y: : : :: :y x:2 (2.14)

LCx Cy z s Y zn N% YrZ n 'T- Zn Yn "xnY,

• " where J x x(ynz X y zrl x xNyz - y zc) + xt(yez -YZ).

Again we consider an = constant boundary plane (t-0 or t-l) and examine condi-

tions (2.5)-(2.7). We note that xi, yv, and z are unknowns but that all other

* derivatives (x ,y, ,xy, ) can be computed f rom the specified boundary

* data. We first reexpress v = n + Ot + 1t = (a,b,c) where a, b, and c are

known coordinates with respect to the x, y, z coordinate axes. Then the angle

conditions (2.5) and (2.6) become

nx + bn + ci - 0 (2.15) j K
atCx + b; y + cCz . 0 (2.16)

which, using (2.14), are linear in the unknowns x,, y, zV The spacing condi-

tion (2.7) 191 - g (g - given) becomes

tv I - ( 1/2 - (y-y) 1/2 / - g (2.17)

where 'y -(yn z - y,, , - 'cxn, xnyc - xy,) is known. Sq. (2.17) is also

linear in xv Y,, & V Hence (2.15)-(2.17) comprise a 3x3 linear system in the

unknowns xv, yE, zt at each point P on an &- constant boundary. Specifically,

this system is

i -CY cx - as ay - bx x 0

bCcC C C C C [

Lbs c cx -as aYT -bx [ay = 0 J(2.18)

.... 'Yi ni aT. n- .,

•.1/2

ji* *.7t777 znc'' e , d (-)/
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J!- We may solve this system at each boundary point, so that the angle and spacing

conditions (2.5)-(2.7) are equivalent to specifying the normal derivatives

xV y, and z . Clearly, on n- constant and I- constant planes we may solve

(2.8)-(2.10) and (2.1l)-(2.13) to get x , y n, z T and x , y z respectively.

Finally, we choose the previously unspecified operator L to be such that,

when the roles of dependent and independent variables are reversed, (2.1)-(2.3)

become

2

A 2 y 0 (2.19)

2

Now we note that not only are the governing equations linear, but they also

decouple, so that x, y, and z may be determined independently. (It should be

$ "noted that this decoupling precludes any special differencing of the boundary

conditions as used in Reference 1. resulting in some loss of angle control.

This has not been found to cause any serious problems.) In fact, letting w

represent either x, y, or z, in order to generate one subgrid 9 we must solve

three first boundary value problems for the biharmonic, namely

A2
A - 0 in R

fn (2.20)
w

specified on 3R.

n

Here, the specified values of w are the boundary grid point locations and the

specified normal derivatives are obtained by solving the aforementioned 3x3

linear systems. We note that there is no maximum principle for this system of

* equations; consequently, it is possible to lose invertibility of the transfor- X ."I

mation so that grid lines of the same family in Sl may cross. Our computational Ilk

*experience with this method indicates that problems arise only in cases where

9 the user asks for unreasonable conditions on spacing and slopes of grid lines

near boundaries; for example, large spacing and orthogonality near an acute

corner.

-,r, . ., *. .. Y
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DISCRETIZATION AND NUMERICAL SOLUTION

In this section we discuss the d-scretization and numerical solution of

(2.20). We first introduce a uniform finite difference grid on R (E[0,1] ) and

define for a function w the corresponding mesh function

w = wiA,jATi,kA ) i = 0,1,..., I
ijk

j = 0,1.... J

ik =0,1,..., K

with Ia =J = K =1i. We also define the usual second divided difference
2 2 2

operators 6 , 6 by, e-g.,

2 2
26wijk (wi+l jk wijk + wi-l jkl/('&)

Then
(2+62 2 2, 2,4)

Aw(iA ,jAn,kA ) = (6 +6 +6 )wijk + 0( A A A ).
2 2 62 .

Denoting 6C +n + 6 by A ,we then approximate

2 2A2w Zd Wijk"

This discretization, which is the "standard" 25-point formula for the
. ~biharmonic, introduces additional points outside the computational domain.".'

The unknown values of w at these "fictitious" points are specified using the

normal derivative boundary conditions. For example,

2A d Wljk involves w ljk; however,

W-ljk = Wljk - 2E, (0,jA,kAu) + 0(w).

This relationship and similar ones for the other boundaries allows us to

eliminate all of the fictitious points introduced by the discrete representa-

tion of the biharmonic. The problem (2.20) is thus reduced to the linear

system

Aw = f (3.1)

where w is a vector of unknowns corresponding to the interior w ijk(i.e. either
all of x ijk' Yiik' or Zijk ), A is the discrete biharmonic and f contains

contributions due to the boundary values of w and aw/3n.

1t

-. -~--~ -7 yir
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For a variety of reasons, the linear system (3.1) seems amenable to the use

of iterative methods. Although reasonably sparse, even if I, J, and K are

relatively small, A is a large matrix with large bandwidth. Furthermore, A is

symmetric and (as shown by a discrete form of integration by parts) positive

definite. Finally, it is important to remember that the solution of (3.1) is

used to locate grid points; consequently a highly accurate solution is unnec-

essary.

Unfortunately, the matrix A is poorly conditioned and point relaxation and
4,5,6

ADI methods converge poorly 4  
. For this reason we use a hybrid iteration

scheme based on alternation between the conjugate gradient (CG) method and

*Gauss-Seidel (GS) iteration. The combination of these two iterative methods is

0 quite natural. The conjugate gradient method works well in resolving low fre-

quency error waves so that after several CG steps much of the remaining error is

high frequency in nature. These high frequency waves are damped effectively by

Gauss-Seidel so that for several iterations GS is very effective.

The CG algorithm (see, e.g. Reference 7) is initialized by defining for an

initial guess w0 fd
Po =r = f-Awo

The iteration is then given by

Wk+l wk + kPk
where

k t
PkAPk

rk =rk-Ap
kl k k

Pk+l rk+l- kpk

tt

rk +l APk
k t

PkApk

-****0.". -,'4

.. .; , ,~ ~ .* . -: , ., , < . ! ,. @ . . -"" " " " " i ' 1'"
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Writing the algorithm in this way requires only one multiolication of A per

step, thereby rinimizing the work per step. However, we note that in general

the equation
rk+1 = rk-Apk (3.2)

should not be used because it leads to severe roundoff problems (instead use

rk+1 = f-Awk ). Here, since we take only a fixed (fairly small) number of CG

steps before switching to GS, the extra work in computing Awk is not justified.

FFor the sake of completeness we note that the Gauss-Seidel iteration is given

Sby -
* Wk+l = L-(f-A wk

where A is the part of A on or below the diagonal and A is the part of A

L U
0 strictly above the diagonal.

For the model problems considered in the next section the initial data for

w was determined by interpolation and we alternately used 25 steps of conjugate
0

gradient and 10 steps of Gauss-Seidel. After 25 steps we begin to see serious

Croundoff in (3.2) and after 10 steps the GS iterations begin to lose their

effectiveness. For the present problem this hybrid method worked faster than

either GS alone or CG with the alternate formula for rkl; CG with (3.2) did

not work at all. The usefulness of this hybrid method for more general elliptic

rroblems will be explored more fully and documented in a later report.

RESULTS

We display some simple 3-D grids generated by the present method. In each

case the gradient (spacing) conditions (2.7), (2.10,, aad (2.13) were specified

by computing the gradients along the edges of the region (this can be done from

the specified boundary data) and linearly interpolating along the "faces" (i.e.

the boundary planes).

In Figs. 3A-3D we show a single subgrid in which normality (a-8- 0) was

enforced. Fig. 3A shows some of the specified boundary data, and Figs. 3B-3D

* show the grid lines generated along selected internal E, n, and t = constant

planes. Of course, due to the discretization error in approximatino the solu-

tions of (2.20), exact normality of the grid lines intersecting the boundary

plane is not obtained.

j • .-
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In Figs. 4A-4D we grid a more complex region by breaking it up into two sub-

grids. On planes 1 and 3 we specify a uniform grid. On plane 2, the subgrid

boundary, we specify a clustered grid. On the remaining boundary planes the

grid point locations are linearly interpolated from those on the edges of planes

1, 2, and 3. Since the grid lines proceeding essentially in the y-direction

must "turn a corner" at plane 2, some care is used in giving the angle boundary

conditions to help the composite grid turn the corner. We thus specify that the

interior grid lines intersect plane 2 at angles whose values are interpolated

between the angles that the edqes Al, IQ, CK, KS, EM, MU, GO, OW make with plane

- 2. On all other boundaries we specify that the grid lines intersect normally

(a-0-O). In Figs. 4B-4D we examine the smoothness of the grid generated on some
internal planes. Fig. 4B shows a plane near the top (where the most turning is

required) and the grid is quite smooth. In Fig. 4C we look at a "top view" of

another such internal plane and see that indeed the composite grid is smooth at

the subgrid boundary PL and that normality is approximately enforced elsewhere.

* Similarly, in Fig. 4D we look at a "side view" and observe smooth results.

In closing, we note that a time-consuming and tedious aspect of 3-D grid

generation appears to be the specification of the data required on the two-

dimensional boundary surfaces. Perhaps existing 2-D grid generation techniques

can be adapted to manifolds in order to circumvent this problem.
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/COORDINATE LINE
INTERSECTING I CONSTANT
PLANE LIES ALONG Vq X V

+DIRECTION

6P

Fig. 2 Boundary condition formulation at grid point P on the image of
an -constant plane in x-y-z space.
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PARCHING GbD GZNSRATION USING PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

S. Nakamura
The Ohio State University, Mechanical Engineering Department
206 Went 18th Avenue, Columbus, Ohio, 43210

INTRODUCTION

) The unique aspect of grid generation in computational fluid dynamics is that

the grid generation equations have no physical meanings, so any equation may be

used for this purpose if the grids generated are useful. This aspect provides a

vast freedom in developing new methods of grid generation." Although the grid

generation method originally proposed by Thompson, et. al. has been most

frequently used in computational fluid dynamics, faster and less expensive
methods are constantly searched. The hyperbolic grid generation method proposed

2
later by Steger and Chaussee generates two-dimensional grids for airfoil

calculations much faster than the elliptic grid generation method. It does not

require iterative solution but rather the solution marches from the inner

boundary (airfoil surface) toward the outer field generating loops of grids one

by one, so the computational time is almost equal to that of one iteration in

solving the elliptic grid generation equations by an iterative scheme. The

problems with the hyperbolic grid generation method are, however, that (1) often

singularities in the boundary condition propagate as the solution marches out-

ward, (2) solution may become unstable unless an "artificial viscosity" term is

adequately added to the equations, and (3) outer boundary conditions cannot be

specified.

-This paper explores feasibility of using parabolic partial differential equa-

tions for grid generation. The advantages of using parabolic partial differen-

tial equations are as follows: (1) parabolic equations are initial value -.

problems, so grids are generated by a marching algorithm like the hyperbolic

grid generation method, (2) the parabolic partial differential equations have

most properties of the elliptic equations, particularly the diffusion effect

which smooths out any singularity of the inner boundary condition if any, and

(3) the prescribed outer boundary conditions may be satisfied. The importance

of the marching algorithm stated above is twofold: first, computational time

required is only a very small fraction of that for the elliptic grid generation -)

Financial support for this work was provided by IASA Ames Research Center under
NCA2-ORS65-101
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-4equations second, the fast-memory space required during grid generation can be

substantially reduced from that required by the elliptic grid generation method.
,o z Tj AM consider the grid generation for a two-dimensional airfoil flow calcula-

tions for simplicity of discussions, although the method described in this paper .

is not restricted to two dimensions or airfoil problems.

PRELIMINARY OBSERVATIONS

Since very little is known about the use of parabolic partial differential

equations for grid generation, we examine first the feasibility by considering

the following set of equations:

X(4,M)/a - Aa2x(,)/g 2 + S
x (1)

ay(Cn)/ai = Aa2y(Cf)/aC2 + S
y

where
S - Bx + C

x (2)
S - By + C
y

and where A, B and C are constants, (x,y) is the physical domain, and (E,n) is

the computational domain.

Equation (1) can be discretized on both ( and n coordinates using the back-

ward differencing scheme on the n coordinate and the central differencing scheme

V on the t coordinate. Once the initial values of x and y are specified at rf-0,

the difference equations can be solved with the tridiagonal solution scheme for

each increment of n.

We set the initial values as

x( ;,O) = Xo( )
0 &(3)

y(&,O) - yO(M)

where xo(C ) and yo() are the coordinates of the inner boundary (airfoil

surface) on the physical domain.

The behavior of the solution of q.(1) on the x-y plane for different combi-

nations of selected values of the coefficients ar summarized next:

Case I A>0, B-C-0

Bach of q.(1) is similar to the heat conduction

equation for an insulated loop of wire. The value

of x(9,11) and y(C,n) approach the average of the

x and yo, respectively, as T increases.

Case 23 A>0, B<0 and C-0

The values of x(C,n) and y(C,n) aseymptotically

: .: , _ _ _ ,L , ,,, .. . ... . *K
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approach x-y-0 am n~ increases.

Cas. 3: A>0, 8>0 and C-0

Provided that the origin is inside the inner

boundary, the contour of (xC C,mf, y(t,TI)) will

expand outward as 11 increases.

Case 4: A>O, B-0 and C>0

The contour of (x(&,TI), y(t,T1)) will shrink

to a moving point on a line, x-Cs and y-Cs,

where a is a parameter.

Among the above four cases, the result of Case 3 is the most encouraging,
because the grid lines generated expand an nI increases. The above analysis

suggests that a more favorable solution for grid generation may be obtained if

the source terms are improven.j

In order to study the effect of the source terms more clearly, we set A-0 in
Ecl.(1) end approximate it by

x (4)
tly(4,T) -S (CTIAI

y

This form suggests that, as TI increases, the change of x and y is determined by

S xand 8 . This implies that Sx and S should be specified in such a way that
x y y4

x and y change in the desired direction and amount. The role of xtand yC4 in

Eq. (1) may be considered as smoothing the grid intervals in the C-direction. As

a method, S and S may be determined by using polynmial interpolations 3

between the inner and outer boundaries.

PRACTICAL APPLICATIONS

In the remainder of this paper, we use the source terms in the form of a

linear interpolation between the current grid and the outer boundary. The basic

form of mesh generation equations adopted here is written in a semi-discrete

form as

x() x [AXC&+Cn +S~jcC)/c
J-1 (5)

- yj_1 (C) - CAyCC + 'yCn + S yj(C))/C

where j denotes a discretized value of nI or equivalently the j-th grid line

*counted from the inner boundaryl A, 2 and C are constants: S xand 8S are given
by y

a S (C) - (X(C - x (9))/(3-J)
xj (6)

SY (&) - CT9 -yi w -
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In the above equations, J is the maximum value of j that corresponds to the

outer boundaryi X(t) and Y(t) are the outer boundary conditions. The orthogo-

nality of grid lines in the vicinity of inner and outer boundaries may be cont-

rolled by changing X(t) and Y() in Zq.(6) as j increases. The grid spacing in

both C and n directions can be easily controlled by modifying the difference

equations for Eq.(5).

Notice that 3q.(5) reduces to the semi-discrete form of the elliptic grid

generation equation if Sx and 8y are replaced by

Sx jC() -x j+ 1( ) - x ( ) (7 )

-yj(4) - yj+l(&) - y j )

This relation to the elliptic grid generation equation is used in the next

* section to derive the spacing control algorithm in the marching grid generation

equations.

GRID SPACING CONTROL

In most coordinate transformations used for computational fluid analyses, the

* grid spacing in both $ and 1 directions on the computational domain are set to

unity. However, this restriction is not necessary at least until the grids are

used for actual flow calculations. When deriving grid generation equations, we

can assume that grid spacings are locally non-uniform on the computational

domain. Once the grids are generated, they may be used for flow calculations as

if generated on a uniformly spaced grids on the computational domain.

In order to explain the proposed method of controlling grid spacing, we first

focus our attention on the grid generation equation of the elliptic type:

Ax&4 + Bxp. I Cx,, - 0

Ay4& + sy~n + Cyqn - 0

where

+~x + 2 + C x~ 2 x2 + y2, B - -2(xCx +x +

With a uniform grid spacing on the computational domain, the difference

equations for 3q.(8) may be written in the forms

A[ri.l, - 2r + r I
il i~j i+1,j

+ 9[ri.,_ 1 - ri_,,j+1 - ri+,j. + r + 1,J+l]/4

+ C(ri,.. 1 -
2
rij + r ,,+ 1

3 
- 0 (9)

M
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nIn

i___ n _reference grids

S40. . .. ... .. .. .... ..- - moved grids

/ 8nn---

!-/ N i. i-I-

* (a) The x-y domain (b) The &-n domain

Figure I Relation between the reference grids
and the moved grids

Suppose that a system of grids, referred here as the refence grids, has been

generated by Zq.(9), but it is desired to generate another grid system that is

almost identical to the reference grids except that one particular grid line,

say j-n, is moved toward the adjacent grid line j-n-1. Figure 1 shows the

relation between the two grid systems, where the reference grids are plotted by

solid lines, while the new desired line is plotted by a dotted line. The

coordinates of the reference grids are denote" by (xi1j, yi,j) while those of
the movec grids in the desirtS system are denoted by (x , j ), The

' distance between the reference grids (i,n) and (i,n-1) is denoted by tit the

distancs between (i.n} and (i,n+l) by t2, while that between (in) and (in-1)

of tne desired grids by t and that between (i,n) and (in+1) byL. we

assume that the ratios, t;tL, ti/t 2 , and t1 /t 2 , are constant for all the

grids on the grid line J-n, although this assumption may be relaxed in practice.

Since the grids (i,n-1) and (i,n+l) are not moved, the following linear rela-

tions hold with a good accuracy: -'k

.4 ri n - ri,n. " (rln - ri,n.)/gn-i

rin+l -ri n -(rini - rnl)/gn

where
. gn- I "";.I . /

r ,' - x1 ,j or Yi,j for the reference grids, and rl,,_ x1,_ or yI'j for the

moved grids.

Therefore, the difference equations that yield the desired grids are obttin-

ed by eliminating xin and Yi'n in §q.(9) by using Uq.(10). The difference

4' ,
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equations for the desired grids thus obtained are all identical to q.(9) except

for the following t --ee equations that involve rin:

A( ri 1,n 1 -
2
rin.I + ri+l n- 1 1

r' + r+ 1/t2(1 + g)1
B ri lI,n.2 - ri+l,n2 - i-_,n ++,n' 'I)]

+ C( rin 2 - rn.1 + (-r + r, 0 ( l

At rI-1 ,- 2 ril + rij n'
A ~ n - i~n . i 1,nJ

+ Bn r r n-i -ri.l,nrl + r i+l,n+l

+ C1 (rj~n_ - rin)/gnI + (-rIn + ri,n+ll/g n ] = 0 (12)

A[ ri i ,n+ 1 - 2 ri,n+1 + ri+l,n+11

+ Bt r.ln - r_+l,n - rl+ 2 + ri+1 n+2]/[2(
1 

+ gn)

+ Ct (ri n - rin+l)/gn - rimn+1 + ri n+23 - 0 (13)

where the terms with the coefficient 3 are slightly modified for simplicity of

equations. Notice that his procedure is essentially equivalent to deriving the M
difference equation on the non-uniform grids of the computational domain in

which the n-th grid line in the E-direction on the uniform grids is moved toward

the (n-1)th grid line as shown in Fig. lb. The ratio g does not have to be

necessarily a constant for all the grids along the grid line but rather, by

changing this ratio gradually, the distance of the movement may be changed as i

changes. i,j~l

Si

i-ij i'j i+1,j

Figure 2 Notations for grid j1

spacing parameters
i~j-I ,

Although deriving the equations that move. only one grid line has been men-

tioned, any nmber of grid lines may be moved in both C and ,j directions. By

denoting the distance ratios by f and g, in the C and q directions, respect-

ively, as shown in Fig. 2, the difference equations that yield the desired grid

spacing can be written as

14,-..'

..~~~~~~~~. .. .. .. .. .. .. i: -
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A((r i'1'j- ri'j)/fi-I + (ri+1 'j rij)/fi]

+ - r 1 4lj_ ri~l,j+ 1 + r.i_1,.l)/(f1 _I + fi)/(gj_1 + 9j)

+ CE(r i, _ - ri,j)/gj.. + (r ij+ 1 - r,j)/gj) - 0 (14)

The non-uniform grid spacing terms in the above mentioned scheme has the

similar effects as the spacing control terms in the form of exponential func-

tions introcuced by Thompson, et al. I The major advantage of the present

approach when applied to the elliptic grid generation equations is, however,

that the value of f. or gj and the distance between the adjacent grids maintain

- - approximately a linear relationship. Therefore, if a grid system is generated

by using a known set of fi and g, for all the grid intervals, and if different

spacing distribution is desired in the next grid generation, the values of f and

g that fulfill the desired grid spacings can be easily found by the linear rela-

tionship between the f or g and the grid spacing in the previous calculation.

The marching grid generation equation in the difference form with spacing

control is obtained from the elliptic grid generation equation, Sq.(9), by

replacing the coordinates xi,+ 1 and yjjl by known values i and
as briefly described in the previous section. Here, Xi,3 and Yi, are the

coordinates along the prescribed outer boundary, which are represented by X(C)

and Y(g) in the previous section, while X a,j and Yij are functions of J,

reflecting the earlier statement that X(t) and Y(E) in Sq.(6) may be changed as

j increases. In the simplest case they are set to Xi J and Yi, respectively

for all j. An algorithn to prescribe Xi' j end Yi, is explained in the next

section in conjunction with the local orthogonality control. Thus, the marching

grid generation equations for both x and y coordinates are written in the form%

A[(r i-il - ri,j)/fiI + (ri+1 ,j - ri,j)/fil

+ C(-ri,j/gj.I - ri,j/Gj) . -.

= - BD(RA+I,J+ 1 - Ri ~~~ - rl~_ +- ri~~~)(ilj fi)/(gJ_14Gj)

- CE r i,j-/gj- + Ri,'j+/G ] (15)

where Gj is the distance between the grid (i,j) and (i,J) on the computational
plane and R i, X ij or Ytj"

Elquation (15) is solve simultaneously for all the grids on the J-th grid

line by using the tridiagonal solution for each of r-x nd r-y. The solution

starts with J-2 that is next to the airfoil surface and marches until J-J-1 that

is next to the prescribed outer boundary grid line is reached. The coefficients

&, B and C are calculated using the coodinates of adjacent grids that are

already generated.

, ... .... ... .. .. .... ... o m.
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LOCAL ORTHOGONALITY OF GRID LINES

In the flow cumputations using a coordinate transfcrmation, often an approx-

imate orthogonality of grid lines in the vicinity of a boundary, particularly

along the airfoil surface, is desired to increase the accuracy of the finite

difference approximation for the flow boundary conditions. The approximate

orthogonality of grid lines around the airfoil may be obtained by changing X

and Yi, in Eq.(15) as j increases as follows.

First, we consider the coordinates (Xi, 3, Y1, 3 ), which are used when the grid

line next to the airfoil surface is generated. Referring to Fig. 3, a straight

line AB is extended outward normal to the airfoil surface from the grid (1,I).

On the other hand, a circular arc CD that passes the point (Xi j,yi~j) on the

outer boundary and has its center at (i,1) is drawn. The coordinates (Xi, 3

Yi,3) are set to those of the interaction 8 of the two lines.

The values of Xi j and Y ij for J>3 are obtained by gradually moving the

point K toward (X ij, Y i~) an j increases.

If the grid spacing along the inner boundary changes rapidly, specifying the

ratio fi I/fi according to the criterion

!, f_/f,- diI/di (16) ..

is necessary to enhance the orthogonality, where di is the .distance between the

grids (i,1) and (i+1,1) along the inner boundary. The ratio f./fi may be

gradually changed as j increases.

B

C

(X,. 3 ,Yi, 3 )

/ D
0CX,4 Y1,4) i+1

Outer boundary

i- ii' 
j.j

Inner boundary A.n -1 Figure 3 Algorithm to determine
X and Y

4'.. .
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ZU.USRTNAOU OF TW GRIDS Q3NVATED

Figure 4 shows an 0-mesh generated by the method described in this paper.

The grids on the outer boundary are equally spaced along a circle with the

radius equal to five chord lengths. Th. orthogonal ity control described ear-I

lier is allpied in the vicinity of the airfoil.

Figure 5 shows an H-mesh genrated by the "ame method. The borisontal line

*that splits into the upper and lower surfaces of the airfoil is used as initial

conditions. The grids above the airfoil were first generated starting from the

airfoil surface to the top boundary, and then the grids below the airfloll were

generated by the same procedure.

Figures 6, 7 and 8 illustrate the grids generated by the present meothod for

*three different airfoils. only the grids from i-I to J-13 are platted to show

- . the detail. The strong clustering of grids toward an airfoil is obtained by

the spacing control algorithm.

CONCLUS IONS

* The present feasibility study show that high quality grids for computational

*fluid dynamics can be generated by the marching solution of parabolic partial

differential equations,* The computing cost of the present method is a very small

fractiov' of that of the elliptic grid generation equations and comparable to J
that of the hyperbolic grid generation equations. However, the present method

is free from propagation of singularity and difficulty of satisfying the desired

boundary conditions. The extension to three-dimensional geometries,* partica-

Vlarly the fuselage-wing flow orobiems, is being studied.4
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*AIrfoil view Detail

* igxre 4 0-mesh generated by the marching algorithm

Figure 5 H-mesh generated by the marching algorithm
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Figure 6 Grids generated for the RACA-0012 airfoil
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Figure 7 Grids generated for a Gatos-Leajet airfoil (detail),

Figure 8 Grids for an arbitrarily oinberea airfoil (detail)

t
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ASSESSING THE QUALITY OF CURVILINEAR COORDINATE MESHES

BY DECOMPOSING THE JACOBIAN MATRIX

G. David Kerlick+ and Goetz H. Klopfer
+ '++

+Nielsen Engineering & Research, Inc., 510 Clyde Avenue, Mountain View,
California 94043, USA

ABSTRACT

An algebraic decomposition of the Jacobian matrixj _j-.-xi /40 which

relates physical and computational variables is presented. This invertible

decomposition parameterizes the mesh by the physically intuitive qualities of

cell orientation, cell orthogonality, cell volume, and cell aspect ratio.

FThis decomposition can be used to analyze numerically generated curvilinear

coordinate meshes and to assess the contribution of the mesh to the truncation

error for any specific differential operator and algorithm. This is worked out

in detail for aplac equation in nonconservative and conservative forms. An
analysis/ G. 11. K.)1 of the mesh contribution to truncation error for the

full potential code TAIR is given in abbreviated form. The variables introduced

here, and their derivatives are also natural Lagrange multipliers for adaptive

mesh algorithms based on a variational principle,"

1. INTRODUCTION

Local truncation error (TE) can be considered the local measure of accuracy

for any numerical scheme which approximates the solution of a partial differ-

ential equation. In finite difference schemes, this truncation error will

depend upon the discretization of the coordinate system (mesh) upon which the

finite difference approximation of the differential equation will be solved.

It will also depend upon the form of the equation, the algorithm, and the

(unknown) solution. Thus, it is important to know how various properties of the

mesh contribute to the local error so that these contributions can be reduced

where it is possible to do so.

This paper presents a physically meaningful reparameterization of the

Jacobian matrix (and of the metric tensor) which should be of value in analy'ing

meshes and assessing their contribution to the truncation error. This will be

illustrated for two dimensions here, but can be extended to n dimensions.

**Work supported by 11ASA/Ames Research Center. Applied Computational
Aerodynamics Branch. Contract NAS2-11063.

it
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Let the physical domain to be modeled be represented by the Cartesian coordi-

nates x = (x,y,...) i = l,n in physical space. The computational space will be

reparameterized by local computational coordinates t = ( ,n,...) in a computa-

tional space. Thus x = x(F,n) and y = Y(U,n) in two dimensions. Without loss

of generality, we may assume that the discretization in computational space is

even, i.e., i IA&, I = 1,N. For the present we will work in terms of infini-

tesimals.

2. DECOMPOSITION OF THE JACOBIAN MATRIX

The Jacobian matrix [J] = axi/30 j is the matrix of the partial derivatives

of the physical coordinates with respect to the computational coordinates, which

for two dimensions is

= 1::1(1)
We begin the decomposition of (J3 by splitting off that part of the Jacobian

matrix which gives the relative orientation of the computational coordinate axes

(the tangents to the t1) with respect to the physical axes. For example, the

direction cosine of the &-axis with respect to the x-axis is given by

x
cosa= (2)

/ 2 2S+ y

In two dimensions this is the only independent angle (see also ref. 2). In

three dimensions there are three independent angles which can be related to the

three Euler angles. The angle a(,n) measures the rotation of the ( ,n)

coordinates with respect to the (xy) coordinates at every point. Note that

this rotation is an "extrinsic" property of the coordinate because it depends

upon the embedding of (&,n) in (x,y) space. This rotation is only defined for

flat spaces. For a curved two-dimensional manifold, one could not define such

an angle, since the integral of the rotation about a closed contour would be

proportional to the integral of the curvature.
3

The remaining three components of [j] can be expressed in terms of the

metric tensor giJ given by

dk xg 6 (3)
ii kt dCi dtJ
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Twhich is the square of the Jacobian matrix [J ][j]. In two dimensions

2 2
= x + y(

12 +YY

2 2
922 = 

x + yn

The metric tensor is an intrinsic property of the computational space, inde-

pendent of its embedding. It may be decomposed into its determinant and into

factors which represent the aspect ratio of coordinate cells and factors which

measure the deviation of the coordinate system from orthogonality.

The determinant of the metric is given by

detjgi I = J2  (5)

where

* J = det - (6)

is the usual Jacobian determinant. In two dimensions

j = xy n  xnyF (7)

The Jacobian determinant represents the volume in physical space of a mesh cell

in computational space.

The nth root of the metric determinant in n dimensions may be factored out,
4-,leaving the conformal metric gij which has unit determinant. n n dimensions

ij = J-2/ngij (8)

The nonorthogonality of the mesh cell is characterized by the angles e
i jj

between the tangents to the C and 3 coordinate lines, thus

g. giSCOSe .-J = = __ , i f j, no sum on i,j (9)

ii ii iigjj

For orthogonal coordinates 0ij = r/2. This angle depends only on the conformal

* metric, since the determinant factors out of the definition.

Sp-t 
.,
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Finally, the aspect ratios of the cell are defined as the rat'- -f the

magnitude of the tangent vectors

c . -V k w 2,n, no sum on k (10)

here again, this ratio depends only on the conformal metric.

The decomposition is swmnarized in Figure I. In n dimensions there are

n(n-l)/2 orientation angles, 1 volume parameter, n(n-L)/2 orthogonality

parameters and (n-l) aspect ratios.

""' kHMETRIC TENSOR 911
Intrinsic

n(n I) coroonents]

COIFOWAL METRIC
"", intrinsic _

-1II LL. cmonents]

2

CELL ORIENTATION ANLES CELL VOLUIE J CELL AXIS ANGLES CELL ASPECT RATIO A(direction cosS, (Jocorulan determinant) (or uioyonI I y) (stlow)
ruler ong0'. /

extrinsic intrinsic Jntrinsic Intrinsic

a-J1 coimonentsj jI comoonent] fjni -D component s n-,) comonents]

Fig. 1. Decomposition of the Jacobian Matrix.

The complete reparameterization in two dimensions is thus -

3 - xty n - xnYr - /de/tl g

(2 2 . 1/2

X2 + Y 911

.ose t- q !61 1 2
(x 2 +21/2 (w2 + y 21 /2

t 1) , " .11922
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(o 2 2 E 1/2 r(

The inverse of this parameterization in two dimensions is

f 1/2
- Lne coscl

Y=- / J sin

S1/2
xn . cos(4 - Ox)

yn "l-J sin(i -3) (12)

Equations (12) are unique up to a replacement of a by (a - 6) which corresponds

to taking a different choice of axis for defining the orientation angle.

The formulas for the covariant metrics in two and three dimensions are,

respectively

7-A, 1 ~cs c e cote ]"

glj J 
icgce c (13)

o AcscO

( 1 AcosOI AcosOI
1 A 2 c a e 1 2 A 3 c o e 1 3

iA cOse A A2A cos8 (14)

3 3 2A3o23 23 3

where the normalization factor A is

A- 2 2( + 2cosO cose 3coae 23 -cose 2 - cos 2e0 - Cos2 23 (15)

?2 3 1 3 2 313 cs

3. LAPtACE'S EQUATION

The nonconservative (do Rhos) Laplacian operator may be written in general

curvilinear coordirates as

V2f gijviD f (16)

Nb•.



792

iiwhere g], the contravariant metric, is the matrix inverse of gii, ai is
partial differentiation and V. is covariant differentiation. We may also write

1ithe conservative form of this equation in terms of the vector density F

4g g11 jf, so that Laplace's equation becomes

g V2 f = a i (Vg gij3 f) 0 0 (17)

In terms of the parameters introduced in section 2 we have for the nonconser-

vative form:

2V 1 Af -cosef - A-f
Jsin6 CE nn

+ [A - AO cote + 6 csce]f

-A 6 1=
+ [ -

2  cote + 6 csce]f 0 (18)
A2 A T

The conservative form is

a (AcscO f - coto f ) + ; (-cote f + A-icsce f ) = 0 (19)
:n n

4. TRUNCATION ERROR

Suppose that we apply central differences in our finite difference scheme,

so that the first and second differences of f are given by

6f= f( i ) - f( i-)2
2 =f + M!f + 

o(A 4)

6tf2txC t 6 M~O(

6 f = f(i ) - 2f(t i) + f(Ei-) f "O
A_2_ f 1 + O ) (20) .

The function f can be either the solution variable or the physical coordinate
ix . Hence there will be an error of order (At)2 in the Jacobian matrix

components. By the chain rule we can find the errors in the metric tensor and

other geometric quantities derived above. For example the truncation error

Ag in the metric tensor component g11 is

2
Ag 6 2x x + 2y y 1 (21)

6

,. P W
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Using the definitions above we may express these errors in terms of the new

parameters, albeit at the cost of some tedious manipulation. Here, for example, -

a partial reparameterization yields the result that 4

2 2
Ag1 1  6 2 g 1 1 ,1 + g11 ,11 - g1 1 01 ] 122)

Here, x = and a comma denotes partial differentiation. This shows us that,

although the metric tensor is an invariantly defined quantity, its truncation

error is not, since the first derivative of the rotation angle a appears.

The truncation error analysis for this problem contains a great deal of

- algebra, but should be relatively simple to do on a computer, since the manipu-

lations are straightforward. For the moment, we turn to a simple example.

5. POLAR COORDINATES

We consider the transformation to (unclustered) polar coordinates

x = r cos"

y = r sine (23)

so that (,n) (r,f). The parameters corresponding to this are

J =r A =r e =f/2 a (=- 24)

In the nonconservative case, Laplace's equation is

- {rf - r f + f I 0 (25)r rr r ** r

Since the Jacobian of the transformation is computed by finite differences also,

the corresponding truncation errors in the metric tensor and Christoffel symbols

must be computed. We obtain as a result of this computation, in the non-conser-

vative case, the modified equation

V f (lrE)f + (TE)g + 0(A4)

22Ar2  2
(TE)f = 1 frrrr + r frrr) + 12 2 0#4

(TE) - A(±f + f)
g 12! 2 f0 r r

r

tN
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The truncation errors can be segregated into two groups. The "f" errors are

due to differencing of the function while the "g" errors are due to differencing

the metrics. In the conservative case we obtain the respective terms.

(TEll ft -- (4 f t f 
+  At (-tr f 0

12E ~ 4 rrrr r rrr 12 r2 ***
(TElg= . 1e - f " 2fr" fl (2b)

g 12 2 ** - rr r r 2)

Additional characteristic features of truncation errors are shown here.

First and foremost, we observe that every term depends upon the derivatives of

the (unknown) solution, so that a complete a priori determination of the error

is impossible and any a priori estimate depends upon our prediction of the solu-

tion. Second, the truncation error depends on the form of the equation (strongly

or weakly conservative, or non-conservative). Of course, changing the type and

order of the difference scheme will also change the error.

6. ANALYSIS APPLIED TO THE SOLUTION OF THE FULL POTENTIAL CODE TAIR 5 '6

Some numerical results will be presented here. The results will be in terms

of a post-mortem. For a given mesh and numerihal solution based on the full

potential code (Holst 5 ) as modified by Dougherty6 the truncation errors will be

analyzed to see if the mesh indeed was adequate.

The full potential equation written in strongly conservative form for the

velocity potential * is

(Ptx)x + (py)y " 0[ :1
p - 1 + [, + ( (27)

where the density, p, and the velocity x, * y, are nondilmensionalized with

respect to the stagnation density, p0 and the critical sound speed, a*,

respectively; x and y are the Cartesian coordinates and y is the ratio
of specific heats.

In the computational space the equation becomes

(Jpu)g + (JpV)r n 0 (28)

-.- - -, " ,
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where

U - (220 - g02nl/J
2

V (-g12* + gl*0n)/J 2

The density is now given by

1- t210 I 1l 2 l1L1j 0 (29)

In this second order differential equation the metric tensor components

appear directly. This is unlike a first order differential system where only

the components of the Jacobian matrix appear.

Since for full potential equations the density is usually the desired solu-

tion from which the pressure and Mach numbers can be determined we will examine%x t
the truncation error of equation (29) only. For simplicity simple central

differencing will be used throughout the entire flow field whether the local

Mach numbers are sub- or supersonic. Let the exact density be given by PE and "

the numerically derived density by pN. The relation between the two is

E= PN + Ap + higher order terms

- Po 1 + P2 (30)
N( PN)

*The Ap can be derived from the modified equation form of equation (29),

as followsz replace all the derivatives by central differences and expand in

a Taylor series. Obtain thereby the modified equation

42 71 2 2 ) 2C 2 r~l 2 L

P0 A - I - 24 (' 22 2

The individual truncation errors in this modified equation are computed by

applying the chain rule. For example,

I r /

... .. . ..,"-

• , "; 'A
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A[~ 19x11= ~ yv444j g1 1 a
/ I

and

n 2=nr (Xy - Y )+ 2yX -+n2,) (32)

Here again, the effect of the truncation errors of the metrics and the solu-

tion (0) are somewhat separable. In equation (31) the first group of terms on

-. the right hand side is the truncation due to the differencing of the solution.

This part of the error still has the metrics as coefficients. The second group

of terms is the mesh-induced truncation error and also depends on the solution.

only in this sense are the two errors separable. Thus, for a given solution,

one could check the adequacy of a mesh by computing the two separate errors as

above and require that the mesh induced errors be no larger than the solution-

induced errors over the entire solution domain.

This is not a very satisfactory result --i that a mesh-induced truncation )
error only has meaning with respect to a particular flow field solution, so that

there is no completely independent criterion for "mesh goodness."

7. NUMERICAL RESULTS

The grid is shown in Figure 2. Shown is a C-type mesh around a NACA 0012

airfoil. The far field boundaries (not shown) are approximately six chord

lengths from the airfoil in all directions. It consists of 175x31 node points

and is generated by use of the Poisson equation with some grid control

(Sorenson7 ). A solution in terms of density is shown in Figure 3 for a

free stream Mach number M = 0.80 and angle of attack a - 00. These results

are presented as carpet plots with computational variables I, J (representing

the "circumferential" computational variable C(I) and the "radial" computational

variable n (J), respectively) as independent variables. The airfoil surface is

given by J - 31 and the far field boundary by J - 1. The leading edge of the

airfoil is at I - 88 and the trailing edge is at I - 31. The plots are dis-

torted, but this should cause no confusion. The viewpoint of Figure 3 and all

the subsequent figures, except where noted, is from the far field boundary and

the trailing edge, or the lower left hand corner of Figure 2. The rise of the

density at the leading edge stagnation point and at the shock wave is quite
apparent.

-,7-'

&T
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X*

Fig. 2. Grid plot of a C-mesh around a NP.CA 0012 airfoil - 75x3l mesh point..

IVA

0l.

61.0

*Fig. 3. carpet plto est ouin(density vs. grid index) as solved by

TAIR C (ref. 6) on lover half of NACR 0012 airfoil, N w 0.8, a 0. dog.
viewpoint near trailing edge and far field boundary (Tower left hand corner of

Fig. 2).
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The following set of four figures present the components of the Jacobian

matrix. These are x[, y, x n , and yn in Figures 4, 5, 6, and 7, respectively.

These figures indicate that the largest variations of the metrics occur near

the trailing edge and at the far field boundary. They are quite uniform near

the leading edge. This indicates that the mesh has been sufficiently refined

there to redutce the orientation angle variation to acceptable levels. It may be

possible, however, that extra resolution is needed to resolve the peak of

stagnation density accurately.

., " .'1 1... .0.. .

61.0

,,.1*

Fig. 4. Carpet plot of Jacobian matrix component x normalzed by 0.1773.

t

t

e4 -

,.1:1?, .
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71.0

I...

Fig. 5. Carpet plot of jacobian matrix component Ynormalized by 0.1773.

91.

61.0

iq. 6. carpet plot of jacobian matrix component x normalized by' 0.6653.

v-
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r.3.!

510 ,

Fig. 7. Carpet plot of Jacobian matrix component y normalized by 0.3993.

As before, we separate out the rotation parameter a. Its cosine is plotted.

in Figure 8. The sharp turning of the mesh about the leading edge is clearly

in evidence, and as noted before, this can lead to significant mesh-induced

truncation error.

,%71.0

£ 1.

Fig. 8. Carpet plot of cell orientation (rotation) parameter coesa, normalized
by 1.00. Viewpoint is from lower right hand side of Fig. 2, far field,
leading edge.

. ... .. n m t
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The next two Figures (9,0) show the metric tensor components gil and 922'

normalized by factors of 0.03143 and 0,4427, respectively. They are nearly

uniform except near the trailing edge and the far field boundary, with the

largest value g22 being about an order of magnitude more important (its

normalization factor is about ten times larger).

C,,

0

vi.

510

j 10

Fig. 9 Carpet plot of metric tensor component gl2 normalized by 0.0314.

0--

iC

did

" gl.O

I Fig. 10. Carpet plot of metric tensor compnent g22 normalized by 0.4427.

.7,

. ...., ., -. ,
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The parameters based on the decomposition of the metric tensor are shown

next. Figure 11 shows the Jacob ,n determinant j3(x,y)/3(C,n)j. As one would

expect, the only large values occur near the far field, and the variation with

grid index is reasonably smooth there. Of more importance is the variation near

the airfoil surface, illustrated by the plot of the inverse Jacobian in

Figure 12. Here one can see the near singular behavior of the coordinate

system near the leading edge, although here again, the variation is fairly

smooth.

Fig. 11. Carpet plot of the Jacobian determinant (cell volume parameter)
- j0(x,y)/;(;,n) normalized by 0.1179. Viewpoint at far field leading edge.

91,0

l -l

Fig. 12. Carpet plot of the inverqe Jacobian determinant J- I3C(,n)/3(x,y)I
normalized by 32460.

* _ _ _ _ _..



603

The cell aspect ratio A is plotted in Figure 13, normalized by 3.870. The

cells with the large aspect ratio occur near the cut at the trailing edge.

The cell orthogonality parameter cos8 is plotted in Figure 14. There are

* "significant departures from orthogonality in the entire near field, and rapid

variations near the leading and trailing edges.

* a

IKI

.i.1.Cre po:fcl spc ai aamtrA omlie y380

/
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Fig. 14. Carpet plot of cell orthogonality parameter cosO, normalized by 1.00.

Based on these results one would expect most of the mesh-induced truncation

errors to occur near the trailing edge and at the far field boundary. That

this is indeed the case is confirmed in Figure 15. Shown here is the second

group of terms of equation (31) in terms of percentage of pN (the numerically

computed density). The mesh-induced errors occur mostly near the trailing

edge and the far field boundary. They are on the order of 2 to 3%.

The solution-induced truncation error (first group of terms of equation (31)]

is shown in Figure 16. These errors are much larger. They are on the order of

1-2% near the leading edge, 5% at the shock wave, <5% at the trailing edge and

2% at the far field. The total error is shown in Figure 17. As can be seen

some of the errors at the trailing edge and far field have been cancelled.

This is, however, a fortuitous circumstance and, in general, should not be

expected to occur. The errors are still approximately 2% at the leading and

*trailing edges and 5% at the shock wave.

I *

I'A
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F ig. 15. Truncation error due to the mesh (TE) 9 expressed as a percentage of
density pN

r44

rig 16 Trncaionerrr 8~eto 61ff erencing the solution (T) fD expresused as

a pecntg of density P.

4,

NW .
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0

Fig. 17. Total truncation error in the numerical solution for the density,
expressed as a percentage of density p.

One concludes that the mesh of Figure 2 is probably adquate for

controlling the mesh-induced errors, if 5% solution errors are acceptable. If

drag calculations are to be attempted with this mesh and numerical procedure,

then 2% accuracy at the trailing and leading edge is probably not acceptable.

The errors would need to be reduced by further mesh refinement.

8. FURTHER APPLICATIONS AND COICLUSIOUS

The parameters introduced in this paper are useful in several ways. First,

they provide a quantitative expression for the qualities of each mesh cell,

which is useful in its own right.

Second, the local truncation error due to the mesh is expressible in terms

of the components of (axi/BEJ) and derivatives. These can be recomputed, with

much manipulation, in terms of the mesh cell parameters, and their derivatives.

For a given numerical scheme, it is possible to see how the various mesh

properties affect the error. This information can then be used to modify the

original mesh either initially or in the course of the calculation.

These parameters are also natural choices for the Lagrange multipliers for

a mesh generation algorithm like that of Brackbill, which is based on a

variational principle. Depending on the scheme used, one can also construct

variational principles which minimize the leading truncation error of the

algorithm.

V
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The variables J, A. e introduced above are related to Brackbill's variables
which describe volume, smoothness, and orthogonality. In addition, we have

introduced the local rotation a. This parameter can be important in fluid

flow problems where there are regions of high curvature, like the regions near

the leading and trailing edges of wings.

The extension of these methods to three dimensions is conceptually clear.

The manipuitions involved are, however, so long that machine calculation of

the algebra is a practical necessity.
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TI
A E S C TAC T

(--! This paper presents an implicit scheme for numerically simulating fluid

flow in the presence of a free surface. The scheme couples numerical generaton

of a boundary-fitted coordinate system with an efficient alternating-Direction-

Implicit solution of the finite difference equations. Solutions using the

scheme presented here indicate that the scheme can be applied successfull to

free surface fluid flow problems.

INTRODUCTION

This paper presents the initial development of a scheme to numerically

simulate two-dimensional flow of an incompressible viscous fluid with a free

L surface. Currently established numerical simulation methods are capable of

solving free surface problems accurately ,
2 ,3

. However, these methods are

usually most successful for particular geometries or types of problems. In

addition, these methods generally depend on explicit or iterative calculation

of the flow boundary conditions and the free surface location. The numerical

scheme presented in this paper is an entirely implicit solution technique and

demonstrates efficient calculation of implicit boundary conditions and free

surface location. The scheme also incorporates a curvilinear coordinate genera-

tion technique which can follow the free surface and hence should be adaptive

to the solution of problems involving complicated geometries.

Numerical simulation of free surface fluid flows is complicated because

Fthe deforming free surface creates a time dependent and often complex geometry.
Furthermore, location of the free surface must be part of the solution. Also,

boundary conditions on the free surface are nonlinear and must be applied

accurately because they strongly influence flow throughout the entire domain.

Numerically generating a dynamically adaptive boundary-fitted coordinate system

can help overcome these problems. Such a coordinate system can be generated

automatically by an appropriate set of partial differential equations which

yield coordinate lines coincident with all boundaries of the physical problem.

Several authors have shown the applicability of numerical grid generation

schemes to the solution of free surface problems",
s
. One aim of the present

PR.EVIOUS PAG.E
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work is to improve the numerical efficiency with which such grid generation

schemes may be implemented to solve free surface fluid flow problems.

To achieve increased efficiency and favorable stability properties, the

numerical solution method presented here uses a full implicit backward differ-

ence scheme coupled with an Alternating-Direction-Implicit (ADI) matrix method.

No iteration is required to compute the solution for a single time step. To

improve adaptivity of grid generation techniques to the implicit numerical

method, a variation of the usual grid generating equations is used. The mapping

functions in this new scheme satisfy parabolic equations rather than the usual

elliptic equations. The parabolic grid generating equations may be solved

simultaneously with the fluid equations. The reason we have used parabolic

equations for coordinate generation is to try to improve the ability of the

calculational domain to follow the flowing fluid.

The aim of this work is to investigate the feasibility of implementing the

above described numerical scheme to the solution of free surface fluid flow

problems. Consequently, much effort has been expended L correctly coupling

the various elements in the solution scheme to produce a reasonable system of

equations which may be solved without the imposition of restrictive stability

criteria. This emphasis, plus the limited computational resoorces available to

the authors, has resulted in only preliminary testing to date of a few simple

fluid flow geometries. Also, as of yet the scheme includes no capability to

cluster grid lines. However, the scheme could allow for such terms in the

mapping equations and there are plans to add such terms. All results concern-

ing stability and parameter values are due to numerical experimentation.

MATHEMATICAL FORMULATION

Consider the problem of determining the two-dimensional flow of an incom-

pressible, viscous fluid through a channel with a rough bottom. Figure I iflus-

trates schematically such a geometry. In Figure 1, the free and the bottom

surfaces are denoted by y = H(x, t) and y a F(x), respectively, and the physi-

cal region of flow by DF.

y
(011V

INA)

Fig. 1. Physical Plane

- .4-.

V. 
" '
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The equations of motion are the Navier-Stokes equations in the primitive vari-

able form. Continuity of mass is prescribed by the divergence equation. Written

in non-dimensional form, the equations to be solved are the following:

(1) + (.) - -Vp + R_-- V 2u + E in DF

(2) Vu. - 0 in DF

where u denotes the velocity vector, p denotes the pressure, Re is the Reynolds

number and E is the external force (specifically, E contains the gravity term,
I

Fr' where Fr is the Froude number).

Using an ADI scheme to solve equation (1), the velocity field may be

advanced in time. However, the role of pressure in these equations and equa-

tion (2) presents computational difficulties. Introducing an artificial com-

pressibility term into the continuity equation makes it possible to determine

the pressure in a natural and efficient way. The equation of artificial com-

pressibility is

(3) opt -V.u

where 8 << 1 is the coefficient of artificial compressibility. This equation

fits naturally into an ADI scheme. It should be noted that Steger
s and Chorin 7

have used the concept of artificial compressibility to successfully simulate
~~incompressible fluid flows. Indeed, Temana proven, for a certain numerical'

scheme, that the solution of equations (1) and (3) with appropriate boundary

conditions converges to the solution of equations (1) and (2) as 8 - 0.

The most important boundary associated with free surface problems is the

free surface itself. Boundary conditions on the free surface are specified as

follows. Let the pressure be constant on the free surface, i.e.,

k (4) P a P0  on y H(x, t).

Movement of the free surface, y - H(x, t) - 0 is determined by requiring the

convective derivative to vanish. This results in the condition

(5) Ht + uHx - v - 0 on y - (x, t).

To enhance the computational stability of the free surface we add a numerical

viscosity termu  and hence, consider the following equation:

(6) Ht +uH x - v- vHxx- 0.

The quantity v is defined as the coefficient of artificial viscosity. Finally,

continuity of stress is imposed at the free surface. Applying condition 4 one

obtains on the free surface
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r '[2u H -(u + v )=0
Re xX > y X

(7) [ on y H(x, t).
Re[(Uy + V)H - 2Vy 0

Along the bottom, free slip boundary conditions are imposed (though no

slip conditions could also be applied). At the inflow and outflow boundaries,

a uniform flow with hydrostatic pressure is assumed. For computational require-

ments, the inflow and outflow conditions are set at finite values of the channel

length. The equations describing this uniform flow at the inflow and outflow

" ~.boundaries take the form

(8) n-u = u.

(9) p = P0 + (H(x, t) - y)/Fr
2  

on x = 0, x = L.

Here n is the unit normal to the boundary (in the direction of flow) and Fr is

the Froude number. An accelerated start is used to initialize the fluid flow.
Beginning with zero fluid velocities and hydrostatic pressure, an acceleration

term is used to increase the velocity terms from zero to their uniform flow

values.

The goal of the mathematical scheme presented here is to find the solution

to equations (1), (2), (4), (5) and (7). This solution is sought for the

boundary conditions defined by equations (8) and (9) and is determined by

actually solving equations (1), (3), (4), (6) and (7) for small values of the

coefficient of artificial compressibility, 8.

NUMERICAL GRID GENERATION

Some sort of grid generation is very useful when solving free surface

problems. Mqny physical problems that must be solved numerically have compli-

cated geometries. Free surface problems have both complicated and time depen-

dent geometries. For this reason, the authors feel that numerical mapping

techniques hold much promise for accurate solutions of free surface problems.

The basic grid generating Lechnique employed here follows a scheme similar

to those used by Shanks and Thompsons . Assume that the physical region DF

illustrated in Figure 1 is mapped onto a fixed rectangle, Q, in the 9 -

plane, with boundaries of DF mapping to boundaries of Q. For example, suppose

that the free surface, AB, maps onto the top of rectangle Q, the bottom, DC,

maps onto the bottom of Q and the sides, AD and BC, map onto the left and right

sides of Q, respectively. Such a mapping is shown in Figure 2. Note that it

is not necessary that we map the region DF in such a straightforward way to the

- n plane. In more complex geometries the mapping will be more complex. For

___o-.

/ ---. iA. ,- .. . - .. ,
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*the preliminary results presented here, the above described configuration and

mapping was considered sufficient to test overall feasibility of the scheme.

free surface

:A B, A '

DF Q IIuI , I

D ,. CL D' Cf

Physical X Computational
plane plane

Fig. 2. Free surface problem transformation

Let = f(x, y, t) and n = n(x, y, t) denote the mapping functions. The

variables C and n are chosen to satisfy the following partial differential

equations:

(10) C t - v 2  "0

(11) ET _ J 2 .

* (Boundary conditions for these equations will be discussed later.) Other

7- authors s frequently require that each mapping function satisfy a Poisson equa-

Vtion and thus maintain some control over coordinate line spacing. The present

scheme could be modified in this manner. It is felt that the inclusion of

coordinate placement capabilities will be necessary before the scheme presented

here can be successfully applied to more difficult geometries such as flow

about a cylinder.

The difference between grid generating equations (10) and (11) and other
more common grid generating equations is the addition of the c t and et terms.

t t -

Note that by taking c small (or even zero), the usual schemes can be approxima-

ted. However, the primary purpose for introducing the time derivative terms in

equations (10) and (11) is to allow experimentation based on different values

* of F. Specifically, it is hoped that providing a truely dynamic grid may

* better represent the flow of the coordinate system in union with the changing

physical domain.

As is true for any such grid generating scheme, equations (1), (3), (4),

(6), (7), (10) and (11) are solved in the T -i plane rather than the x - y

plane. After transforming the system to the - n plane the following system

tTII

ALM

., _,= :-:, ... .. . .. . .. . .. . .. . .. . ...... : , . ,,, -. .. ... . . /... --- , *
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of equations is obtained:

(12) (Jq)t + {Jf[(ytx, - xty.) + fyn - Sxnl]

+ {Jlq(xt5 - ytX ) - fy + tx 1
I Yn xn -[ y + (xn l )

.{r(vn Z [2 Dx~ - (Dya + (Dx q))
RC -q) +i T(xq + &z

+ Re j--¢ + Lj(DY&J)J - [-(Dxn) + (DY q) + E

(13) cJ2x t - ax +2Bxx -yx = 0

(14) EJ2Yt - ay +"+2BYlyn - =Ynn = 0

(1.5) Ht + (H y - Hy) - V + [ (ynH - yCHn)]
t 4n J [T &

((YH - y H )] 0

(16) Uri 1(8u -Jv)
Y ~ B

(17) v -- (Ju + $V

(18) p = P0
where q= [u, v, 8p]T f= [p + u2 , uv, u]T , g [uv, p + v2 , v]T . J is the

Jacobian of the transformation,

00

- X2 + Y2, B1 X xx + yy y -a x 2 + Y2 and equations (15)-(18) are evaluated

along the top of the rectangle in the C - n plane. Several remarks should be

made. First, equation (12) is in conservation law form. Secondly, equations

*(15) through (18) are on a line of constant n which maps to the line

* y - H(x, t) - 0. This makes it possible to eliminate the free surface height,

* H, from equation (15). Simplifying gives

In ¢ x  -x + [:0., ~(19)+-x -v+ ... -O. •,

Thirdly, the mapping functions x - x(4, n, t) and y - y(g, , t) are tim depen-

dent unknowns which must be determined at each time step. For applications of

grid generating schemes to problem without a free surface, the mapping fun-

tions are time independent and hence need to be determined only once. Finally,

the boundary conditions on the bottom, inflow and outflow are unchanged by the

transformation, except they have a new domain.

Boundary conditions for equations (13) and (14) are defined so that the

boundary of Q maps onto the boundary of DF (note that this Is the inverse of

'... :" ..... .... • .. ...

'OW
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the mapping given by equations (10) and (11)). This results in the require-

ments that x(O, n, t) = 0, y(O. n, t) = n, x(1, n, t) - L, y(l, n, t) = n.

x(t, 0, t) = L& and y(C, 0, t) = F(x(C, 0, t), t) where for simplicity Q has

been defined as the unit square.

NUMERICAL SCHEME

The goal of the numerical scheme is to provide an effictent, noniterative

and stable method for solving equations (12)-(18) presented in the previous

section. As mentioned, an ADI scheme is used for numerical efficiency. In

*: addition, all unknowns, including the flow variables and mapping variables both

within the domain of flow and on the free surface are advanced through time

simultaneously. Hence computational efficiency is improved by having one

iteration advance the entire solution one time step. Moreover, the authors

feel that, because the free surface strongly effects the solution throughout

the entire domain, free surfac. values should be calculated with the values for

the rest of the fluid. It is hoped that ultimately this totally implicit

method will permit larger time steps and speed convergence to steady state.

The numerical scheme presented here is analogous to those described in

reference 9. The format of the scheme includes:

i) linearization of the nonlinear terms by Taylor series expansion about

the previous (known) ti-e level,

. ii) a backward time, centered space differencing,

iii) an expression of the equations as a system of coupled, linear differ-

ence equations, and

iv) a Douglas-Gunn1 splitting to generate the ADI system of equations.

The final result is two one-dimensional linear difference equations that can be

solved efficiently by standard block elimination techniques. The above outline

is simplified, ignoring the many computations (and seemingly endless detail)

necessary to get the equations in their final form. In fact, the authors
found it necessary to analyze each equation individually. Each equation,
including boundary conditions, was linearized, differenced and reduced to a

canonical form. The equations were then put back together and the two ADI

block tridiagonal equations were determined. Note, again, that the final ADI

system includes finite difference expressions of all flow equations and Loun-

dary conditions.

When tn * [us v. pq, x yT at time step n v nAt is known, the ADI system
n+1determines x in the two steps shown below:

(19) (An AtD1 (k* )I n) Wt(Dn + D f + D a n +B
. -n

-7r.......... .,
'" ' ,1 "- ",*- " . 4-i ~ I g DSH • i IB I .I.
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(20) (An -tDl(, n+l ) An(,* n

where An, DE, Dn and Dn are 5 x 5 matrices and Bn is a 5 x I vector. The

matrices and the vector B are constructed from known values at the nth time

step. The matrix Dn contains the & spatial difference operators while Dn con-
& n

tains the n spatial difference operators. Similarly, Dnn defines the cross

difference operator; this operator is lagged in the ADI system. The term u*

is an intermediate solution.

It is possible to speed computation by reducing the number of arithmetic
nn n

operators required to solve (19) and (20). Each of the matrices A , D and D,

that determine the block elements of the tridiagonal systems has the following

form

xx x x x

0o o:x

where x denotes a nonzero entry. Thus, the block tridiagonal solver need only

invert 3 x 3 and 2 x 2 blocks. This partition bypasses the computationally

more difficult inversion of the original 5 x 5 blocks. Computation time should

also be shortened by adapting the ADI system to a vector processors. Unfortu-

nately, such a facility was not available to the authors.

NUMERICAL RESULTS

Most of the authors' computation effort to date has been concentrated on

the problem illustrated in Figure 1. The bump on the bottom of the channel has
a height corresponding to 20% of the total fluid depth. Initially, the fluid

depth, H(x, t) - F(x), is set to one with initial velocities u - 0 and v - 0.

An acceleration term is applied over the entire domain on each of the first

five time steps to increase the velocities to their uniform (non-dimensional)

flow values of u - 1.0 and v - 0.0. The fluid flow is specified by a Reynolds

number, Re - 20.0 and a Froude number, Fr - 2.0. Computational parameters are

0 - 0.02, c - 20.0 and we usually used dt - 0.02. The calculational domain is

defined by a 37 x 11 grid. At the end of sixteen iterations, the results

appear to be reasonable, although eonvergence to a steady solution has not been

achievcd. The shape of the free surface generally follows trends expected from

analytic results. Free surface location at time t - .32 is shown in Figure 3.

04
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1.04-"

, 0 1 2 3
Channel length x

Fig. 3. Numerical results, Re = 20.0, Fr = 2.0,
time t = .32 (At = 0.02).

At this point it is difficult to fairly access the stability of the scheme.

Limited computer resources have prevented the authors from completing more than

sixteen iterations for the 37 x 11 grid. With such a few iterations it is not

possible to perform meaningful experimentation with a variety of time steps.

Nonetheless, the scheme behaves well with time steps up to At - 0.05 for the

iterations completed to date. This time step seeas to indicate acceptable

numerical stability. Further stability analysis and numerical experimentation

are merited. It should be noted that we have not yet added any artificial

dissipationl° . In the future, numerical dissipation terms will be added.

The two parameters, c and B appear to have a significant effect on the

solution. Although optimum values of these parameters have not been determined

some observations have been made. Values of e with size on the order of the

Reynolds number (e - &(Re)) permit the grid to move well with the fluid.
Re

Unexpectedly, when e was chosen small (E n &(f&8)) the rid disassociated

itself from the fluid flow and numerical instability resulted. Various values

of B were also examined for their effect on the solution. In keeping with the

* principle of artificial compressibility, it was expected that obtaining

reasonable solutions would be dependent on smell values of B. However, for B

in the range of 2 x 10-4 to 2 x 10- 2 , results were nearly identical. Since

larger values of B appeared to provide better stability for larger values of

At, B was set at the value 2 x 10-2 .

The computed results given above were obtained on a CYBER 170. Each

iteration required roughly 1.5 mins of CPU execution time. It should be noted

that no attempt has been made to optimize computer programming efficiency.

Thus, the time per iteration, though currently longer than desired, seems

'~~ ~~ ~ ~~~.. ........... I,; ,:,
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reasonable when compared to iteration times for other methods which solve free

surface flow problems.

SUMMARY

This paper presents an entirely implicit scheme for numerically simulating

fluid flow in the presence of a free surface. The scheme includes numerical

generation of a boundary-fitted coordinate domain in which all calculations are

performed. An efficient solution of the flow equations is achieved by applying

an Alternating-Direction-Implicit method to solve the transformed, linearized,

differenced equations. Algebraic complexity of the system is reduced by deter-
mining a canonical form for the individual equations. Efficiency is increased

" by inclusion of all boundary conditions in the final matrix equations. Solu-
tions obtained using this numerical scheme indicate that it can be applied

successfully to free surface fluid flow problems.
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ABSTRACT

An adaptive grid, finite-volume method has been used to solve the Navier-

Stokes equations for complete (forebody and afterbody) flowfields around blunt

bodies. The code, which is applicable for axisysmetric or two-dimensional

flows, allows the mesh to adjust during the computation to provide a closer

spacing of mesh points in regions of high gradients, thus minimizing the number

of required computational points. The solution technique is explicit, utilizing

a maximum time-step advancement at each grid point to accelerate convergence to

the steady state. The code has been fully vectorized for efficient solution on

.2 the CYBER 203 computer. A very flexible rezoning routine is used to concentrate .

mesh points anywhere in the field, either by a user-defined weighting function j "
* or by allowing high gradient regions to adjust the grilf. The grid adjustment

routine is implicit in nature and represents a very small portion of the total

computational cost. Currently, the code runs in approximately 1.6 x 0 00

seconds per grid point per iteration.

INTR1OUCTION

The finite-volume method of numerically solving systems of conservation laws

has been successfully applied to a wide variety of problems in fluid mechan-

ice.1-6 Its ability to maintain conservation of mass, momentum, and energy

from cell to cell, even in rather complex nonorthogonal coordinates, makes it

particularly attractive for use with adaptive grid techniques. For the purposes

of this paper, a finite-volume formulation (FVF) is defined as a discrete

approximation to a conservation law written in integral form which (l) uniquely

defines control volumes in such a way that control volumes (cells) do not over-

lap nor are gaps left in physical space and (2) uniquely defines fluxes and

forces acting through cell walls so that sumsability without residue7 (conserve-

tion) is guaranteed. It differs from a finite difference formulation (FDF) -.

only in the way a problem is approached. For example, given a system of con-

servation laws we might consider the FDF as a discrete approximation to the

-., :, -.. .... *- ',. "* :"
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differential form of the laws while the FVF is a discrete approximation to

the integral form of the laws. A review of various FVF's suggests that all

FVF's can be written as FDF's (and usually appear that way in the literature)

but not all FDF's can be written as FVF's. Furthermore, discretizing the

divergence form8 of the conservation laws in general coordinates to obtain the

FDF does not guarantee that the formulation can be expressed as an FVF because

conservation is not maintained due to some confusion of how to properly define

the metric coefficients. Various ways of defining the metric coefficients to

overcome this problem have been given in References 5 and 9. The discussion

there leads one to conclude that while there may be a certain amount of

ambiguity in how to properly define or discretize the metrics the problem can

be overcome without a great deal of difficulty. It should also be noted that

the FDF of a conservation law written in nondivergence form can in fact be a

conservative FVF. An example of such a scheme is presented in Reference 10.

The discussion up to this point has been concerned with taking a differential

form of a conservation law, approximating it by an FDF, and testing if it

satisfies the requirements of an FVF (or forcing it to satisfy the requirements

by suitably defining the metrics). The approach taken in the presentation which

follows is to start with the integral form of the conservation law, approximate

it with an FVP on some generalized grid, and expand the formulation to see what

FDF results. It will be shown that no special treatment of metrics is required

and in fact no terms which are readily recognizable as metric coefficients ever

appear. It is only when the FVF is expanded into a format more familiar as an

FDF do these metrics appear as ratios of the dimensions of cell walls to cell

volumes. Furthermore, the unexpanded form of the FVF is ideally suited for

vectorization.

Within this framework a grid adaption routine has been developed which

greatly facilitates placement of mesh points where needed. A description of .- "

how the adaption algorithm has evolved from the groundwork established in

references 11 and 12 to the current implicit adaption scheme will be presented.

Finally, sample calculations of supersonic flow over a Viking Aeroshell, includ-

ing flow in the wake, demonstrate the versatility of both the FVF and the

adaption algorithm through its ability to concentrate points not only in the

boundary layer but also in the free shear layer.

FINITE-VOLUME FORMULATION

Consider a system of two-dimensional conservation laws which can be

expressed by the vector relation

-9 Sr.
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au DF + G
+ _ _ 0(la)

SsS ~ + 5(I +G) *d -0 (lb)

where Equations (Ia) and (lb) are the differential and integral forms Of the
conservation laws respectively, and 1 and 3 are unit vectors in the x and

y directions, respectively.

A control vo.'ube In two-dimensional (or axisynmeetric) space is determined by

a quadrilateral whose vertices are defined by adjacent mash points. The Ei, i)
cell refers to the cell with vertices (i,j), (i+l,j), (i,j+l), (i+l,j+l).

Points of constant j index define & coordinate lines, increasing in

4:.the direction of increasing i. Points of constant i index define f

coordinate lines, increasing TI in the direction of increasing j (see

Fig. 1). The flux through the wall defined by the points <(i,j), (i,j+l)>

is calculated using information from the i, j) vertex on the predictor step

and from the (i, j+l) vertex on the corrector step for odd tim steps. The

order is reversed for even time steps. The flux through the wall defined by I'-

* the points <(i,j), i+l,j)> follows a similar pattern of definition, using

information from the i, j) vertex on the predictor step. The FV1F for the (i, i)

cell is written:

IU n~
A i(j )-(x -x )

Tt 'j ~i- Fi~,j 1 Ci+ 1 1 J+l i l i+l i+l,j+l Ai+llj

- )+G (x -

+F (y -x n 0 (2a)

i'j ~l~j yi~ i'ji~l' ir
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au n+ 1+

lij Ai1 j 4 i+l, j +l(y 1  ,1 +l +l' - j i+1i+lj+l - xi+lj)

Pnl n1(x -
iJ+ (Yi,!j+l - yi,j5 i,j1 i,j+1 - xi,j)

- i 4 (Y 4  )4 "'Y (x -x
-+l ,j+l(yi~l,j+l - yij+l) + +lj+ i+l,j+l xi,j+l
n+l -fl .n+- .

ri+l,jYYi+l, j  ,j) - G ij(xi+l,j -xj) 0 (2k)

- p

0 n+1 .5 UIn+1 + , 1
i~i ki'j id / (3)

" where Aij is the area of the [i,j] cell. Equation (2) mut approximate the
* .integral form of Equation (1). The first term of Equation (2) must approximate

the integral of au/at over the entire cell. In the FVP we set '.

t At (4a)i,j ti 4a
i' ij

D i+l,j+l i+l,J+l (4b)

Note the use of a At which varies from point to point In Equation (4).
Now consider a finite-difference formulation, DFD, of Equation (1) which

can be transformed to

au + F 3 + " a* a--B

where x - x(C,n), y y(,n). The FDF of (5) is written- . - - -

dp

I* -;+'+ ,. :
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UU At (F+i, j ±, i. + + (Gi1 -al~ )l

+ 1 i,j+1 - ~ + + 3-~1 - 1 ) +1
A An TI I(6a)

i~ X ij y ij

t(F1ij. ni l _ + (Gi,j -Gii 1
x An (6b

Un+l +1~

ill i.~j +~[ (6c)

The 1W (Eqs. (2) and (4)) and tI',e 101 (Eq. (6)) are equivalent if

n + E -y y r j (7b)

Sij i+j i+I,J+l~

T (xi+,,j41 -x~+ ATI/Aj (7d)

nx~ 1 1 - jj. 1 AnI/A i 1 1 1j (7f)

(Y - 4.4

*i 4
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C yij (xXji.lj .il j) At/AiIjl (7g)

TI x -Xi AI/A j (7h)
yij ijl -,- -'-

A linearized analysis of the FDF (Eq. (6)), after it has been expanded into

a one-step scheme shows the following: (1) Equation (6) is a consistent

representation of Equation (5), (2) the truncation error for variable

At.. is first order in time and can be expressed

1)TI

where

3F aG aF aG
c~~~~U t 6 x+"" y, D - yU- nx + yU- ny

and

hijl(,n) = At(,/Atltijonij)

Note that E1  0 if Atij - constant, and (3) the spatial truncation error is

of O(A2) where A is proportional to a cell wall dimension if all etc.,X

are first-order-accurate approximations to ti etc., and (C + S,)/2, etc.,

are second-order-accurate approximations to t etc. These conditions are

formally satisfied by Equation (7). For example

1E + F,)1/2 - tx + AUA [(Jytrl) + y + ATl(yn)l&}/
2  (9)

where J - men - N :"

Consequently, it is seen that while the FDF or FVV is second-order-accurate

(for AtiJ - constant) excessive stretching or skewness of the grid can

introduce large factors of second-order terms. Furthermore, these factors

multiply term like a 2U/aE, etc., and they contribute to the overall| "-'

rtificial viscosity of the method. At present, grid-induced errors are

:.v

4. . . ,t . .
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checked by comparing results obtained for the same problem on the different

grids constructed from more points or from different adjusting parameters (see

section on ADAPTIVE GRID). It should also be noted that while Equation (5) is

not in strict conservation form, the FVF which models Equation (lb) is con-
7

servative in the strict sense of sumation without residue. For example,

regardless of the grid used, the FVF returns an exact uniform flow if a uniform

flow is used as an initial condition.

It is noted that the equations and analysis in this section are for two-

dimensional flow. An axisyumetric extension introduces only minor complica-

tions. Finally we point out that the FVF (Eqs. (2) and (4)) reduces to
* 13

MacCormack's method in Cartesian coordinates. There are an infinity of other

ways to define cells and flux through cells on a general grid, each of which

lead to a unique FVF and unique definitions of metric coefficients for that

particular FVF.

BOUNDARY CONDITIONS

Only a cursory description of boundary conditions can be provided due to

space limitations.

Wall- u - v -0.

Adiabatic wall or constant wall temperature. ap/an = 0.

(n coordinate normal to wall)

Shock: Rankine-Hugoniot relations for a discrete moving shock are

applied. Pressure behind shock obtained from extrapolation

from interior points.

Symmetry: Limiting form of differential form of governing equations

solved using MacCormack's method.

Outflow: Primitive variables obtained by extrapolation.

ADAPTIVE GRID

The present grid adjustment scheme has evolved from one which imparted

velocities to grid points based on gradients in the field as in References 11
;and 12 to one which rezones the comutational mesh using an implicit algorithm

at any desired frequency (i.e., once per time step or once per 1000 time steps).

ori y point i,j) in the computational plane was connected o the

four adjacent points (iil,J), (i,Jil) by springs whose spring constants

it , w t re detroneod by t function of the gradient of some dependent

variable between the points. For example, the spring along the ith row

connecting points (i,j) and (i,j+l) was defined

.. ....
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S1 + cfij f,+/r (10)

where c is a constant and Atr is the distance between the points. Grid

points on the boundaries were free to move along the boundary as if on a

frictionless rod. Grid points on the corners of the domain were held fixed.

Small adjustments in the x and y directions were assigned to grid points

as determined by the net forces on the grid points in the respective directions.

After every time step, the grid was updated and checked to make sure that no

grid overlap was imminent.

In a noninteractive test case where p(x,y) was prescribed to model the

pressure field of an oblique shock crossing a uniform flowfield (p(t) 0).

the grid evolved from one of equally spaced rectangular cells to the one shown

in Figure 2. In an interactive test case where the solution p(x,y,t) was

alloed to evolve with time, the final grid distribution (Fig. 3) is seen to

be much more erratic than that of the previous case. The pressure field for

this case is shown in Figure 4. .

By sacrificing the colum to colun (or row to row) influence of the spring

system (i.e., no springs between column i and colum i+l) a superior algorithm

in terms of computational costs and smoothness of grid distribution can be
constructed. (Smoothness of grid distribution is a subjective judgment. A

7 coordinate line whose direction or length changes erratically from point to

point is judged nonsmooth.)

Consider the coordinate line of constant index i as shown in Figure 5.

Let sj be the length of the line in physical space from the first point to

the jth point as defined below.

a, - (xj - xll) + (y- Y1 _) 2 J1 2  (11)

Let fJ'm be a table of dependent variables at the point sj defined by

f j'l - -i f f f e (12)2"j, fJ, 2  Yj' fJ, 3  Pit fJ, 4 " uj, fJ, 5  vj, fj,6 - J

The grid points in physical (x,y) space are mapped onto a straight line in

a space. Let each grid point be connected to its neighbor in a space by a

spring with spring constant K between the j and j+l points to be "."

defined later. - .

/7
., ,,., .'
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Let Ani be the distance between the j and j+l points in s space.

Then KX An equals a constant. Therefore,

Anj = X, AI/K j (13)
I

The known total length of s can be expressed as

J14 JN

, SJN+I = nj :dnlK1 I 1/Yj -&niK, SUN (14)

where JN - total number of intervals. Consequently,

An.1 - SJN+i/ (K1 SUM)

An j -S 1+/(K SUM) (15)

The constants K. can be defined explicitly or implicitly. An explicit

definition of Kj assigns a value to the spring constant independent of the t.

position of the spring in s space. For example,

Kj = exp(-c• j/JN) (16)

provides an exponentially increasing spacing of grid points from j - I to

j - JN where the constant c1  is used to control stretching. This definition

provides no adaptive capability but does provide a very quick way of con-

centrating points near boundaries.

An implicit definition of K assigns a value to the spring constant

which is a function of the position of the spring in s space. For an

implicit case, the algorithm is implemented as follows:

* (1) Start at the first column (or row) of data and compute and store all

the values of aj and f eq..l.to

(2) Initialize nj and nj equal to sj for all J, ITER - 0.

(3) Set IT ER-?TK + L.

(4) Using the known stored values of independent variable s and dependent

variables f , compute the new values of the dependent variables d at

all n with a univariate interpolation routine where d Ij, d1 1 2 " Y1, , ": .

etc. -. ...

(5) Compute K- K (dm) ' .
j J. .

, '46
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6) Compute the new coordinates nj from Equation (15); set njN+l =jN+l

to keep end point values unchanged.

(7) Compute an error norm to determine convergence

L 2 2 1/2
2 - - -lj/

j22

If L2 < 0.0001, proceed to step (9).

If ITER > 100, stop the procedure.

(8) Set n. = n. for all j and go to step (3).
(9) Replace xj, yj, pj, etc., with dj,, dj,2* dj, 3 , etc., go to

next column of data and repeat all steps.

Typical definitions of K. employ gradients of velocity, internal energy,

or Mach number. For example,

Kj = 1 + c3 Ie(nj+ I } - e(n )I/(nj+1  (18)
1 3 -) j

"4 where c3 can be used to control the concentration of mesh points in regions

of high gradient. Examples of grid distribution using these gradient adaptive

* mechanisms will be presented in the RESULTS section.

In cases where a high gradient develops rapidly, as in the vicinity of an

* expansion corner of a planetary probe, the adaption algorithm can have trouble

converging. This problem is overcome as follows.

(1) After step (4) in the adaption algorithm, the overall change in the

new grid distribution nj is damped by writing

• nj . c nj + (I - c4)n (19)
j 4j14

* where 0 < c4 < 1 (C4 is typically of order 1/2)

(2) After step (5) in the adaption algorithm, the values of the spring
constants are filtered by writing

K n  -K + 2K +K )- /4 ; j2,JN-l (20)

I J-~1  j j+l

Often the convergence problems can be overcome by keeping the rezoning interval

mall or by avoiding large changes of c3 in Equation (18) between rezonings.

The major advantage of the rezoning procedure described herein is that it ,1

provides a very quick way of providing an adaptive capability to the

" N ' .
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finite-volume formulation. The option to control rezoning frequency allows the

grid to dynamically adapt to developing features of the flow (i.e., shock,

. shear layers) and then to be held fixed as steady state is approached. The

* rezoning procedure can also be used as a separate program to study the effects

of monitoring various gradients in the field or using different definitions

of K.

* RESULTS AND DISCUSSION

The finite-volume, adaptive grid algorithm described in the previous sections

has been used to compute supersonic flowfields over spheres, cylinders and two

planetary probe configurations. The most comprehensive tests to date for

testing the adaption algorithm have been on the Viking Aeroshell (Fig. 6), a

configuration which protected the Viking lander for its descent through the

Martian atmosphere. This section will deal exclusively with those results.

* -The freestream conditions, M - 2, y = 1.285, Re. = 5000, have been chosen

to permit comparison with the results of Reference 14. Subsequent calculations

at higher Reynolds numbers have been generated to demonstrate the capabilities

of the adaption algorithm.

* The grid shown in Figure 6 was achieved with an explicit definition of XC

(Sq. (16)) with c /JN - 0.15, 90 points around the body and down the wakecenterline srand 31 points between the body/wake centerline and the bow shock.+.. --

The pressure distribution around the body/wake centerline is presented in

Figure 7. This case was run to convergence in approximately 35 minutes of

computing time with a timing of *3 x 10 sec/iteration/grid point. Recent

changes in the code affecting the manner in which data are stored have de-

creased timing to :1.6 * 10- 5 sec/iteration/grid point.

An adaptive grid calculation which monitored velocity gradients was applied

* to this sme problem. In the previous case, the grid was not sufficiently

stretched to adequately resolve the boundary layer at the separation point.

Since the separation region is very important in determining the nature of the
a15

flow in the wake, it was decided to run this case with 91 points across the

shock layer. The converged grid for c3 - 0.5 is shown in Figure 8. In

defining the values of K near the wall, a test was included that would

make K - 3, J < 4 if K was previously less than 3. From J - 5 to 9,

the minimum allowable value of Kj was decreased linearly to zero. This
forces a concentration of points near the body and in the wake. Pressure

distribution is plotted in Figure 7. Comparisons with numerical results of

i

AL 4 ,
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Reference 14 for shock shape and pressure distribution down the wake centerline

show generally good agreement in Figures 9 and 7, respectively.

Solutions for the higher Reynolds number cases (5 * 104 , 5 * 10 ) were

generated sequentially using the previous results as initial conditions. All

of these results are for laminar flow and so while the highest ones are physi-

cally in error they test the adaption routine's ability to resolve the large

gradients associated with such flows.

Some interesting results of these high Reynolds number studies are presented

in Figures 10 through 17. The converged grid showing a concentration of

4 points in the free shear layer is presented in Figure 10. The streamline

pattern around the expansion corner of the vehicle and associated Mach number

contours are presented in Figures 11 and 12. The outer extent of these figures

is defined by the physical location of the 25th mesh point. The velocity and

*' grid point distributions along the T1 coordinate line (i=22) located just
4 6

ahead of the expansion corner are given in Figure 13 for Re., - 10 and 10

These results were obtained using twenty passes through Equation (20) with

c 3 - 0.5 and 1.0 respectively. The global internal energy contour plot in

*" Figure 14 shows the high gradient regions in the shear layer behind the expan- fi

sion corner, the captured recompression shock in the wake and a small, high
gradient shock-like region on the symetry line just behind the base where

recirculating velocities rapidly change from supersonic to subsonic. This

phenomenon was also observed in the results of Reference 14 using a different

numerical approach. The high gradient free shear layer extends approximately

one-fourth maximum body radius beyond the corner after which point the gradients

rapidly decrease and the flow turns toward the axis. There is a large region

just below the shear layer of low density (.2 < p/p_ < .7) recirculating flow.

A Mach number distribution along an T1 coordinate line (i-34). Figure 15,f shows the high gradient region and distribution of mesh points through the

shear layer. The complexity of the flow in this region and the ability of

the adaption process to concentrate mesh points in the high gradient regions

away from the wall further demonstrate the versatility and sensitivity of the

*adaption process.

CONCUDING REMARKS

The Finite-Volum Formulation (FYF) described herein has been shown to be

a consistent and conservative apptoximation to the Xavier-Stokes equations.

The formulation has a first order error in wave speed, proportional to the

local value of At, when the local maximum time stepis used to advance the

Z1, '
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solution at every point. The formulation is second order accurate when constant

time increment is used to advance the solution. However, at large Reynolds

numbers (small cell volumes) the constant At advancement of the solution,

using one value of At that is stable for all points, is impractical because

many more iterations are required to converge the solution. Converged solutions

-•for complete blunt body flows using approximately 3000 mesh points can be
obtained within 30 minutes using the variable At option and adaptive grid

rezoning on the CYBER 203 computer.

In all of the problems considered herein adaption along only one coordinate

line is quite sufficient for the purpose of moving mesh points to high

* 4gradient regions in the flow. Restricting grid motion along one coordinate

direction permits application of a highly efficient implicit grid adaption

procedure. The routine can be implemented at any desired frequency thus

permitting dynamic adaption or cost savings by adapting only after large incre-

ments of iteration count. Grid point concentration in the boundary layer and

free shear layer have demonstrated the success and versatility of the adaption

algorithm.

(
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Fig. 6 Grid over Viking Aroshell Fig. 8 Grid over Viking Asroshefl

obtained with explicit definition obtained with implicit definition
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INTRODUCTION

This paper considers the construction and utility of an idealized computa-

tional space (henceforth called tau space) for finite-difference computation

of physical systems. i-.
The tau space idealization is with respect to the following features:

(a) the "physical system-adaptive" grid discretizing tau space is to be always

uniform and orthogonal; (b) the transformed equations, initial and boundary

: conditions are to be not more complicated than the subject physical problem

space; and (c) the transformation relations between tau space and physical

Jp space are to be reasonably simple and easy to implement in conjunction with

' desired finite-difference schemes.

The construction of such an idealized computational space requires: (a) the

ability to discretize a physical problem space with an orthogonal grid which

k is everywhere and always adaptive to the collective influences of the geometry,

the physics and the number of grid cells (or discretization scale) of the sub-

S. ject physical system; and (b) the ability to formulate relatively simple

transformation relations between such a "physical system-adaptive" grid and a

prototype uniform and orthogonal grid.

One method of approach is to first construct a reasonably simple measure

field which is independent of reference frame and which unifies the interactive

influences of the geometry and physics of a system and the scale of the grid

discretizing that system. Once such an invariant, unified measure field is

specified, the dynamic (or moving adaptive) grid for a physical system in a

reference frame would logically be defined as the grid in that reference

*. frame which instantaneously equidistributes the subject system's invariant,

*unified measure field. Furthermore, a computational spec, idealised in the
* " aforementioned sense, may then be constructed by basing the metric of the

system's problem space on the instantaneous values of that system's invariant,

unified measure field.

This paper successfully implements the above approach and also outlines a

reasonably simple procedure, based upon tau space transformation, for efficient

* and accurate finite-difference computation of physical systems.

I PREVIOUS PAGE I ....
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A number of specialized grid methods for finite-difference computation of

physical systems have been proposed in the past; for example, References 1

and 2. Most of them, however, employ static grid discretization with or without

adaptation to the system's physics. A few, such as References 3 to 6 have

incorporated some sort of dynamic grid adaptation. But none of these methods

has been developed to explicitly and efficiently incorporate the interactive

influences of scale, geometry and physics in the computation of systems. The

ideas presented in this paper not only fill the above needs but also open the

way for further developments towards efficient and accurate physical system

solvers.

STRAIN FIELD W)0DL OF PHYSICAL SYSTEMS

Consider a physical system to be always covered by a uniform, regular,
- " orthogonal base coordinate system Xfxi,t}, which may be chosen arbitrarily

to properly describe the system. Further, let the physical system also always

be referred to an orthogonal, curvilinear coordinate frame S{si,t}, which

is always fitted to the system's boundaries. The reference frame S{si,t},

V then represents the physical system's geometry, and the distributions
STk(sit), k > 1, i > 1, of the system's material properties Tk, relative to

ki
U s{s ,t) characterize the system's physics.

It is desired to construct a reasonably simple, invariant measure field

*which unifies the interactive influences of the geometry, physics and discreti-

zation scale of a finitely discretized physical system space. The procedure

used in this paper is sketched in Table 1 and described below.

First a common basis must be established with which to unify the scale,
geometry and physics of a physical system.

Consider a finite discretization of a physical system. It may be perceived

as a process of deforming the base coordinate system x., ,tl relative to some

* undeformed absolute frame A. As the number N, of discretizing grid cells

tends to infinity one recovers the undeformed absolute frame. But, since

fewer than three grid cell nodes may not be used to meaningfully discretise a

t space, the base coordinate system X, may be perceived as becoming infinitely
deformed relative te' A as N ' 2. Thus, the discretisation scale of a

finitely discretised physical system may be specified in terms of a deformation

moment pAs of the bas. coordinate syntem covering the physical system's space.

And Ij may be defined as an inverse function of (N - 1).

The geometry of a physical system may be uniquely specified from knowledge

of the system's boundaries and the distribution of the principal geometric

II

* -,. -,a " ; :. . . -' ,
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TABLE 1

A STRAIN FIELD MODEL OF PHYSICAL SYSTEM4S

PHYSICAL SYSTEM BASE GEOMETRY REFERENCE GEOMETRY PHYSICS

REPRESENTATION TY ~ T J f

SLOPE (OR SHEAR). 8 A1T =~ GT~S
8A ~~ ~-I = G=Y 112

CIRCULAR CURVATURE. pi 11 = IM' IJ A ( 'PT=TS IT
A Gsxl S

TORSION. P PA = 0 P:DEFINED IN TEXT OT : NEGLECTED

DISCRETIZATION SCALE. * =lln(N-1)

DEFORMATION FIELDS. a OX(A) rKM I (X CK 21 +p(*T05 C(~

=K__ _ __ jA* OSI OTG G S) T 3w1 i8TTI+ R n

ABSOLUTE DEFORMATION IQ IA) +0S(X) + oT(S)(
FIELD.) y___________________

ABSOLUTE STRAIN r = e
DENSITY FIELD ______________________________

deformation moment-total curvature (1± + ) --of the system's reference 'i.
Finally, the physics of a physical system may be uniquely specified from

knowledge of the boundary conditions of the system's material properties and

the distribution of the principal material deformation moments--slope (or shear)

r eT' and total curvature Wji. + OT) --of the system's material properties
±

relative to the reference frame Sbe ,tQ.

Thus, the scale, geometry and physics of a physical system each represents

a deformation field which is uniquely specified by some set of principal

deformation m ents. Grid adaptation becoms meaningless as the ninber X,

*of discretizing grid cells tends to infinity, since all grids would tend to

the sm size. Therefore, the discretization scale influence must be made to

permeate both the geometric and the material deformation moments, too.

Let the magnitude of a scale, geometric or material deformation be presuined

to be invariant with respect to all reference frames. The unified influence of

the scale, geometry and physics of a system may, therefore, be represented by

a "resultant absolute deformation field," whose total deformation magnitude

remains invariant with respect to all reference frames.* This total deformation

V,,
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field would be the sum of the principal deformation moments of X{xi,t)

relative to A, of se ,t) relative to X{s0,t}, and of Tko(s ,t) relative

to Sts ,t}.

Let the scale deformation field be specified by the parameter x(A), which

is defined by some inverse function of (N - 1), where N is the number of

discretizing grid cells. A relation which models this scale influence, but

which may not necessarily be the ideal relation is:

aX(A) = K1/{N 9n(N - 1)) (1)

Let the geometric deformation field be specified by the invariant parameter

(X), which is defined as a function of the invariant total curvature of the

reference frame S{si,t}, relative to X{x ,t}. This function must be

modified by the scale influencel a simple relation is:

as(X) = 2(WG + -G1/)n(N (2)

The sign of the curvature is significant to a unique specification of

S.geometry.

* Let the material deformation field be specified by the invariant parameter
a T (S). For the purpose of grid adaptation the direction of the material j
deformation field is not significant. Therefore, 0 T(S) may be defined as

the simple sum of the magnitudes of the principal material deformation

moments 0T  and ()IT + T)  This function must also be modified by the

scale influence; thus:

a T(S) K 13{6TI + I(iT + T)I /LnN - ) (3)

If a physical system is characterized by more than one property (or dependent

variable) Tk' k - 1, 2, ... M, then:

(s)- Tk (S) (4)

The resultant absolute deformation field of a physical system may then be

specified by y where:

Y { (A) + 0(X) + aT(S)} (5) .x,....

?-I-
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For compatibility each of the above three deformation field components should

be normalised, using, for instance, the maximm value.

Let the measure of deformation be referred to as a "strain," and let the

strain per unit of a reference frame be called the "strain density" in that

reference frame. It follows from the foregoing that a finitely discretized

physical system may be modeled in a reference frame S, as a strain density

field r(s); and such a model would uniquely identify the physical system

except with respect to the direction of gradients and curvatures of the

material properties of the system.

The strain density field r(S), measuring the invariant total absolute

deformation field y, may be expressed as some function of y. Desirably,

a simple function with features which enhance the utility of the resulting

measure should be chosen. The exponential function is simple, smooth, makes

the measure field positive definite and, above all, permits the measure field

to be split conveniently along desired coordinate directions of a reference

frame. Because of these desirable features the exponential function will be

* , employed to express the strain density field of physical systems. Thus: j
r(s) - ey  (6)

For finite-difference computation, the reference frame s(s',t), of a

physical system is usually represented as a finite set of curvilineari
coordinate curves, s , sequenced along the time coordinate, t. The components

of the deformation and the strain density fields along each si coordinate

curve are then:

Cxi(A) - KlVAii - Kc1 i/Ni (7a)|i

sitx i  - 2'VGi Gi (1,1..4

aT(s i ) K 3 {leTi + '"'Ti + OTi) '*i (7c)

and

ri(si) + K +i/i IC(.% Gii + K3  (u1  + T3i) I (7d)

lv 'i G i Nil Ti.,

-V.:n.

C.' ,.,,I..,. ,

[- 0 ,. ... ." 
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where overbars denote appropriately normalized quantities; and

w£ J/L(ni - 1). Note the crude similarity between Equation (7d) and the

grid stretching ideas of Dwyer et al.5

The values of the coefficients 1 ' K2" K 3 my be chosen arbitrarily

within certain bounds, and may therefore be used to produce desired weighting

effects on scale, geometry and physics, respectively. In that sense, KI,

K20 K 3 may be called grid clustering intensity coefficients. From

expeximenting with a few examples the following typical values seem adequate:

K 1 - 1 2 a -0.1; 0 < 3 < 5 (8)

For dynamical systems with advection and diffusion of properties, KC3 is

really a function of the average cell Reynolds number Re E UL/ NN),

where U,L are respectively the scaling parameters for velocity and length in

the physical system, and V is the relevant diffusion coefficient. .

Any value of K > 0 produces grid clustering adaptive to a subject

system's physics at an intensity proportional to K 3 ' But Values Of K 3 > 5

ay tend to overpack the grids leading to both numerical errors and reduced
•computational efficiency.

Given the invariance, with respect to reference frames, of the total

absolute strain of a system, one may refer to a strain field model of a

physical system in a reference frame as an "invariant map" of that system.

* , - The process of generating such strain field models in different reference

frames may then be called "invariant-mapping."

Sample comutation of strain densiSy fields

Consider the following siwple physical system: a plane parabolic curve-

y - X2 , 0 < x < l-wth a sine wave distrbution T -sin(2wx), of i

temperature along the curve. Let the system be discretized by N cells. The

absolute strain density field may then be computed as follows:

scale influence parameter - - 1/n (N - 1)

base geometric space curvature a -"/N 23/.U_ 2, 3/2
reference geometric space circular curvature - G ¥=/ (1 + yx)

(wheres yX - ayx - a2 y/3x2)
reference geometric srace torsion a - G a 0

* material shear - e _ Ts 3/2 .:
material circular curvature =-- - /(l +

PT aTas Ts( + TP%7
(wheres T2T/34 2)

To IWT/1#- Too- .

S• -• •



843

tmaterial standensity-

absoute strai ensity w Iex{:+i K 2 +IK3(O1 + I

y T

0 .33 .61 1.0 0 .5 1.0 1.3

(a) geometric field (b) material field

r L 0~ ~ CWI"TIC STRAIN DENSITY .j .
rT MATERIAL STRAIN DENSITY

0 .5 1.0 1.5

(a) strain density fields
Fig. 1. Sample strain density field model of a physical system

* VLSRAMC MID GMUuuICH~ USING MIANIIT-Wh&PING

A fundamental requirement of a dynamic grid is that the grid intensity

should at all time mimic the unified influence of the scl, geometry and

* physics of the subject system in the reference fram. This may be assured

by equidistributing any proper measure of the unified influence of the scale,

geometry and physics of a system among the discretizing grid "Ile.

Recalling that the absolute strain field of a physical system, as

cas'oeptualized in this paper, instantaneously measure* the unified inf luence

of the scale, gemer and physics of the system in the system's reference

freme, it follows thats "the dynamic grid of a system in a reference fr m

my be constructed by requiring that the instantaneous absolute strain field

of the system in the subject reference frame be equidistributed among the

grid cells." ~ '

'*#>
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The equidistribution of the instantaneous absolute strain of a system among

its discretizing grid cells implies the relation:

rk(S) * AVk(S) - constant - 0(t)/N (9)

where rk(S) is the local value of the strain density in the kth discretizing

cell of size AVk(S), in the reference frame S{s,i,tl; 4(t) is the instan-

taneous total absolute strain for the subject physical system; and N is

the number of discretizing grid cells.

The invariance of the total absolute strain of a system which respect to

reference frames then implies that:

N
r ( ks) •AV (s) 4D (t) (10)

k=l

- instantaneous constant in all

reference frames

In view of relations (9) and (10) it follows that between any two invariant-maps

of a physical system, each discretized by the same number N, of grid cells,

the following relation must hold at any instant:

r k(R.1) • v(R_) - rk(R2) * AV(R 2 ) - 4(t)/N (11)

where rk(Rl), rk(a.) are local values of the subject system's strain
density fields in corresponding cells of sizes AVk(1), tVk(R2 ) in the

i"reference frames Rpfri,t), R2 [r , t), respectively.

Relation (11) implies that provided a physical system is not an infinitely

deformed space a transformation with nonvanishing Jacobian exists by which a
physical space dynamic grid for the system may be related to some prototype

(or computational) space dynamic grid of prescribed features.

THE TAU CONPUTATICAL SPACE

6 In light of the invariant-mapping and dynamic grid generation schemes
already presented in this paper it may be observed that if an invariant-map

of a physical system is discretized with a dynamic grid whose metric in based
upon the instantaneous absolute strain of the subject physical system, then

such a dynamic grid will always be uniform and regular. The change of the

4' . .

I
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space metric will essentially appropriately "stretch" all "equi-strain"

regions to become "equi-sized" regions.

The new reference frame represented by this uniform, regular dynamic grid

is referred to in this paper as tau space, T{fi,T.

In order to map a physical system, discretized by N grid cells, from its

physical space reference frame s{si,t} to tau space T{fi,T}, relations (9)

ard (10) are combined to form the following special tau space invariant mapping

relation:

r k(S) AV k(S)/ rk(s) Av (kS) 1/N , Avk(T) (12)
I lk-l

where AVk(T) is the unit measure of grid cell size in tau space. Since

AV*(T) 1 1/N, this unit measure of grid cell size in tau space may be set
k

equal to unity and made time-independent by multiplying relation (12) by N.

In so doing, tau space becomes an integer space, with N • A V(T) AVk(T) - 1.

A grid dynamism constraint

* Applying the tau apace relation independently along the boundary-fitted

curvilinear coordinate lines one may state in a limiting form the following

transformation relation between s{s i,t} and T{ti,t}:

si/ai i r ds /(Niri) Vi  (13)

where V may be called a "strain function" field, and Vi  is its component in

the i-coordinate direction; Ni  is the number of grid cells along the

i-coordinate direction; and, no sumation over repeated indices is intended.

Equatior.s (13) show clearly that the transformation metric coefficients
irelating a system's physical space reference frame S{s ,t} and tau space

T{Ei,-} are explicit functions of the subject physical system's absolute

strain. Since a system's absolute strain is formulated to mimic the scale,

geometry and physics of the system at all times, it follows that Equations (13)

constitute a valid set of generation equations for dynamic grids--moving grids

adaptive to the scale, geometry and physics of a subject physical system.

Therefo ', Equations (13) may be called a grid "dynamism constraint" relation.

4.
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The grid dynamism constraint is equivalent to the following requirement:

Physical-Tau Space Transformation

Jacobian Field, J = Physical System Strain Function Field, V

- Physical Space Dynamic Grid Cell Size Field>I
Steger and Sorenson7 imposed this requirement in their grid method but employed

an empirical static model for V instead of the dynamic strain function

*field introduced in this paper.

One may further establish the transformatiou: metric coefficients in terms

of the base coordinate system X{x ,t}. This requires knowledge of the

transformation relation between X{x ,t) and S{s,t}. If x{xi,tl is

Cartesian, then the quadratic form: (dsi ) = _i j d i dx3  may be expressed

in term of the angle of slope aii, of the curvilinear coordinate curve a

relative to the base coordinate line x3; the result is:

ds - dxj coo a (14)

For a two-dimensional problem space the use of Equation (14) permits the

general first-order transformation metric coefficient, x - axi/3&J to

be written in term only of the strain function field and the angle of slope

r fields, as:

x. - V cos (no summation) (15)

For a three-dimensional problem space the cosine function would be replaced by

a more comlicated function of a. Higher order metric coefficients may be

obtained by repeated differentiation of Equations (15).

A grid orthogonality constraint

A requirement of orthogonality would impose constraints on the aij-fields,

oo uensurate with the constraint that the transformation metric tensor
k k

I , ixXj have only diagonal entries.

The aiu-fields may be computed by developing and solving their governing

differential equations, for instance as suggested by arsi. 8 Alternatively,

the a -fields may be obtained by interpolation between known boundary values,

as discussed in Appendix I of this paper.

F* *1 I I
;I
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A grid smoothness constraint

In addition to x and higher derivatives thereof there are also the
i i

transformation metric coefficients x T = ax /DT, which indicate the speed of theit

dynamic grid. The evaluation of XT has significant consequences on the

quality and utility of any adaptive grid method. Rai and Anderson have

attempted an empirical model of xi with encouraging results. A nonempirical
iT

expression for x may, however, be given, based upon a generalized principle

of continuity, namely: "that a property Q, of an object evolves in the space

of that object always according to the generalized advection-diffusion law:

(.3/at) = V{-u*Q + V VQ (16)

where t, V are respectively time coordinate and the V-operator in the object-

space, and u*, V* are respectively the advection and diffusion coefficient

fields of the subject property in the object-space."

Such a continuity principle merely specifies a "smooth" field of the

subject property in the object-space.

The object-space of interest here is the computational (or tau) space
iT{ it. In tau space the physical space base coordinates, x , are dependent

f variables which evolve by advection-diffusion processes. Therefore, from

Equation (16) a natural constraint on the physical space base coordinates x

in tau space is:

i i i
T = V{-u*x + *Vx} (17a)

A physics-adaptive geometry for a problem space essentially requires that:

ii
Ca) the diffusion coefficient for xi be identical with the diffusion

coefficient v, of the dependent variable(s) driving xi , and (b) the
i

advection velocity for x mimic the corresponding advection velocity field u,

of the dependent variable(s) driving x , but always remain smaller in

magnitude. That is V -V; u- c u and 0 < c < 1. Thus, Equation (17a)

may be rewritten as:

- V{-c cux + vVx (17b)

Equations (17) in conjunctt-on with Equations (15) are a complete set of

generation equations for the physics-adaptive geometry of a physical system.

Since they derive from the generalized principle of continuity, which

_ I"" " 
' - . - -- ,------. ,- -',
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essentially is a "smoothness' constraint on the evolution of property in

space, Equations (17) constitute a grid Osmoothness constraint" relation.

Equations (17) way further be rewritten in an elliptic form as follows:

V(vVx 1) = {x + V(c*uxi)} (ISa)

i
-P(& , T)

For a boundary-fitted but nonadaptive geometry, x T  0 and c* 0. Thus:

V(vVx i ) - 0 (18b)

One may infer from Equations (18) that the popular elliptic grid generator

methods of Thompson, et a1
9 

constitute an imposition of the grid smoothness

constraint in an elliptic form, which requires either no adaption to a

system's physics or the empirical formalation of a complicated grid forcing
function P( ( ,T). , "

in general one would first transform a subject physical system from its

physical space to a tau space representation. Then, using a suitable finite

difference method, one solves the transformed system instant by instant on

- --the uniform, regular, fixed grid of tau space. By computing also the

physical space grid corresponding to the fixed tau space grid at each desired

instant, one then has an instantaneous physical space solution of the subject

system.

The detailed tau computational space method is now presented and illustrated

with two sample problem.

Step 0: specify the physical problem space. The physical problem space

consists of the set of governing equations and the initial and boundary con-

ditions that describe the geometry and physics of the subject system in

physical space.

Step 1s obtain the tau problem space. Transform the physical problem

space into the equivalent tau problem spaceI that is, obtain the transformed

governing equations, initial and boundary conditions that describe the geometry

and the physics of the subject system in the idealized reference frome--tau

space. For this purpose, the relations in Appendix 2 are used. This consists -, t

of the application of (a) a grid dynaism constraint-to continuously adapt '

**.. A .
,b - W0

" - " . _ ~~~~~~*~ - . -:. T:* *.- .:.. _ .
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the geometry to the physics and scal, of the probleml (b) a grid orthogonality

constraint--to reduce the numer and-complesity Of the transformation metric

coefficients; and (c) a grid smoothness constraint--to functionally express

tegrid speed xc in ter of th yte' hyis geoimetryan icts-

tion scale. The result is a set of equations and conditions containing only
I-vTk Vi, an i as the dependent variables and (9 ,T) as the independent

variables.

Stop 2t set-up a tau space finite-difference schm. Set up the desired

finite-difference scheme for the tau problem space. For this, it would seem

that a locally one-dimensional, weighted-mean finite-difference method would
be most compatible. Such a schemat (a) has nearly identical perspective
of the "grid cell" as the tau computational space concept of this paper;

(b) emloys a three. five, and seven point operator for one-, two-, and three-

dimensional spaces, respectivelyi (c) is antisymmetric in relation to the

velocity field; and (d) may be used in conjunction with an explicit or implicit

solution method.

Stop 3: obtain the tau solution space. Zmplement the finite-difference

solution of the tau problem space, for instance in the manner shown in Figure 2.

USIN FILSIa AUW J1 FIlS ASh TO IN DS

USN ISTIAlL k FIELDS NJ CINWI so VID D

INSU M Vi FILD

a*. AM, FILD

USIN CURM st AW , Fim. CM rkW&I

USi N NE 2.M Jlovabart oFW A10u apace omatl IEnLmeho

-_ __7 tS ~ ~ - -
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It should be noted that the two key parameter fields-- ij and V--critical

to these solutions are evaluated in tau space as follows: (a) a i are

evaluated by the simple interpolation scheme outlined in Appendix 1; and

(b) V is evaluated along each coordinate direction as:

S i = r i ds i/(Nir), with no summation over repeated indices. The tau

solution space consists of the instantaneous values of Tk , V and aij at

the tau space grid nodes.

Theoretically, in the numerical solution process each time level (or

instant) should be iterated until Tk, Vi , and aij simultaneously converge

everywhere. In practice, however, since one desires only that the discretizing

grid mimic (but not necessarily exactly match) the unified influence of the

scale, geometry and physics of the subject system, it is usually sufficient

for the adaptive grid to lag the physical property fields by one time level.

For the initial time level, however, all fields must be solved to simultaneous

convergence everywhere.

Step 4: obtain the physical solution space. At desired instants obtain

"I the physical solution space by computing the base coordinates xi at each

tau space grid node, corresponding to the already computed Tk, V, and a
, t fields. For thiLs, the grid dynamism constraint relations (15) Ae integrated" "

along each coordinate curve, using boundary values of x .

The integration procedure used in this paper is the following:

i Xi()
+x() x(l)

:;+ - xi(l)j Vi cos ald Vi cos al di ii ",, .

lc~i <w~(19)S< < N, .

no smation over repeated indices. This normalized form ensures that no

boundary overshoot occurs.
This completes the solution of the physical system at the desired time

instant.

Illustrative !eaMple 1. Consider the following 1-D Blurger' s equation: ),

";" " " -- > .'"-'T

. .. V
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u (x'0) =1;-< x <1

u (-I, t) =1 ; u(l't) =-1 (20)

* j Using the 1-Dl version of Appendix 2, the transformed equation in tau space is-

UT _u * u + V*ua ; E

where =* V/V V Vx, (21)

u* cu/V c c>1 (C1/l c))

and c* is as defined in Appendix 2. The initial and boundary conditions

in tau space conform with the given physical space conditions.

Equation (21) is discretized with a weighted-mean, finite-difference

scheme such as is given by Fiadeiro and Veronis. 10An implicit solution

method is employed.

The results are presented in Figures 3 and 4. For all Reynolds numbers

convergence to steady state was rapid and the maximum error at steady state

was less than 0.01%, provided 0 < C K 3 5 and 1 < c < 10 are Judiciously

chosen--in this case, in proportion to the average cell Reynolds number

Re~ c 2/(vN), with K 3 -. 5, c -6,10 as Re( c - 0 and K 4-.0, cl as

Re .0.
C
Illustrative example 2. Consider the following two-dimensional advection-

* diffusion equation:

ut =-alu1 -au~ +(u~ + u ); 0 <1x< 1 0 < y. (22)
yyy + ' _x y

where a., a2  are positive constants or variables.

This is to be solved in a square domain with the initial and boundary

conditions:

'f

COw
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U ON

- EXACT SOLUTION
K 3 I0 PREDICTION

-2

U 0

-1 -,33 .33 1 -1 -. 33 .33 1

Ca1.1 c:1O

Re M 10 N =7 R= 106

rig. 3. Steady state solutions of sample problem 1
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(a) u-field in pbysioa, space (b) u-field In tau space
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(a) strain density field (d) x-field in tau spae.
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u(x,O,t) - 1 + {1 - exp((x- 1)/u)J/(l - exp(-l/u))

u(O,y,t) - 1 + (1 - exp((y -1)/v )/{I. - exp(-1/V)}

u(X,y,O) - 11 x > 0, y > 0

u (X, 1t) - u (l,Y, t) - 1

Using the relations of Appendix 2, the transformed equation in tau space is:

UT -u 1 U ~U 2 ur + V IU + V 2 unnF ~>ig r ?>i (23)

where u1  c (1 a coo OL + a 2 sin (1)/V 1I

qato (23 is cis Ctize sn a(7) x )gi n hV, drcin

ITR-5 2 2 1

The ntiau cantabonaycniioi a space methodihthgvnhsia

rpideyin weighted-mean finite-difference scheme, foreferen pyscal 10sm.

All coitt resultrfor me in x a apce whc atK3 an inst-.1antre presentd

the dyncs 5grid of aonvebecto sicay ste arpia thed mnt am

uniform orstadthooae grid Anr imll.nicatfti ehd is ha the ereviruinexample

ard eghe-a finite-difference schemeo ofr aoptn physical systemswu. iimsdi h

finite-diffeence schem is of the weighted-man type and proportionately

11 ,~j em 41
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essential classes of constraints can independently provide a control on the

geometry of a physical system, as References 3, 11 and 9 have shown. But,

the concerted action of all three classes of constraints should be most

desirable from the point of view of enhanced finite-difference computation of

physical systems.

Other desirable features of the tau space method include the following:

(i) dynamical similarity is inherently maintained between the physical and

tau space, by virtue of the strain field idea;

(ii) the strain field, which is a critical element of the tau space method,

is formulated as a relatively simple function of the geometrical, physical

and scale deformation fields of the subject physical system;

(iii) by specifying a system's geometry in terms of the angle of slope

fields, relating the physical reference frame and a uniform base geometry of

the system, the system's geometry is functionally interpolated in a rather

simple but accurate manner, using only the known boundary geometry and the

strain fields of the system. No complicated boundary geometry and governing

equations need be derived or solved in order to adapt a system's geometry to

t its physics. This lends the tau space method the desirability of the algebraic

" * grid generator methods;

(iv) all transformation metric coefficients are evaluated as simple

analytic functions of the strain field and the angle of slope fields. This

obviates those computational errors usually introduced by a finite-difference

recursive evaluation of metric coefficients;

(v) the implementation of the tau space method is reasonably straight-

forward; the transformation relations are reasonably simple; and the resulting

computational efficiency and accuracy, using only a few grid cells, appear

to be quite high; and finally
* ' (vi) dynamical systems of more than one dependent variable can be handled

without increased difficulty.

SBy being able to operate accurately and efficiently with minimal number of . .

.* grid cells, the tau computational space approach may make it possible to

solve, at reasonable costs, some large physical systems which hitherto easily

overtasked available computer facilities.

Many interesting features of tau space still remain, however, to be fully

understood.

-{ .+
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Appendix 1: distribution of aij in two-dimensional tau space

The general scheme for computing the aj-fields of a subject physical
system in tau space is not given here but may be readily formulated.

If a physical space is a plane and if the orthogonality constraint is

imposed, then only one cij = a field requires to be known. For such cases

the distribution of a on the bounding curves would usually be known.

Reoognising that: (a) at any instant the intermediate curves between the

bounmding cures must smoothly develop from one to the other; (b) the spacing
of these intermediate curves is determined by the transverse component V2,

of the strain function field; and (c) the distribution of points on each
bounding or intermediate curve is determined by the longitudinal component V1,

of the strain fraction field, it follows that if one can establish the

adaptive distribution of points on the bounding curves, then along each

-I3
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=constant curve, transverse to the 11i constant curves, one knows the

boundary value. of a. The intermediate values of a my than be estimated

* by the following interpolation:

a I+ 01) f (TO (l

where

a I .Ca~L) + ;I( (" 2 ) a

(Ti - d i 2 d

Equation (Al) appears to give results which satisfactorily approximate the

solutions of the wave-type, equations (Rfernce, 8) governing the evolution of
091 on a plane surface. It contains two parts. The first, C9. M i), is a
nonlinear direct interpolation of a between its boundary values explicitly

- independently of the problem's inner field physics. The second pert,

Q~(1 is a "generation-of-a" component. it is explicitly independent of the
boundary values of a and reflects and direct influence of the inner field

physics an the system's geometry.

Awendix 2t transformation metric coefficients'.

* .. When a physical system is invariantly mapped onto tau space the governing .

equations must be rewritten in term of tau-space coordinates. in general.

it f - I (z 1 - 2 (4 ) i - 1, 2, 3, 4, thens

af4 -(f/asi) (a*/ 3ai) (A2)

Froms Nquation (12) and higher derivatives thereof generalized transformation

relations can be fully constructed for derivatives of the dependent variable f.
From the grid dynamism contraint relations outlined in this paper the

transformation metric coefficients for a two-dimensional spae my be written
as follows:

e.e

0- f.

" 41
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x v cos a; -v2 sin a

4 A = V, sin ay V2 cosO

i't = -c u1y - c¢u2yN + vl' + '2y

j =V1V2 = (x yn1 - NY

(xxl + yy)= . (A3)

-r where Ul, u2  are the transformed advective velocities of the dependent

variable(s) in the and f-directions, respectively, vi, V2  are the

corresponding transformed diffusion coefficients; and 0 < ck < 1, k = 1, 2

are constant coefficients whose values tend to unity as Rec - U/(Vkk)

tends to infinity and tend to zero as Re * 0; Rec is the average grid

cell Reynolds number based upon the average physical space grid size (L"'),

the scaling velocity U and the relevant property diffusion coefficient Vk .

I
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EQUIDISTANT MESH FOR GAS DYNAMIC CALCULATIONS

C. M. ABLOW
SRI International
Menlo Park, CA 94025

The accuracy of finite difference solution of the differential equations of

fluid flow is increased by fitting the mesh to flow boundaries and refining it

where the solution has sharp variation. Fitting a mesh to flow boundaries is a

subject of current research effort. Refinement in layers at the boundaries is

readily accomplished in a boundary-fitting grid.

The wave fronts and shocks of many gas dynamic flows present additional

* tlayers of sharp variation away from the boundaries. Before the benefits of mesh

refinement in these regions can be obtained, simultaneous flow solution and grid

adjustment are needed. A split calculation that alternates between steps of

tsolution and steps of mesh improvement would be nearly as fast and easier to

implement. The results reported here are derived for the mesh improvement step

of the split calculation. A properly refined mesh is obtained that fits a givenp4
solution function.

An optimally refined grid for numerical computation minimizes the truncation

error of the difference equations being solved. This grid has proven to be ex-

pensive and difficult to construct for one-dimensional problems.2

A readily constructed grid that can reduce truncation error uses distance s

along the solution curve as the equally incremented computational coordinate.

Let x be the independent variable and z the dependent one, and let variable

*subscripts denote differentiation. Then

2 2
x + z i1

so that xs and z are restricted to being less than I in magnitude for any

slope zx . Even though a system with two dependent variables, x and z, needs to

be solved, much more accurate results are obtained on several examples2 than

with the original one-dependent-variable system. Adding multiplesof the curva-

ture 3 to the distance a further increases the accuracy but also produces a

system of higher order.

A generalization to two-dimensional surfaces of the one-dimensional curvi-

linear distance coordinate is the equidistant mesh, in which the grid points

divide each grid line into segments of equal lengths. If the flow region is

'i N.
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compact and simply connected, a computational domain with the same topology may

be taken to be the unit square. After the corners of the square are located on

the boundary, the boundary segments are mesh lines with equidistant mesh points.

An alternating direction implicit solution can then be carried through to locate

-, the interior mesh points.

The difference equations to be solved are written in terms of the grid as

projected into the (x,y) plane. For low truncation error the projected grid

should be as nearly orthogonal as possible.4 The corner points are therefore

moved, by an outer iterative calculation, toward achieving orthogonality. The

algorithm for this minimizes the sum of the squares of the cosecants of all the

• .angles, a quantity readily calculated from the vector products of the sides of

each angle.
5

Figure 1, taken from a previous report, shows the grid obtained with a

rather academic example. The mesh points are properly clustered where the

solution surface is steep. The corner points are located so that at least some

of the angles are nearly 90 degrees.

The gas dynamic example in Figure 2 represents the flow of air past a semi-

infinite slab with a wedge-shaped leading edge. The wedge half-angle has been

chosen to be 14.3 degrees so that the bow shock is at 45 degrees to the on-

coming Mach 2 flow.6 The rarefaction from the shoulder is contained between

characteristics of slope 58.1 and 30.8 degrees. The flow region is a rectangle

8 slab-widths long and 4 wide that extends one width upstream of the leading

edge. The region is not wide enough for the shock and rarefaction wave to

interact.

Function z has been taken as a smooth approximation to the Mach number. With

the origin of Cartesian coordinates at the leading edge, the flow is approxi-

mated by

z = 1.728 + 0.272 tanh 2(y-x)

upstream of the rarefaction wave. Downstream of the rarefaction wave, z - 1.95.

For the rarefaction wave, there is a cubic spline interpolation in the slope

between z - 1.46 and the z - 1.95. To avoid a singular point on the boundary,

the center for the approximation to the rarefaction wave was moved 0.1 slab

width below the shoulder.

The 8 x 8 equidistant grid for the above function z is shown in Figure 3.

Little effect of the function itself is evident. Also the corners of the flow

region apparently inhibit the motion of the computational corners, which remain

very close to initially guessed locations.

7--'
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To increase the effects of functional variations, the function values were

multiplied by 5 and 10 with the resulting grids shown in Figures 4 and 5. The

functional effects are increasingly evident: the grid lines cluster near the

shock and roughly fan out in the rarefaction. In Figure 6 the 4 x 8 grid is

* presented for the same function as in Figure 5. Differences between Figures 5

and 6 are small. One may conclude that mesh refinement will not appreciably

alter the grid.

The equidistant grids satisfactorily cluster near the shock and the flow

corner, but are so distorted as to be unlikely to increase the accuracy of the

* difference calculation. An alternative to the equidistant mesh on the solution

k' surface Is an isometric mesh. Isometric grid lines are orthogonal to one

another and become more nearly equidistant at any point the finer the mesh.7

The isometric grid is found by solving Beltrami's equations for the two grid

coordinates. The use of these equations has been suggested8 and some calcula-

tions made9 by analogy with the widely used Laplace grid generators1 0 to which
they reduce when the surface is plane. A disadvantage of the isometric grid is

that it is orthogonal on the surface rather than in its projection on the (x,y)

plane.

One may conclude that the equidistant mesh does automatically provide refine-

* ent in regions of large variation. However, the mesh can be useful only if a

way of obtaining more nearly orthogonal grids is found. .

Support of this work by the Air Force Office of Scientific Research is

gratefully acknowledged.
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JA-364522-1

FIGURE I EQUIDISTANT MESH FOR z =tanh 8Ir -1.2) IN THE UNIT
DISK, WHERE r IS THE DISTANCE FROM THE POINT1'

2 - FURTHEST TO THE RIGHT

M 2
1.46
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JA-364622-2

FIGURE 2 AIRFLOW OVER A WEDGE-CUT SEMI-INFINITE SLAS
Mach numbers %own for region, of uniform velocity.
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FIGURE 3 EQU!DISTANT GRID FOR FLOW MACH NUMBER

. FIGURE 4 EQUIDISTANT GRID FOR FLOW MACH NUMBER TIMES 5

FIGURE 5 EQUIDISTANT GRID FOR FLOW MACH NUMBER TIMES 10
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.7 FIGURE 6 EQUIDISTANT GRID FOR FLOW MACH NUMBER TIMES 10
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*Applications and Generalisations of Variational

Methods for Generating Adaptive Meshes

. .Jeffrey Saltzman and Jeremiah Brackbill

Los Alamo. National Laboratory, P.O. Box 1663, Los Alamo*, MM 87545

*INTRODUCTION

*--Generating computation meshes for irregular regions have been of interest to

4 a lot of people In many areas 'of research for a ions time. One technique that

has net with success over the long run has been to generate meshes using an

elliptic equation or a system of elliptic equations.

* The technique in its simplest form, uses a system of Laplace equations which

are solved by direct or iterative methods. As people gained more experience
with this method, source terms vere added to the Laplace equations to gain

additional control of the mesh. In addition, variable coefficients of the

" derivatives were added for further flexibility.

In this paper..6 work with a method that systematically generates a set of

elliptic equations without having to explicitly perturb a set of Laplace

equations with source terms and variable coefficients. This technique uses the

variational methods often associated with elliptic equations.

t C
* tFollowing this introduction,'.ai briefly discuss the variational

formulation in two-dimensional cartesian geometry. Then the formulation will

be genralized to three dimensions. Next, several three-dimensional test , ."

probleme will be shown. After displaying these three-dimensional results, we

will then exhibit an application of the mesh generation technique in two

dimensions. This application Involves generating an adaptive mesh for a

supersonic flow past a step in a wind tunnel.

*This work performed under the auspices the Department of Energy

LIUR-81-3335
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THE VARIATIONAL FORMULATION IN TWO DIMENSIONS

Finite difference schemes on nonuniform meshes all have the obvious

characteristic that the independent variables in the calculation must be kept

* track of as well as the dependent variables. This is usually done by

introducing an indexing scheme that tags the independent variables in the same

was as the dependent variables. For example, in two dimensions, this is done

by assigning two indices to a variable such as the fortran dimension statement

" idimension x(30,40), y(30,40)

This is quite suggestive of a mapping. This mapping is one from a

rectangular array of integers to a set of real coordinates. By filling in

*between the points using an interpolation scheme of some sort we now have a

continuous mapping of a rectangular region into some two-dimensional region.

This mapping is illustrated in figure 1. To be more systematic we vill call the

collection of points formed from the indices of the grid points the parameter

space while we will call the collection of points formed from the grid points

the physical space. With this mapping, we now have a tool to describe

qualities of the given mesh in a quantitative manner.

(IJMAX) (IMAX,JMAX) (0.1) (1,1)

* J4 3 4 3

1 2 1 2
( 1.) (1 M A X, 1) (0 0) (1 0)- -": .

v "

U X

Fig. I

3.. .

II
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As illustrated in the first figure we consider a mapping from the

two-dimensional parameter space (u,v) to the space (x,y). We can quantify a

sapping between these two spaces using the following functional..

is - ff (V ,yu)2 + (V ,v) 2 dxdy (1)

To " f (Vx,yu * Vxyv)2 dxdy (2)

1 - f f w(x,y)J dxdy (3)

where

(x,y)()j - . (4)

and w is a given function of x and y.

* We now describe the meaning of each functional.

.>4

The integral in equation (1) measures the smoothness of the mapping from

(uv) to (x,y). In particular, the gradients in the integrand measures the

smooth changes in spacing would have a functional value less than a jaggedly

spaced mash. We will call this integral the smoothness fuactional. The

*. integral in equation (2) measures the orthogonality of constant u and v lines.

* - If the mesh were perfectly orthogonal then the integral would be zero. We will

call this integral the orthogonality functional. The Integral in equation (3)

measures how well the volume elements are conforming to a given weight function

w(x,y). If we were to minimize this integral, we would predict that where w is

large J should be small and converaly where 3 is large w should be relatively

small. Further, if J is small in a neighborhood of some point P then the grid

*- should have many points close together in a neighborhood of the point P. Vs

will call this last Integral the volume weighting functional.

The functionals in the first three equations all measure useful qualities of

a mesh. Both smoothness and orthogonality of a mesh are important to maintain

accurate differencing. The volume weighting functional is useful in measuring

1Z

17,1
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how a mesh is Is adapting to a given function. In addition to measuring mesh

qualities, these functionals can be used to generate mashes as well. This is

done by deriving a system of elliptic equations from the functionals. This

process is broken into several steps.

The first step in this process is to write the integrals using (u,v) as the

independent variables. This is useful later on when we will difference soe

equations. Next we take a linear combination of the integrals. The lambdas

are all chosen positive and their relative size determines the Importance given

to each integral. With a single sum defined, we can minimize this integral

* ,usiag the methods of the calculus of variations.

1 ggsi + xolo +lv (5)

SvS47 0 (6)

where 7 is the integrand of the right hand side of equation (5).

To do so we calculate the Ruler derivative of the integrand of the sum in

* , equation (5). These expressions are listed in equations (6) and (7). Notice

that having written the integrals in terms of (u,v) we can now difference the

corresponding elliptic equations using symmetric differences on a rectangular

region. We have chosen to solve the equations using an iterative scheme. This

scheme Is the classical Caues-Jacobi iteration which is very amenable to

- vectorisatlon. Now that we have given a sketch of the two dimensional

equations, we nmve onto three dimensions, leferences 11,21 cover the two

dimensional equations In mwe Jetail. Oe particular detail that should not be

- left to the references is that in practice the orthobonality term is mltiplied

* by the term JS to counter problem with rouading errors. This now term

slightly alters the offeet of the functional In that regions where J ts large

are orthogeonlised more then regLes were J is mall.

VV

44
A 4 4.
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ECNEIALIZATION OF THE VARIATIONAL FOWL ATION TO TEREE DINMSIONS

* "The variational formulation easily generalizes to throe dimensioas. The

first stop in generalizing the equations is to define the appropriate mopping.

hThis to simply done by adding one space dimension to both (uv) end (z,y) to

get (uv,v) and (zys). Equations (8), (9), (10) and (11) are the appropriate

1!, eneralizatioas of equations (1) thru (4).

is - Ihr Vxy,u) 2 + (.ys.s) 2 + (Vx.y.w,)2 d-dyda (8)

+ (qz,y,8-) •Vz~y~zw)
2

- + (Vx,y,sV) Vz~y~z)2 dxdyd (9)

,.~~f w ,-11,(-,y.,)J dudydx (10) ..

. where

The only real additional complexity is found in the orthogonality functional

where two additional term must be added to Insure that orthogonality of all
coordinate lines are measured. Again linear combinations of the integrals are

taken and the Ruler derivative of the integrand of the sum of these integrals
io calculated. Equations (12) thru (15) list these expressions.

I 0 0s + Ao1o + Aviv  (12)

r- FL4 F 0(14)

-:4

j4-i
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ra a a a a a ~ ~(15)
2V

Again, in practice, the integrand of the orthogonality term is multiplied by 3

to reduce problems vith rounding errors.

To demonstrate how these variational principles work in three dimensions

several model problems will be presented. The first problem has a cubic

phyFical region. Within this region a spherical exponential weight function is

defined about the center of the cube. This problem will show how the weight

functional influences the mesh. The second problem has a physical region that

looks like an inverted pyramid with the tip cut off. This frustum problem will

use the orthogonality functional to show its effect on the mesh. The last

model problem uses the smoothness functional to generate a mesh around a

cylindrical fuselage and an attached wing.

Figure 2 shows the mapping for the first model problem. The figure is a bit

*misleading since the cube actually rests at the origin. There are 20 points in

* ' each coordinate direction yielding a total of 8000 poitc. However only 18 x

18 x 18 (5832) points are actually iterated on since the others are fixed at

the boundary. We use the following weight function. In this problem the

"
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weight 1. for the soothing functional will be set to one while the weight of

the orthogonality functional will be set to zero. The weight for the volume

weighting functional will vary between zero and one. To be able to show the

full variation in the effect of the weight function while varying the parameter
-between zero and one a geometry dependent normalization was introduced for both

the weighting functional and the orthogonality functional. These

normalizations are introduced by dividing the lambdas by the lambda primes

i* introduced in equations (16), (17) and (18).

X. 7 (16)

50  (17)

* -

w-- fff w(xy,z) dxdydz (18)

where

forV is the physical volume region.

I Is the physical length scale.

Is the parameter length scale (number of points in a direction).

These normalizations were arrived at by using dimensional analysis. The

"dimensions" of the weighting functional and the orthogonality functional were

normalized to those of the smoothing functional. finally the weighting

function w(x,y,z) is defined in equation (19).

w(xy,z) - 1000 exp[(0.25 -(x 2 + y2 + z2)1/ 2)2 / 0.05) (19)

r . *" C" . 4
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Figure 3 shows the behavior of the weighting functional as a function of

lambda. The behavior of the curve is what one expects since as more weight Is

given to the functional its influence should be felt more.

1050 -32000

1000-( 23000

950

o900- 140000.0001 0.001 0.01 0.1 1 ..

Fig. 3 :
The triangles mark values (right ais) of the volume weighting functional
and the squares mark values (left axis) of the smoothing functional.

Figure 4 shows various cross-sections of the mosh when v Is set to one.

Figure 5 illustrates the frustum used In the second model problem. The
Scordinates of the bttom plane of the frstu are (z,y,z) - (0.25,0.25,0.5),

(0.25,0.75,0.5), (0.75,0.75,0.5) and (0.75,0.25,0.5). The coordinates of the

top plane are (x,y,s) - (0.0,1), (1,0,1), (1,1,1) and (0,1,1). In this problem
the weighting for the smoothness functional is set to one while the weight of

the orthogonality functional varies between 0 and 1000 . The volume weighting

functional so not used and subsequently has weight zero. Figure 6 shows the

behavior of the orthogonality functional as a function of Ac for the given

range 0 to 1000 . Again the curve exhibits a predictable behavior. Figure 7
shows several cuts made into the frustum. The cuts display how the msoh
gen-ration algorithm pushes the grid planes upward to make as many points as

orthogonal as possible.

r G

f, -;.-7-
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730- 4

720-2

-3710 -

2

690-

680o11-11 fl 1
0.1 1 10 100 1000

;X 0

Fig. 6

The triangles mark values (right axis) of the orthogonality functional

and the squares mark values (left axis) of the smoothing functional.

Fig. 7
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Figure 8 displays the last model problem used to demonstrate the mesh

generator. This figure shows a cylindrical fuselage with a wing attached.

* I

?I
* Fig. 8

*The fuselage is extended so that the cylinder extends -90 degrees from the

* horizontal. In addition, a wall is constructed perpendicular to the wing.

*/ With these extensions a rectangular grid is wrapped around the wing as

illustrated in figure 9 . In this problem the smoothness functional will first

be used without either of the other functionals to generate a regular mesh. In

figure 10 a cut, seen from the front of the fuselage, of the grid is shown

*after 50 iterations. The mesh appears to be regular but has one troubling

characteristic. One notices that the mesh is tightly spaced around the edge of

the wing. After examining the equations derived from the smoothing fur,:j Oal

it becomes clear by using electrostatic analogies that the mash limo khould

bunch around the sharp wing edge much as potential lines concentrate about

lightning rod.

One possible way to fix the problem at the edge is to use the weighting

functional to redistribute the grid points away from the edge by choosing a

weight function appropriately. Figure 11 shows the region where the weight

function is large. Elsewhere the weight function is very small or zero. The

form of the function is unimportant. However, its location is away from the

edge making it a good candidate to pull the mash lines away from the wing edge.

Finally figure 12 shows a cut made in the same manner as in figure 10.

Ws
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AN APPLICATION IN TWO DIMENSIONS

In this section we will show how the mesh generator can be combined with a

two-dimensional cartesian hydrodynamics code. All three functionals will be

used to make the cartesian code adaptive. The step in a wind tunnel problem

will be solved numerically to demonstrate the power of the method. This

problem has been studied by many people and more information about its

background can be found in references 12,31. We first discuss the

hydrodynamics code.

An appropriate model for the wind tunnel problem is the compressible

inviscid fluid equations in two dimensional-cartesian geometry. These

equations are listed below using a lagrangean formulation and an ideal equation

of state.

dP+ vq +u 0 (20)

+ Vp- 0 (21)
dt

P0- + p V +u 0 (22)
dt

p - (y - 1) P I (23)

The standard variable names are used. p is the density, p is the pressure

(which could include viscous contributions), u is the velocity, I is the

internal energy, t is time and gama is the ratio of specific heats. Although

the fluid equations are inviscid, a viscous pressure will be added to prevent

ringing at shock fronts.

qI

I
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The equations will be differenced in two steps. The first step, called the

Lagrangean phase, will approximate the above equations. Following the

Lagrangean phase a remap phase will follow allowing an arbitrary mesh to be

used. Because of length constraints on this paper, we cannot go into detail on

the differencing. However, some general comments should be made about the

differencing.

*, In the Lagrangean phase a conservative differencing scheme is used on a

staggered quadrilateral grid. The velocities and masses are vertex centered

while pressure and internal energy are cell centered. Differencing is explicit

in time and stability is maintained using a courant limitation on the time

step. More details can be found in reference [2]. The remap phase of the

calculation is also conservative making the entire scheme conservative. The

central idea employed in the remap phase is the utilization of the fully

two-dimensional FCT algorithm of Zalesak generalized to an arbitrary

I NFLOW PARAMETERS

: = 1.42
u= .0

u =3.0' V = 0.0 ..

y = 1.4

Fig. 13

4-4.i /



880

quadrilateral mesh (references 12,41). The remap phase is dissipative insuring

stability.

Figure 13 is a schematic of the initial conditions and boundary of the wind

tunnel problem. Free slip boundary conditions are used on the top and bottom 4

boundaries since the model is inviscid. At the corners of the step, the

velocities are constrained to a direction parallel to a chord formed using

adjacent boundary points. The outflow boundary conditions simply set all

normal derivatives to zero. As it turns out, the flow is always supersonic at

* the outflow boundary making the boundary conditions irrelavent. The inflow

boundary is set to make the flow Mach 3 # The interior initially also has a

uniform Mach 3 flow in the horizontal direction. Next, the initial mesh (120 x

40 cells) is created using the smoothness functional. Finally we introduce the

weight function used in ,he volume weighting functional. It is well known for

this problem that multiple shock structures develops throughout the region. To

resolve these structures we have chosen the gradient length of pressure listed

in equation (24).

w(xy) - IVP2 (24) •
p

Figures 14 and I5 are snapshots of the computation at times 0.5 and 2.0

respectively. The primary purpose of these illustrations is to show that the

grid changes drastically over time in order that it may follow the structure of

the flow. Further comparisons can be made at fixed times to show that the grid

is concentrated around gradients In the pressure. Another property of the

computation mesh that is observed is how It aligns itself with the gradients of

the pressure. The cells contract in a direction parallel to the gradients

which enhances the resolution more than If the cells shrunk in a uniform

manner. Computations were carried out without using the weighting functional

as well. The primary shock structures were still recognised in this

computation, but shock thicknesses were doubled. Also finer structures that

appeared near the shocks were lost completely. In this particular problem,

very little extra computation time was expended In running with an adaptive

mash for two reasons. The first reason is that the adaptive algorithm adds

a,
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little expense since few iterations were needed to update the mesh each time

step. A more important factor was that the Courant condition for this problem

was most limiting at the step corner. As a result both problems ran with

almost the same number of time steps for a fixed interval of time.

CONCLUSIONS

To conclude, we summarize our results. We have shown that the variational
formulation for generating meshes can easily be extended to three dimensions.

Further the mesh generation equations behave in an easily predictable manner as

illustrated with the three model problems given. We have also outlined a

successful two-dimensional application of the mesh generator to a problem with

moving multiple structures. The mesh generator moved the computation grid with

the shock fronts and enhanced the resolution of the difference scheme

significantly.

I -
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INTRODIICTION

2 Recently, the problem of numerical generating curvilinear coor-

dinate meshes has received a vast exploration because of its out-

standing importance in solving the partial differential equations

of continuous mechanics. The major advantage of this method is that

the boundary of the region becomes a coordinate line which decided-

ly simplifies the numerical schemes for approximate integration of

boundary value problems. In some sence the method of adapted coor-

dinates is an alternative to the method of finite elements.

In two dimension the most natural way to create curvilinear

meshes was, perhaps, the inversion of conformal mapping' . This
t" -= approach was generalized by means of variational principle .7:The

coordinates obtained in this way, however, were not orthogonal in

general and the Jacobian assumed in some cases incomfortable values .-

approaching zero or infinity. It was due to the rigid prescription

of the boundary points. The orthogonality has been restored only

after reducing the conditions on the boundary points to the natural

ones for a conformal mapping . In present note an other approach

ensuring the Jacobian to be a priory prescribed function is at-

* tempted.

* GOVERNING EQUATIONS

- Consider a region D in the plane Oxy with boundary 6D. The trans- "

formation

(I) x : x(C;,) and y = y(C n)

* .relates D to a region D' of the plane OEn (see fig.1). Respectively

c = €onst and n = const represen't two families of curves in Oxy

which are desired to be orthogonal. Then

(2) X x + y 0y 80

where subscribing denotes a partial differentiation.

Since eq.(2) is not enough to define the two functions x and y

- AJ
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one more relation is needed. In present work it is chosen to impose

a condition on Jacobian, namely

(3) xy n - XnYE = f'l(xy) - F- ,

where f(x,y) is certain arhitrary function. Vespectively F(E,n) 3

f(x(Cn),y(C,n)). In the case when f(x,y)=l the coordinates ob-

tained can hP nameO "uniform".

The boundary conditions for the system (7),(3) are:

(4) *(xy) = 0 at (x,v)660, i.e. at (C,n)i 60

- where #(x,y) is the analytical representation of the curves which
comorise 60. For complete definiteness it is necessary to prescribI
the rule of correspondence between the corners A,B,C,E and A',B',

C'E' (see fig.I).

.4 / _ ,_

Flg.l. Geometry of the problem

.- , r The boundary value problem (2),(3) and (4) in its present form --

is very inconvenient for direct numerical integration. In addition

its correctness is not obvious. However, (2) and (3) are readily

transformed to
2. 2 xy~ (2 y2) -

(5) f(x.y)x (x2 + y2_) .Y and f(A.y)yc(x 2 +

which is certain nonlinear generalization of the Cauchy- ° iemann

problem. This is which assures one that the problem is of elliptic

type and could he expected to possess a soluti under the bounda-

ry conditions (4).

17
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After obvious maninulations one finds

( ) + v ? x 2 +f:n n

and then eqs.(5) are easily transformed into followinq

(7) f(x.y)yn(X + 2V) 2 X and f(xy)X (X2 + 2 -y

The last set of aquations is not ina~pndent of (c) and it is nut-

lined only for further convenience.

SI nce sufficiently fast numerical method for direct Intearation

of Cauchy-Diemann prohlem is not known it is convenient to r~ner

(5) and (7) into more standart form, namely:

(8) -f(x'y) H - + =f(X,v)H nx

() ffy1 2 av -fx 2 av n
'((9) a f(x,v)H + i f(x,y)H Vn " ,..

2 2 22 2 2where H2C- x= + YC and H=n . x n + v n and the squares of the coor-

4dinate scale factors. This system of two second-order differential

equations is equivalent to a boundary value problem of Cauchy-

iRemann type only when one of the first-order equations is satis-
fied at the boundary 6D. In present work it is assumed to employ

the orthogonality condition (2) as a boundary condition for (8),(9)

along with (4).

METHOD OF SOLIlTIn4

In order to solve the set of nonlinear elliptic equations (R),

(9) with the boundary conditions (2),(4) the method of convergence
6

is chosen. Therefore derivatives of x and y with respect to some 2.
fictitious time t are added into (8) and (9) respectively,

(k) x + I fH2 bx + LH Ix .o"at It n I-T Sn E~H Tn- o

v + A f H 2  b v + A H 2 L v , O .t " n in C 2n

The finite-difference scheme is constructed on the basis of the

alternating-direction method6
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ij'11 n nn 1.1 11 n n

(12) = A n T + A nx n :- - -- = A ' + n A
-r. n 1T n Y

• 13) Anl Il i  + An xn+I "i n_ n n+l I1 n 5.T Ary + Any

Here xij=X(Fivnj), F.i(i-))h.n,'hr, n=(i-llh -n.sh , where h and- ' n E

h. are the uniform grid spacings in and directinns respectively.
The differential operators are aporoximated with second order of
approximation as follows:

2 n 9 (fH2)n.4  + (fH 2n
T o--ni 2,j li-*,3 i-l,j

) +, j + (fH2) ,J

h ? An 9 fH 2 n+ f2)hn n i j.1 1
fM2 n 1 fH(fHi' i,iJ+7 + f )i,j- i,J-- 

.j

where 9i, j is either x or y.
The above scheme is completed with a second-order aonroximation

of the boundary conditions (2) and (4):

X ( X n  
n n j + 1 _ n j . )

1,j+ - x1,9.12-)( 2, j  1 1

+ " n n nn
(19J4Z - YI,_I + Y2,j+I " 2J-1)(Y'2,j " ,Ij)"0.

, ( 1 2 a-

••xl.j + x2,j Fn  )l,•i + Y2.J Ff . n
z, ix + 2 l "

xn +n n n y n n
+l~ +2..1 bf n  Y + Y.j 2,j aF n

+ z - 2 by

!114imY21& IIIF laml nmml lll m
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/n n x1 n ii

(12 hi

JI +l Y"+I IF ii++V+ iIF
2x i-x

,fn+l n n n n n1 n~

1+, - 1l, 1+1,2 Yi l2)(Yf, - Ya)=

(13 a

x Ax +l yW F

n f n n n1 n.
il + -1,. .2iN1.2IF

n n n+
Xi + axx

+1hN Ia'o sinfiac of1,~ th scee rpoe h i ht h
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ture of the boundary conditions containing both the functinns. In

fact, on each half-time steo an algehraic system of followinq type

is solved:

(14) A(Xi- ) - C(X) + B( i+1 fiYi-I Yi )  +  Yi(+ 1  " i

Here A,S,r are natrices 2x?. It is easily prnven that they satisfy

the sufficient coneitions for stability nf the Gaussian-elimination

-type method proposed7 for system with the ahovw structure.

RESULTS AN4 DISMUSSION

The method outlined here can be used in two major ways. The

first is the construction of regular orthogonal meshes for domains

with curved boundaries. The simpliest and, perhaps, the most natu-

ral definition of regularity is the requirement Jacobian to be

equal to unity, i.e. f-l. The meshes related to this condition can

be informally named "orthonormal".

First of all, it has been checked out wether cartesian coordi-

nates appear to be amonq these uniform coordinates. Indeed, when

the above boundary value problem has been solved for the case when

the region 0 is simply the unit souare, then the mesh obtained has

resulted into cartesian set with very oood accuracy.

The next test has been to generate an uniform orthogonal mesh

for the curvilinear rectangular domain shown on fig.2. It is spe-

cially selected to possess right angles in order to avoid some dif-

ficulties connected with the breaking of conformity at the corner

points when the angles are not riqht. It is not a restriction in

general, but the case with arbitrary angles requires a special care

when spacing the grid points near the corners. The latter goes be-

yond The frame of present short note. In addition three straight

rims are selected and only one curved boundary is allowed according

to the formula y-1.5 - .5 cos(tx) . This is fully enough to dis-

play the method. The grid is chosen to be uniformly spaced in both

directions with space steps hE and h respectively. In order to

obtain higher accuracy as well as to check and verify the comnuta-

tions two different meshes are employed with number of grid cells

2Ix21 and 41x41 respectively. Results turn out to vary slightly

with the reduce of the grid size. On the basis of the two solutions

V

. .. , :. .• mil l l ll l l l - I
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and by means of Oicharson Pxtrapnlation a %olution with ord.r of

approximation O(h+h) on the mesh 21x?1 is constructed. 1)n fig.?

are shown several chAracteristic cnordinate lines of this solution,

while on fig.3 are plotted the coordinates obtained simply from the

conformal mapping. It is well seen the spoiled behaviour of the

Jacohian in the last case as well as the sirnificant improvinq

attained after the method of the present wort, is applied.

The second way of anplication of the proposed method is in con-

struction of optimal meshes. nne of the possihle usefull defini-

tions of optimality is to seek for a mesh which is more dense in

the reqions where the profile of certain qiven function is more

steep. A similar idea was employed
8 but on the basis of a varia-

tional principle. In present work the instrument for governing the

mesh appears to be function f. It is assumed that f(x,y) is nothing

hut the two-dimensional slope of a given surface

2 2
(15) f(x,y) + u + u IV

where z a u(x,y) is the equation of that iurface. Eq.(3) obviously

*yields:

dxdy a (1 + ux' * U; ) "2 d~dn

Tha latter relation asserts that if one tekes a regularly spaced

* grid in the region DI' one obtains coordinate lines in 0 which are

more dense in the regions where the two-dimensional slope of func-

tion u(xy) is greater, i.e. where function u(x,y) is steeper.

To avoid the unnecessary comolicatlons and to demonstrate the

idea of optimality in its pure form it is considered here a square

domain in the plane Oxy. It should he mentioned that several dif-

ferent "leading functions" u(xy) has been used in calculations. To

give a better feeling of the results the simplest function

U(xy) a 1 * X2 + y2 has been chosen among others to expose the

method. The optimal mesh obtained with this function is shown on

fig.4. The shape of function u along with the coordinate mesh is
plotted on fig.S. There can be seen the uniform portions in which

the surface area is divided by the coordinate lines.

In the end it should be mentioned that the rate of convergence

of the method for the optimal meshes has been much greater than

that for the uniform ones with curved boundaries.

X
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nE1JEMAI1KT!! !FnP THPEE nI-4Ern~
It is imoortant to note that the prosent method is easilv nener--

alized in three dimensions. i.e. when three cartesian coordinates

x.yz are transformed to three curvilinear coordinates Cwn.. In

this case there exist three conditions of orthogonality:

xCx n + y *yn + zCz n = 0,

(16) x nxC + ynyc + z nZ = 0 i
x ycy( + z z 0

but only two of them are independent. The condition on Jacobian is

(17) XCYnZC + X nyc zC + x y z q - xcYnZC - XznYZ C xycz- f-I

Once again, it is easy to show that

(18) f2 (xy,z) H HH = 1

and to derive the following set of equations

(19) .Lf12H2  + 4 fH2H2 , e + LfH 2 H2.1,9 O
(g - n C It in C E. -n I- f  n o

where 9 is either xy or z.

The boundary conditions for this system of equations are the

equation of boundary surface:

(20) F(x,y.z) - 0 at (x,yz)e 6D

*on one hand and two of the othogonality conditions (16) on the oth-

er. At each side of the unit cube in D' have to be chosen those two

of (16) which are normal to this side.

CONCLUSIONS

In present work a method for constructing orthogonal coordinates

when their Jacobian satisfies certain condition Is outlined. The

respective equation of this condition along with the orthogonality

condition yield a system of equations which is a nonlinear analog

to the Cauchy-Riemann problem. The role of a boundary condition is

played by the equation of the boundary. This system is rendered to

a pair of coupled second-order elliptic equations which is solved

by means of a kind of splitting method.

..,4. ,.-, ; . * ,. . .

*A ' * - -mwe n
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Two general ways of application are displayed: generation of
uniform" meshes with unit Jacohian, and "optimal"m meshes for

which the Jacohian is governed by the magnitude of the two-dimen-
sional slope of a given function. The latter assures one thAt the
mesh is more dense in the regions where computed function is

* steeper.
Generalization of the method for the case with three dimensions

is sketched.
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Boundary integral-equation technique, 596
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Configurations, 1, 2, 4, 15, 17, 29, 103, 104, 194, 633-6, 639, 645

Conformal mapping, 50, 64, 66, 72, 107, 172, 193-4, 196-9, 206-7, 228, 230-1,
280, 359, 361, 410, 415-6, 419, 481-2, 508, 519, 525-6, 528-31, 536-7, 554,

563-4, 565, 569, 570-2, 578, 579, 585, 601, 885, 891
Conformal metric, 789, 790

Conical surface, 112-3
Conjugate gradient, 504, 761, 767-8

Connectivity, 442
Conservative, 22-7, 35, 195, 202, 284, 289, 295-6, 306, 419, 426, 485, 493,
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S Control volumes, 621, 822
Convection diffusion equation, 283
Convective transport, 285

Convex, 19, 81, 102, 124, 376, 724
Coordinate redistribution function, 721

Corner, 6, 14, 103, 178, 180, 236, 266, 273, 376, 587-8, 596, 598, 610-1, 616,
692, 765, 769, 826, 860, 8904

Corner-removing mappings, 587, 589, 597

Cost, 195, 241, 349, 607, 819
Coveant, 20-1, 42-3, 76, 791

Crack, 184
Critical points, 603-9, 612-5
Cross derivative, 62, 194, 241, 733
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T. Cube cluster, 465, 467, 469-71
T, Curl, 21, 26
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290, 294, 345, 364, 440, 452, 485, 554, 573, 668, 670-3, 678, 697, 701, 721,
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Curvature clustering, 448
Curvature constraint, 222, 225-31

Curvature tensor, 41, 66
Curve definition, 450

0

Derboux's Theorem, 217
Defect correction, 503-4
Deferred correction, 733-5

Deflection contours, 270-5
Deformation field, 839-41, 855
Deformation mment, 838-40

Depth-aeraged, 412
Derivative correspondence across outs, 16
Derivatives, 29, 31, 37, 137, 143, 167, 169, 480, 482, 486-7, 611, 795
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DERMOD, 487
Difference approximations, 31-6, 101, 221, 300, 304-5, 344, 367, 423, 479, 490,
494, 502, 867, 879
Difference metric, 220
Difference orthogonality, 202, 222, 454
Differencing metrics, 301, 794
Differential equations, 410
Differential geometry, 29
Differential models, 41
Diffuser, 357, 360, 362, 372, 374, 381, 520-2
Discontinuities, 103, 493, 595, 645, 700, 704
Discretized transfinite mappings, 177
Distortion, 37, 176, 326-9, 376, 480, 705
Distribution, 79, 288, 441, 448, 462, 529, 659, 667, 669, 670, 704-5
Distributive lattice, 179
Divergence, 21, 25
Divergence form, 35, 296, 820
Divergence Theorem, 21
Donor cell differencing, 289
Douglas-Gunn splitting, 815
Droplet combustion, 340
Ducts, 129, 360-4, 376-7, 507-10, 521, 527-0, 531, 543, 563, 565-6
Dynamic grid, 813, 837, 844-5
Dynamism, 854
Dynamism constraint, 845, 850, 857

S:.Edges, 97, 178, 180, 675
Efficiency, 304, 348, 553, 818
Elastic torsion, 253
Elasticity, 254, 258, 275
Electric field equations, 729-33

t Electrode, 731, 734
Electrostatic analogy, 550, 875
Ellipse, 274, 455, 457
Ellipsoid, 201, 217, 676
Elliptic, 6, 9-12, 79, 107-8, 117, 195, 206-7, 211, 220, 241, 320, 359,4, 410,
416-7, 619, 653, 667, 688, 695, 717, 727, 729, 739, 761-3, 768, 775-8, 761,
848, 865, 868, 887, 892

Embedded, 10-1, 194, 447, 453
Engine, 465
Equidistant mesh, 859
Error, 31-2, 37, 103, 144, 220, 253, 266-8, 272-4, 277, 282, 284, 292, 2"W, 300,
305, 320, 323-5, 334, 340, 395, 502-3, S2Sw9, 610-1, 766. 767, 792-4, 804, 806,
824, 842, 853

Estuarine hydrodynamics, 409
Euler angles, 788
Euler characteristic, 470
Euler derivative, 868
Euler equations, 86, 279, 260, 28*, 267, 290, 305, 326, 332. 333, 463, 46
Euler Time-Stepping, 465

Expansion of grid spacing, 34, 36Excution tine, 542.

Exponential, 34
External flow, 2S, 361, 96, 529, 531
Extraum principles, 60

h.h
.~P ,fir, ' *

-, ,, " .". I.

.it..." - --." ,



Iq

899

F!

Faces, 180, 671, 673, 768
Factorisation, 347-8, 437, 697
Fan-in Wing, 472
Fast Fourier techniques, 118-21, 125, 127, 130, 589
Fast Poisson solver, 128, 130, 131
Fictitious corner, 236-7, 243, 246, 376
Fictitious points, 766
Field boundaries, 236
Filtering, 394-5, 827
Finite element, 127, 243, 385, 410, 441-2, 488, 495

* Finite volum, 110, 127, 131, 243, 295, 303. 547, 553-4, 668, 819
First fundmaental form, 46
Fisher's equation, 286, 289, 293
Five-sided cells, 645
Flame, 340, 343-4, 348-56
Flap, 659-62
Flooding boundaries, 428
Flux corrected transport, 286, 423, 879
Fluxes, 202, 284-5, 304, 493
Forcing function. 53. 363-75, 687-94, 848
Forgiving algorithms, 242-3, 250-2
Four-color, 393
Fourier transform, 499
Free shear layer, 820
Free stream correction, 301

* - Free stream metric ariation, 302
Free surface, 385-95, 401-6, 64S, 651, 809-1-
Fronts, 346
Full-potential, 656, 65S, 663-4, 787, 794-5
Fundamental Differential Uquation, 211, 213, 221
Fuselae, 236, 239, S29, 573, 676, 724, 870, 875
ruselage-wing, 783

GEN Codes, 729
Gin code, 139
GMND 3C, 563, 572-3, 582-3
Garricck transformation, 122
Gas dynamic calculations, 8S9
Gauss quations, 41, 45, 496# 717
Gauss-Jacobi iteration, 868
Gauss-eldel iteration, 419, 761, 767-8
Gaudsian curvature, 199, 200, 216, 225
Gausslafeliuination, 890
Gaussian surfaces, 89
GOneralied coordinates, 172-3
Geodesic curvature, 216
Gtadiet, 21, 25, 109, 254, 277, 282, 286-7, 29O, 303-6, 320, 326, 332, 339,

342-S, 3S3, 364, S64, 6S, 747, S, 83-30, 641, 867, 60
Gradient length, 292, 860
GPAPo 11, 101, 433, 653"9, "3
GraphicS, 1321, 137, 14, 10, 447, 45,
Grid changes 8 294
Grid distartLn, 31S
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Grid distribution, 689
Grid motion, 832
Grid refinement, 437-45, 729, 861
Grid resolution, 520, 573
Grid spacing, 31, 34, 38-9
Grid speeds, 318-34, 849

H

H-type, 399, 549, 553-60, 564, 659, 691-4, 783-4
Halo corners, 484
Halo width, 482
Halo zone, 483
Handles, 471
Harmonic functions, 63, 611, 740, 744-7
Harmonic mean, 493
Heat and mass transfer, 303, 339, 357, 81, 531, 619
Helmholty equation, 243, 252
Hermite blending functions, 176
Hermite interpolation, 139, 209-10, 438, 502
Hermite projector, 209-10, 217
Hinge point transformations, 120
Homotopic mappings, 138
Hoimotopy argument, 603
Hosted algorithm, 236-7, 242-3, 730
Hybrid grids, 598-9
Hybrid iteration, 767-8

Hydrodynamics, 409-10, 415, 422, 878
Hydrofoil, 645, 651
Hyperbolic, 79, 213, 217, 231-2, 303, 362, 775
Hypersonic scramjet flows, 360

I

Impeller, 113
Incompressible flow, 110, 124, 303
Infinity, 125, 564, 568, 570
Inhomogeneous terms, 81, 363, 655
Initial guess, 102, 368, 370, 373, 382-3, 635, 730
Inlet, 115-6, 120, 122, 127-9, 303, 360-2, 376, 472, 518-20, 755-6
INNESH, 633-8, 645, 651

I Instability, 168, 286, 301, 344, 394, 817
Integral-equation, 585
Integral form, 820
Integrals, 23, 29
Interactive, 168-9, 437, 636
Interactive graphics, 171, 362
Interfaces, 176-7, 305, 469

Internal flows, 357, 507, 563
Interpolation, 97-9, 102, 130, 137-9, 146-7, 151-4, 160, 168, 173-5,178-80,2N41,
217, 220, 240-1, 284, 344, 354, 358, 363, 370-1, 377, 437-40, 448, 459,. 477,

482, 487-8, 490-9, 503-4, 519, 565, 567, 670-5, 702-6, 768-9, 777, 828, 846,

850, 855, 857, 866
Intersection angle, 101
Invariant mapping, 842-5
invariant meaure field, 838

'* Ilsioid flow, 110, 297, 312-3, 525

.~
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Inviscid shear flows, 302
irregularities, 242-3
Isentropic, 227
Isentropic elastic plates, 253
islands, 409, 419, 428
Isometric grid, 861

- ' Isomorphism, 179
Isoparametric, 441, 564
Isothervic coordinates, 49, 55-6, 64, 71, 75-6, 198
Iterative solutions, 101-3
Jacobian, 19-20, 36, 108, 142-3, 199, 212-3, 231, 240-1, 278, 297, 301, 319,

*323, 326, 376, 418, 496, 504, 526-34, 669, 674, 699, 701, 732-3, 787, 914, 844,
* 846, 885

Jacobian damping, 324, 329
Jacobian factorizations, 347
Jacobi iteration, 282
Joukovski transformation, 115
Juncture, 675

K

* Karman-Trefftz transformation, 115, 117-8, 121, 587-8, 596
Keyseat, 269-70
Kinks, 706

'IL

Li-shaped, 5, 6, 167
LU decomposition, 347

* ~ , Lagrange interpolation, 488, 490-5
Lagrange multipliers, 787, 806
Lagrangean phase, 879
Lame's equation, 70
Laplace, 21, 26, 33, 37, 41, 49, 50, 58-66, 76, 80-3, 86, 128, 172, 219, 228,
242, 250, 254, 365, 388, 401, 495, 499, 530, 591, 596, 602, 634, 636, 699, 744,
749, 787, 791-3, 861, 865

Lasers, 729-30, 733
Laterally averaged, 410
Lax-Wendroff, 525
Least-squares, 490-4
Length element, 43
Line integral, 24, 28, 68
Linear equation solvers, 130
Linear grid generation equations, 241
Linear lofting, 175
Little's square, 211

* Lobed mixers, 361
Local coordinate system, 15

* . Lofting, 178
Logarithmic transformation, 117 123, 592
Lost corners, 246
Lubrication, 113

I<*4 &
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MACSYMA, 735
MacCormack, 304, 323, 333, 525, 825
Mach reflections, 525
Magnetic reconnection, 288
Magnetosphere, 294
Mainardi-Codazzi equations, 47
Mapping modulus, 109-11
Marching scheme, 195-6, 222, 231, 303, 729, 775
Marker-and-cell, 385
Mass-residue, 622-4
Matrix splittings, 347
Matrix techniques, 13C
Maximum principle, 362, 765
Median faces, 469
Median line, 467-8
Median point, 467
Median surface, 469-70, 474
Membrane analogy, 254-5
Memory, 110, 445, 542, 572, 776
Mercator projections, 113
Mesh density, 550, 554
Mesh intervals, 343-6
Mesh refinement, 345, 350, 806
Me.sh-sensitive, 295 I
Method of characteristics, 529
Metric, 19, 109, 194, 196, 198-204, 224-232, 304, 306, 341, 353, 496-7, 796,
837, 844

Metric coefficients, 25, 41, 43, 50-1, 55-7, 66-8, 71, 75-6, 212-8, 222, 224,
295, 298-9, 359, 508, 511, 517-8, 529, 536, 670, 719, 820, 825, 845-7. 855, 857 1

Metric conservation law, 300
Metric constraint, 225
Metric differencing, 299
Metric equations, 217, 224
Metric error, 301
Metric identities, 300
Metric relations, 301
Metric rule on coordinate changes, 226
Metric specification, 226
Metric tensor, 20, 43, 76, 530, 787-95, 801-2, 846
Minervo approximation, 495
Minicomputer, 437
Mixed derivatives, 211, 225, 230 -.
Modulus of the domain, 722
Moving aileron, 303
Moving boundaries, 275, 288
Moving control volume, 289
Moving grid, 28, 286, 320
Multi-block grid, 235-7, 243-6
Multi-body problems, 636-8
Multi-channel configurations, 360
Multielement airfoils, 585-6, 653, 659-63, 749
Multi-grid technique, 37, 304, 360, 465-8, 504, 564, 706, 732
Multi-material calculations, 290
Multiple block structures, 688
Mu .le bodies, 122, 123, 129, 166, 303, 410, 416, 639

'V4
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Multiple-connectedness, 633
Multiple grid systems, 306
Multiple valuedness, 107
Multiply connected regions, 601, 675
Multisurface method, 137-9, 150, 208-11, 447-8, 453-4, 462
Multivalued nature, 113-4
Multi-Volume Data Structure, 465

N

Nacelle, 115, 120, 305
Natural tangents, 197, 202, 204, 214, 220
Navier-Stokes, 68, 305, 411, 514, 621, 623, 656, 659, 697, 731, 811, 819
Near-circle, 116-7, 121-2, 130-1
Nearly-orthogonal mesh, 128, 131, 304, 357-62, 368, 372, 550, 555, 655, 657
Neumann boundary conditions, 4, 14, 368, 699, 741
Newton iteration, 257, 344, 347-8, 367, 372, 570, 572, 591, 607, 611
Node ordering, 443
Noise, 490
Non-conservative, 22-7
Nonorthogonality, 36, 61, 77, 193. 199, 426, 573, 579, 789
Normal, 19, 23, 358
Normal derivative, 23, 27
Normal derivative boundary condition, 766
Nozzles, 361-2, 517, 529
Nuclear reactors, 619, 625
Numerical diffusion, 277, 282, 285-90
Numerical instabilities, 368J Numerical viscosity, 286Numerically orthogonal, 195

NUMESH Code, 11Ji

O-type, 9, 92, 166, 359, 549-50, 553, 560, 564-5, 576, 592-3, 636-9, 748, 783-4
Ocean, 426, 428
One-to-one mapping, 2, 80, 362optimal mesh, 343, 891
Orientation, 787-91, 798

Orthogonal, 55, 97-9, 107-12, 156, 172, 267-8, 273, 357-61, 391, 410, 415-6,
419, 453, 457, 459, 462, 494, 507-9, 523, 550, 569, 671-4, 741, 837-8, 860-1

Orthogonal grid generation, 19, 49, 63-6, 70, 77, 124-31, 193, 279, 362, 459,
481, 789, 853, 885

orthogonal metric, 194, 198, 216, 228
Orthogonal surface coordinates, 201
Orthogonal trajectories, 195-6, 204, 222-3, 231, 454
Orthogonality, 31, 65, 68, 73, 86, 88, 139, 156, 193, 212, 217, 222, 278, 280,
296, 360-4, 367-8, 371-6, 437, 457, 533, 571, 671, 678. 702, 765, 782, 797-90,
803, 807, 854, 860, 868, 885, 867, 892

Orthogonality at the boundary, 4
Orthogonality constraint, 846, 849
Orthogonality control, 781, 783
Orthogonality functional, 867, 869-72, 874
Orthogonality parameter, 804
Orthonormal, 890
Oscillations, 38, 305, 323, 330-3, 352-3, 394, 622, 731, 733
Outer surface method, 147

2 .'
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Overlapped grid, 102, 176, 187, 305, 315, 635, 826
Overlapping zones, 483
Overrelaxation, 102

P

Packaged tools, 130
Pad& approximation, 499
Panel method, 124, 242, 243, 250-1, 385, 465, 596, 599, 742, 751
Parabolic equations, 775, 810
Parabolic interpolant, 493
Parabolic transformation, 239
Parabolized Navier Stokes, 303, 311, 529
Paraboloids, 217
Parametric transformation, 239
Particle-in-cell method, 290

*Partition boundary, 466
Partitioned fields, 465
Patched coordinate systems, 235, 305-6, 447, 450, 482
Penalty method, 279
Perturbation form, 302
Pitching moment, 316
Planetary probe, 829
Plates, 13, 253-65, 272-5

iPoincare-Lemma, 225
Point density, 588, 593-4
Point distribution, 98-9, 163, 593-4, .600, 659-63, 706, 830

, Point method, 144
Point relaxatlon, 767
Point-SOR, 722
Poisson equations, 76, 81, 83, 207, 211, 260-4, 272, 350, 363-4, 390, 395, 417, .7.

530, 633-4, 655, 671, 687, 796, 813
Poles, 124, 517
Polynomial interpolation, 487, 499, 777
Potential., 219, 243, 388, 603-16
Potential flow, 37, 124, 243, 301, 405, 465, 481-2, 509-11, 515, 547, 550, 553,
586, 590-5, 645

Potential flow streamlines, 507
Prandtl-Neyer expansions, 525
Precision sets, 179-80
P-Amitive function, 171, 173, 178
Principal curvature, 678
Principal normal, 87
Principle of reflection, 114
Product projection, 174-5
Projectiles, 303
Projector, 173-80, 206, 209-10, 239, 448, 671, 674, 861
Prolate ellipsoid, 56, 58, 724-7
Propeller, 547, 563, 573, 576, 582-3
Pseudo-spectral method, 499, 504

Q

Quadratic approximations, 493
Quadlter al, 610-11
Quality, 237, 239, 242, 304, 441, 787 4. 1

Quasi-circular, 587

. . ..
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Quasiconformal mapping, 74

R

Rate-of-change of the grid spacing, 21
Rayleigh-Taylor instability, 288
Reaction-diffusion equations, 340
Reclustering, 661
Rectangular solids, 13
Red-black, 393
Redistribution, 51, 75, 722
Re-entrant boundary, 5, 8, 10, 15-6, 34, 79, 107
Reentry body, 529
Reference material, 128
Refinement, 204, 454, 564, 859, 861
Reflection mapping, 116
Reflection principle, 126
Remap phase, 879-80
Resolution, 398, 677, 798
Review, 128
Rezoning, 819, 825, 827, 832
Richardson extrapolation, 891
Rieann-Christoffel curvature tensor, 69
Riemann sheet, 113-4, 123, 563, 595
Riemann Tetsor, 41, 66, 69
Riemannian metric, 43
Rivers, 409-10, 419, 426-8
Rod-bundle, 621, 625
Root selection, 115-7, 131'Ji Rotor, 564-6

Rounding errors, 268, 868, 870
MRnge-Ktta, 534-6

S

SC method, 327-8
SWR-iteration, 102, 304, 716
SOR iteration, 253-4, 257, 260, 265, 270, 272, 345, 367
Salinity, 411, 413, 423, 436
Schwartz-Christoffel techniques, 117, 119, 207, 361, 507, 525, 531-4, 544, 607
Scramjet engine, 361
Secant method, 607
Second fundamental form, 46
Segmented grids, 596-7, 633-8, 645, 651, 761
Sequence of surfaces, 89
Sequential mappings, 117
Semidirect, 729
Shafts, 253-4, 257-9, 266-73
Shear layers, 829-30, 832, 835
Shear stresses, 258-60, 267-71, 359, 842
Sheared conformal approach, 206

'* Shearing transformation, 36, 122, 205-10, 214, 217, 359, 361, 549, 554-5, 560,
563-6, 570-1, 577, 579, 585 1 .
Sheet, 16, 92
Ship, 402-4
Ship performance, 386
Ship wave, 386,406

, .. '.
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Shook, 243, 284-5, 287, 296, 303-4. 327, 329, 331, 358, 467, 482, 525, 531, 564,
749, 796, 804, 826, 829-33, 861, 878, 680, 883

Shock aligning, 330, 334
Shock capturing, 301, 330, 334
Shroud, 659, 662

" Side matching table, 442-3
Singlo-fours technique, 376, 384
Singular regions, 698
Singular surfaces, 698
Singularities, 124-5, 167-8, 212, 223, 229, 246, 266, 376, 395-6, 398, 465-7,
471, 476-7, 482-6, 508, 549, 553, 565, 594-6, 609-10, 677, 697, 705, 741, 775

Singularity method, 739
Six-sided cells, 395
Skewness, 253, 266-8. 272-5, 295, 304-6, 314, 363-4, 550, 653, 661, 824

:Slabs, B-10, 13
Slat, 757
Slit, 7-11, 13-4. 376, 384, 570, 613, 638, 641-4, 732-4
Slit-plane, 697

*Slope changes, 124
Slope continuity, 656, 659
Slope discontinuities, 6-7, 104, 121-2, 176. 242, 447, 459
Slope intezpolation, 448
Slopes, 653, 657, 663, 671, 673, 762, 765, 839, 846, 855
Snoothing, 81-2, 290, 323-4, 700, 775, 777, 871, 674
Smoothness, 31, 34, 37, 80, 86, 103 169, 194, 237-9, 240-3, 276-9, 282-3, 288,

295, 301, 304, 306, 343-4, 359, 440-1, 447, 488, 490, 496, 659, 667, 677, 769,
807, 626, 854

Smoothness constraint, 847, 649
Smothness functional, 967, 870, 872, 875, O

Solid mechanics applications, 253
Source ternm, 360, 393, 398, 401, 671, 777, 665
Spacing, 36, 81, 83, 99-101, 104, 137, 139, 144, 154, 156, 160, 237-8, 242, 254,
266-78, 300, 304-5, 310, 355-62, 416, 418, 426. 56, 592, 594-5, 598, 619-20,
634, 656-60, 668, 673, 688, 690, 692, 694, 700, 747-8, 762-5, 766, 778, 781-3,
813, 834, 867, 87S, 890

Spacing parameters, 760
Sparse areas, 592-4, 598
Special points, 14, 104, 236
Sphere, 55-6, 58, 201, 217, 724-7
Spherical projection, 724
Splino interpolation, 118, 130, 157, 164, 367, 40, 565, 567, 572, 610, 660-1,
860

Splittings, 347-8
springs, 825-8, 831
Square root transformation, 114
Stability, 277, 282, 266, 35S, 486, 860
Stacking, 13
Staggered-cell, 621, 626, 879
Stereographic projections, 113
Stiff, 346-7
Storm surge, 410
Strein, 838-46, 849, 852, 855-6
Streom function, 303, 743, 751
Stream-functLn-vorticity equations, 37, 39
Streamline coordinate syst m, 515, 554, 596, 590, 740, 742, 746
Stre mline plane, 744-5, 752, 755, 757, 759
Stramline , 741
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Stress, 258-60, 266-73
Stretching transformation, 109-10, 127-8, 238, 242, 295, 304-6, 316, 3$4.* 359,

364, 368, 375, 410, 416, 550, 563-73, 579, 675, 688, 691, 704, 706, 824, 828-9,
842, 845

string sapping, 588-9, 598-9
Strong conservation law form, 301
Strongly-implicit procedure, 102
Structuring, 236
Subdomains, 235, 437-40
Subgrid boundaries, 761, 769, 773
Subgrids, 761-3. 768-70
Su erged hydrofoil, 396
Subregions, 176-7, 667, 675-7, 681, 761
Successive line overrelaxation, 241, 677, 703
Successive overrelaxation, 367, 393, 634
Successive surface systms, 13
Supersonic flow, 113, 243, 360, 529, 865
Surface, 41, 44-9, 53, 55, 72-3, 86, 89-90, 99, 100, 107, 111, 145, 171, 178,
193-6, 201, 217, 224, 226, 239, 242, 447-53, 467, 472-3, 5480-9, 56S, 576, 669-
76, 697, 717-23, 727

Surface Cristoffel symbols, 45, 55
Surface decomposition techniques, 177
Surface grids, 71, 137-9, 156-7, 200, 202, 206, 210-1, 238, 241-2, 249, 447,
450-4, 462, 667, 672-7, 680, 684, 686

Surface integral, 24, 28
Surface metric, 194
Surface operators, 451
surface pressure, 303
survey of coordinate system generation, 29, 123, 232
Symbolic Mianipulation, 729, 734

* Symm's method, 605

T

T-form, 395, 697, 709
Tangent, 19
Tangential derivatives, 23, 27
Tau Computational Space, 844, 848
Taylor series, 3S, 504, 795, 815
Tensor densities, 526, 531, 534
Tensor form, 18, 29, 531
Tensor product, 229, 48b-9, 499
Tesselation, 467-71 4
Thoodorsen-Garrick transformation, 116-7
Theorem egregium, 47, 199
Thermsal-hydraulic, 621
Three-dimensional grid, 13, 41, 99, 123, 137, 171, 177, 193, 201, 237-6, 547,
563, 667, 667, 695, 717, 761, 665, 869, 092
Tidal cycle, 427
Time-dependent, 277, 204-5, 342, 345, 366, 406, 609
Tim derivatives, 28, 428, 813
Timings, 445, 731
T0SSCAT coda, 10, 81, 90, 419, 426, 633
Topology, 137, 139, 166-9, 235, 463, 471-2, 475
Torqus, 259
Torsion, 253-5, 258, 272-3, 639, 642
Tracking, 115-7



Trailing edges, 580-1
Transfinite interpolation, 137-9, 144, 153-4, 164, 171, 173, 175, 177, 229, 448

Transientprbe ,34
*Transonic flows, 109, 23 5,34 6,41 0,57 6,53 7,55

653, 739-41, 744, 747-9
Transport equations, 284
Triangular grid, 177, 274, 489, 495
Triangular plate, 272
Tridiagonal sQ..ution, 776, 781

Tri-lemnt,653
Trilinear interpolant, 177-8
Triply orthogonal system, 201
Truncation error, 31-40, 86, 282-6, 320-1, 324, 329, 334, 340, 342, 344, 347,
426, 787, 792, 794, 800, 804-6, 859-60
Two-boundary technique, 137-9, 154, 159-60, 164
Turbine, 116, 118, 507-9, 517-23
Turbomachinery, 113, 117, 360-1, 507, 563-4
Tu-- ulence model, 358-9, 377, 516-.1 Twv,-element airfoil, 758U

Umbilic, 201
Unified measure field. 637
Uniformity, 159, 206
Unsteady, 350
Unit normal vector, 45

V

Variable node formulation, 339, 344, 347
Variational formiulation, 85, 277-9, 282, 287j 806, 865-6, 685
Vector processing, 295, 393, 498, 732, 819, 868
Velocity potential, 110, 303
Vertically averaged, 410, 412, 414, 419, 422
Viscous flow, 37, 507, 572, 653, 809
viscous stresses, 35S
Viscous sublayer, 364

-" Vol ume , 19, 85, 787, 790, 807
Volume integral, 24, 28
Volume sheet, 469-70
Volum strings, 469
Volume variation, 200k4
Volme weighting functional, 867, 871-2, 880
Vortex sheets, 467

Wake, 359, 549, 553, 564, 568-73, 5783, 561, 829-30, 633

* Water quality problss, 409
Water surface elevation, 423, 425, 435-6 *

Water wave, 365-6, 609
Waterways , 360
Wave equation, 243, 251
Wave metica, 385
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Wave peak, 401
Weak conservation law form. 301

* wedge, 539-43, 860, 862
Weight function, 86, 282-90, 342-6, 353, 355, 819, 854, 870, 875
Weighted voum variation, 278

* Weingarten equations, 46
WESOR, 9

* 'Wind tunnel, 361, 749, 759-60, 865, 878
*wing, 114, 236, 239, 303, 305, 529, 662, 664, 686, 870, 875

Wing-body, 236-7, 242, 245-9, 313, 465, 472-3, 667, 676, 680, 688
Win-tip, 236, 573, 667, 677, 684-5, 695, 697, 706

Z
* Zonal boundaries, 657-63

Zonal grid, 656-9, 663
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